Как устроена солнечная батарея? Как это работает. Портативная солнечная батарея – специально для туристов

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока (она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.

Солнечный свет не только делает возможной жизнь на Земле, он может со временем также стать и поставщиком большого количества электроэнергии, без которой немыслима современная цивилизация. Использование солнечного света может быть не прямым, а в виде подвода энергии к турбинам.

В этом случае комплект зеркал фокусирует солнечную энергию на теплообменник, который испаряет воду или любую другую жидкость, вырабатывая пар для привода обычной турбины, соединенной с генератором. Однако возможно и прямое преобразование солнечного света в электроэнергию, например, при помощи кремниевых солнечных элементов.

Типичный солнечный элемент состоит из шести слоев. Основание (база) одновременно выполняет роль отрицательного полюса элемента; отражающий слой удерживает свет внутри рабочей части элемента, увеличивая его электрическую эффективность; два слоя обогащенного кремния (N-типа и Р-типа) образуют ядро солнечного элемента. Кремний N-типа имеет свободные отрицательные заряды, а кремний Р-типа - несвязанные положительные заряды. При отсутствии освещения эти заряды скапливаются в зоне контакта слоев; когда на элемент падает солнечный свет, заряды расходятся в стороны. Такое перемещение зарядов создает постоянный ток, если солнечный элемент является частью замкнутой цепи. Сверху кремний защищен прозрачной пленкой, на которой размещен металлический контакт положительного полюса.

Как работает солнечный элемент

Солнечный свет, падающий на элемент солнечной батареи, разделяет положительные и отрицательные заряды, которые аккумулируются в зоне контакта между пластинками кремния Р-типа и N-типа. Это разделение создает напряжение, под действием которого при включении элемента в замкнутую цепь в ней начинает течь электрический ток

Секционные солнечные батареи

Солнечные батареи (рисунок над текстом) вырабатывают постоянный ток, который может быть преобразован на электростанции в переменный. Избыточная электроэнергия, выработанная солнечными элементами, может быть запасена в аккумуляторных батареях для последующего использования.

Солнечные батареи в космосе

Для большинства космических спутников солнечные батареи являются основным источником энергии. Эти батареи (рисунок справа) отличаются от тех, что используются на Земле (рисунок слева). Если батареи, установленные вблизи земной поверхности, нуждаются в защите от дождя и пыли, то те, что функционируют в космосе, должны быть защищены от жесткого космического излучения.

Солнечная теплоэлектростанция

Солнечный свет может снабжать теплотой паротурбинную установку, приводящую во вращение генератор. Комплект зеркал фокусирует солнечный свет на башню-концентратор. Результирующий световой пучок настолько интенсивен, что может превращать натрий в пар. Пары натрия используются для превращения воды в пар, который затем приводит во вращение турбину.

Альтернативные источники энергии с каждым днем становятся все актуальнее. Причина тому - экологичность, возобновляемость, дешевизна. Энергия солнца - один из самых выгодных источников энергии. Ближайшие несколько миллиардов лет оно будет продолжать освещать нашу планету, отдавая огромное количество энергии, в отличии от газа и нефти. Сегодня мы научились использовать этот источник с помощью системы солнечных панелей, но мало кто понимает принцип работы солнечной батареи. Давайте разберемся.

Для начала нужно понять, что система солнечного электроснабжения дома это не только те черные или синеватые панели, которые устанавливаются на крышах домов. Эти светоприемники лишь один из четырех составляющих общей системы, в которую входят:

Принцип работы солнечной батареи

Солнечная батарея или солнечный модуль - является ключевым элементом в гелиосистеме альтернативного электроснабжения. Именно он превращает солнечный свет в пригодное для использования электричество. Основа батареи - монокристалл искусственного кремния, на обе стороны которого нанесены слой бора и фосфора.

Электрический ток образуется там, где есть разность потенциалов или "+" и "-". Для этой цели и служит дополнительное покрытие. Их принято называть:

  • n-тип или покрытие с избытком электронов (фосфор);
  • p-тип или покрытие с недостатком электронов, так называемые "дырки" (бор);

При попадании фотонов солнечного света на покрытие n-типа , свободные электроны начинают перемещаться в зону p-типа генерируя электричество или т.н. pn-переход . Принципиальное значение имеет сторона на которую попадают солнечные лучи.

Строение солнечной батареи

  1. солнечный свет;
  2. верхний проводник;
  3. слой n-типа (фосфор);
  4. зона p-n перехода;
  5. слой p-типа (бор);
  6. нижний проводник;

Обе стороны солнечной батареи покрывают защитными слоями, предотвращающих механические повреждения. Верхнюю (солнечную) сторону дополнительно покрывают антибликовым светопоглощающим покрытием, которое увеличивает уровень светопоглощения.

Отдельные светоприемные блоки или модули соединяют между собой в панели, увеличивая общую мощность системы.

На сегодняшний день стоимость панелей - один из самых негативных факторов, определяющих покупку панелей. Срок окупаемости в зонах с продолжительным световым днем составляет 5-10 лет, но зачастую значительно больше. Китайцы значительно преуспели в стремлении удешевить фотоэлементы, за счет замены монокристалла кремния на поликристаллы, но это повлияло на и того не высокое КПД батарей. Среднее КПД работы солнечных батарей варьируется от 13 до 17%. Самым высокое достигнутое КПД составляло 24%.

Напоследок фильм о принципе работы солнечной батареи с комментариями специалистов:

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

Панель солнечной батареи

©depositphotos.com

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке.

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону.

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток.

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом.

Самое большое в мире судно на солнечных батареях PlanetSolar

©PlanetSolar/ Philip Plisson

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД.

Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.

В чем суть работы солнечной батареи?

Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.

Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.
Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:


Итак, как же работает солнечная батарея?

На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:


Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.
Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.
Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.

Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.

Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.

Зачем нужен контроллер в солнечной батарее?

Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.

Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.
Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.

Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.

Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.

Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: