Форматы сжатия звуковой информации на примере mp3 и FLAC. Сжатие с потерями

Аудио компрессия для меломанов

правда о высоком битрейте при сжатии с потерями

Предисловие

В понимании большинства людей слово меломан чаще всего ассоциируется с человеком, не просто любящим и коллекционирующим музыку, а еще и ценящим качественную музыку, причем не только в художественно-эстетическом плане, но еще и качество записи самой фонограммы. Подумать только, еще несколько лет назад эталоном качества музыки считался аудио компакт диск, компьютер же даже в мечтах не мог конкурировать с качеством CD. Однако, время — большой шутник, и часто любит переворачивать все с ног на голову. Прошло, казалось бы, совсем немного времени, какой-то год или два и… всё, компакт диск на PC отступил на второй план. Не спрашивайте "почему?", Вы ведь сами знаете ответ на этот вопрос. Всему виною революция в мире звука на компьютере — аудио компрессия (здесь и далее под аудио компрессией подразумевается сжатие с потерями, для уменьшения размера аудио файла), которая позволила хранить музыку на жестком диске, много музыки! Более того, появилась возможность обмениваться ею через Интернет. Вышли новые звуковые карты, способные "выжать" чуть ли не студийное качество из, казалось бы, бесполезной в плане музыки "железки". Сегодня, имея даже не очень шустрый по производительности компьютер, купив звуковую карту Creative SoundBlaster Live! и вспомнив, что еще с советских времен имеется хороший усилитель и добротная акустика, Вы получите ни что иное, как музыкальный центр высокого качества, звучание которого уступает разве что очень дорогой аудио аппаратуре (средней или даже высшей Hi-Fi категории). Прибавьте к этому общедоступность музыкальных файлов, и Вы поймете, что у Вас в руках — сила. И тогда происходит переворот, и Вы понимаете, что компакт диск — это уже и не так удобно, завораживает Вас совсем другое — магические знаки "MP3". Вы не можете ни есть, ни спать — перед Вами неразрешимый на первый взгляд вопрос "курицы и яйца": чем "сжимать" и, самое главное, — как "сжимать"…

Из существующих на сегодня форматов компрессии аудио заслуживающими внимания, на мой взгляд, являются три: MP3 (или MPEG-1 Audio Layer III), LQT (как представитель семейства MPEG-2 AAC / MPEG-4) и совершенно новый формат OGG (Ogg Vorbis), разрабатываемый группой энтузиастов:

  • На сегодняшний день MP3 — самый распространенный из них (в первую очередь потому, что он бесплатный). Напомню, что именно благодаря формату МР3 и произошло победоносное шествие сжатого аудио. Однако, как часто бывает с пионерами, он постепенно сдает позиции и уступает место более новым и качественным форматам.
  • Второй формат, LQT, является представителем нового направления алгоритмов аудио кодирования, представителем семейства AAC. Это достаточно качественный, но коммерческий и строго засекреченный формат.
  • OGG стал широко известен общественности этим летом и на данный момент бурно развивается, в скором времени (с релизом кодера и декодера) должен побить MP3 лучшим качеством звучания при меньшем объеме файлов.

Я не буду приводить здесь подробного описания технологий и форматов, Вы легко можете найти их самостоятельно. Будут только факты, выводы и рекомендации. Свои исследования отдельно по каждому формату я планирую изложить в отдельных статьях.

Условие задачи

Я решил "столкнуть лбами" три указанных формата на предмет получения максимально качественного звука при минимальном размере файла. Для теста были выбраны несколько семплов (здесь семпл — вырезанный из PCM файла небольшой фрагмент) из композиций двух типов. Первый — очень плотного и громкого звучания с нормализацией по амплитуде (уплотнение звука "по вертикали", чтобы он с 24 битного мастера уместился в 16 битах) и компрессией динамического диапазона (чтобы при этом звучание всех инструментов было всегда громким). В качестве первого типа (как и в моих прошлых тестах) была выбрана композиция Crush On You из альбома Have A Nice Day группы Roxette, исследовалось три семпла по 15-20 секунд с разных участков композиции. Второй семпл — чистый и прозрачный (легкая оркестровая или акустическая аранжировка). В качестве второго типа была взята композиция Mano a Mano с альбома Tango известного пианиста Richard Clayderman.

Почему именно эти записи? В семплах Roxette имеет место очень сильная динамическая компрессия (значение амплитуды очень часто равно максимуму (что плохо) и приводит к перегрузке воспроизводящей аппаратуры и сильным искажениям).

На подобных семплах кодерам приходится работать в экстремальном режиме, из-за чего становятся легко слышны любые искажения, т.к. к уже имеющимся собственным искажениям оригинала добавляются еще и искажения кодирования. Вы спросите "а зачем тогда брать в качестве теста такой семпл?". Нужно и еще как. Подавляющее большинство выпускаемых в настоящее время альбомов именно таким образом и записано. Поэтому кодер должен приемлемо относиться к перегруженному звуку.

С семплами Клайдермана ситуация диаметрально противоположная. Исходно аналоговая запись после очень качественного цифрового ремастеринга записана на компакт диске, причем без динамической компрессии.

Великолепное звучание, очень приятные и мягкие "верха". На них мы и обратим особое внимание при проведении анализа, попытаемся их сохранить. А ведь именно эти частоты кодерам будет сложнее всего передать.

Чем "жмем"

Мои исследования эталонного качества для разных битрейтов и кодеров формата MP3 выражены в программе OrlSoft MPeg eXtension . Параметры кодирования подобраны по результатам тестов.

Безусловный лидер качества на высоком битрейте — кодер LAME. Кодеры от Fraunhofer IIS по-прежнему хороши только для низких битрейтов — для 128 и 160 кбит/с. Про другие я даже говорить не буду. Только НИ В КОЕМ СЛУЧАЕ не связывайтесь с кодерами, основанными на коде XING (самый известный представитель — Audio Catalyst) — эти самые плохие, звук — просто ужас.

Для большинства пользователей формата MP3 проблема качественного звука обычно ставится следующим образом: "256 или 320? а может попробовать VBR?". И этот вопрос мучает их изо дня в день. Не все записи хорошо звучат в 256 — имеют место сильно слышимые и видимые (по измерениям) потери в области верхних частот. При использовании режима VBR (так называемый поток с переменным битрейтом) часто бывает, что музыка звучит на слух лучше, чем 256, но это нельзя брать за общее правило. Кодируйте мало ценные записи, либо не очень качественные — не ошибетесь. Параметры VBR у меня подобраны для получения максимального для VBR качества.

Для коммерческого формата LQT существует только фирменный кодер от авторов — Liquifier Pro. Им и жмем. Отмечу, что формат LQT изначально основан на VBR кодировании, поэтому для него существует просто несколько режимов типа "плохо", "хорошо" и "отлично". Естественно, для наших тестов берем режим "отлично" (Audiophile), в результате чего получается поток от 192 до 256, чаще всего 200-220 кбит/с. Напомню, что формат LQT основан на семействе алгоритмов MPEG-2 AAC. Более того, это наиболее качественная на сегодня реализация AAC (проверено на аналогах).

Формат OGG родственник формата MP3, однако содержит в себе иную психоакустическую модель и некоторые отсутствующие у MP3 технические новинки. Начать хотя бы с того, что OGG изначально поддерживает только режим VBR. Пользователь задает ориентировочную скорость потока, а кодер пытается сжать максимально ближе к нему. Диапазон изменения чрезвычайно широк: от 8 до 512 кбит/с, причем он значительно более дискретный, чем у MP3. Верхняя планка составляет целых 512 кбит/с, в то время как MP3 кодеры на сегодня реально "тянут" только до 320. Вы спросите "а разве бывает что и 320 мало?". Да, бывает, но редко.

Семплы Roxette

Ну вот, мы и подошли к самому интересному. Начнём с моих слуховых ощущений.

Для МР3 на потоке 256 кбит/с явно слышны нарушения звучания верхних частот. Мало того, что в звуке отсутствует немалая их часть, так еще и примешивается сильное искажение, хрип, металлический лязг и прочие "прелести". Это знак к тому, что 256 явно не хватает, следовательно, надо попробовать повыше. Берем сжатый в 320 семпл. Звук значительно изменился — это совсем другое дело: верха на месте, на слух никакой разницы не обнаружено. Для чистоты эксперимента посмотрим, что же получится в режиме плавающей скорости потока. Получаем средний битрейт в 290 кбит/с, из чего напрашивается вывод, что 256 для исследуемого семпла маловато будет. Действительно, на слух семпл, закодированный в режиме VBR, звучит чуть-чуть лучше, чем 256, однако явно не дотягивает до звучания 320. В случае применения МР3, для качественного сжатия подходит только кодирование в режиме 320 кбит/с, т.е. на максимуме возможностей.

Берем OGG как "модифицированный MP3". Для кодера существует пять ориентировочных битрейтов: 128, 160, 192, 256 и 350. Что ж, попробуем 192 и 256. Битрейт 350 брать не будем, т.к. нам уже известно, что MP3 при 320 кбит/с передает явно прекрасное качество, лучше вроде бы и не надо. Для режима 192 получаем средний поток в 226, а для режима 256 — целых 315 кбит/с. Вот вам и точность. Столь большое отклонение от ориентира — это сигнал к очень сложно кодируемому звуковому материалу, при более простом по плотности семпле точность будет выше. Честно говоря, я долго пытался оценить 320 MP3 и 315 OGG и пришел к выводу, что оба они звучат практически аналогично исходному звучанию. Но они основаны на разных психоакустических моделях и окраска звучания у них разная. Лично мне чуть больше понравился все-таки MP3. Однако, это действительно спорный вопрос — ведь кодер OGG пока только бета версия. Когда будет релиз, думаю, он должен обогнать MP3 в качестве. Сравнивая их по отдельности с оригиналом, я склонился к тому, что OGG все-таки ближе по звучанию к оригиналу, но вот с верхними частотами у этого кодера что-то не так. Из-за этого MP3 и звучит немного лучше. Думаю, не надо говорить, что в режиме 350 (средний битрейт получился в 365) OGG "идеально" повторяет оригинал.

Теперь про малоизвестный, но широко рекламируемый как "самый качественный" формат — формат LQT. И, что самое главное, он действительно звучит очень круто в целом, однако, прислушавшись, я понял, что мне не понравилось в его звучании. Он не искажает верхние частоты, как MP3 на 256 кбит/с, но размазывает звук, причем сильно размазывает. Резкие звуки размываются во времени. Да, это плохо. Но дело в том, что сравнивать LQT на битрейте всего в 230кбит/с с MP3 на таком же битрейте бесполезно, МР3 проигрывает по общему звучанию. Придраться, конечно, есть к чему. МР3 теряет и искажает верхние частоты, LQT же в свою очередь несколько "проваливает" средние частоты и размазывает верхние. В общем, тут кому что больше понравится. Но это — тема уже для другой статьи. Сегодня у нас разговор только про высшие битрейты. Да, LQT дает хорошее качество, но отнюдь не супер. По всей видимости, здесь сказывается недостаток скорости потока, то есть, если в LQT появится режим большего битрейта, он побьет даже 320 кбит/с MP3 на записях типа исследуемой.

Это были мои чисто субъективные впечатления. Давайте теперь перейдем к более объективным тестам. Исследуем АЧХ (то есть амплитудно-частотную характеристику ) семплов, признанных лучшими (320 для MP3, 315 для OGG и 230 для LQT). Представленная диаграмма — так называемый "сонарм" — частотно-временное представление звука. По горизонтали располагается шкала времени, по вертикали — линейная шкала частот.

Внимательно присмотрелись? Вот вам и ясное подтверждение моих слов: новейший формат Ogg Vorbis в режиме 256 явно недотягивает "по верхам" — урезание частот видно невооруженным взглядом. "Супер коммерческий" формат LQT передает диапазон частот по верхам вроде как даже лучше, чем LAME, но общее качество хуже. Дело в том, что в LQT нет режима чистого стерео — там, по сути, всегда Joint-Stereo (кодер сначала сжимает левый канал, а потом кодирует только разницу между левым и правым). Из-за этого и происходит размазка верхов при недостатке битрейта, что прекрасно видно на иллюстрациях, плюс сие заключение легко подтверждается исследованием сигнала в MS-матрице, т.е. при переводе его в режим центральный канал + стерео. Что можно сказать про семпл LAME… все просто замечательно — чуть-чуть урезаются верхние частоты, но это терпимо; видимых провалов также не отмечено.

Подытожим. На финишной прямой для семпла Roxette форматы OGG на 256 кбит/с и LQT сошли с дистанции, семпл OGG на 350 кбит/с не уступает лидеру. Однако не будем хоронить новый формат раньше времени — подождем релиза. Вот тогда уже и проведем тесты еще раз: OGG 256 против LAME 320.

Семплы Richard Clayderman

C семплами Roxette вроде все понятно — плотный звук пока лучше сжимать кодером LAME в режиме 320 кбит/с. А как насчет более прозрачного звука? Попробуем сначала сжать в режиме 256 кбит/с и все, по идее, должны бы быть довольны. Результат: низкие частоты вроде на месте, да и средние тоже, а вот верхние частоты… не стало верхних частот! Они есть, но в них не осталось того красивого звучания, не обратить внимание на которое в данной записи очень сложно. Высокие частоты в целом на месте и сильных потерь нет, однако звук "тарелок" стал какой-то синтетический, резкий и весьма неприятный. Такой звук не имеет права претендовать на звание качественного. Что ж, придется снова использовать 320, а ведь как хотелось сжать в 256… Если сравнивать 320 со звучанием 256, передача верхних частот стала значительно лучше. Однако, при сравнении с оригиналом, слышно, что запись по-прежнему не является удовлетворительной в плане качества. После сравнения еще нескольких семплов, становится очевидно, что это погрешности психоакустической модели. Даже в 320 кбит/с MP3 не передает нормально верхние частоты на исследуемом типе записей. Верхние частоты становятся более резкими, металлическими, от них так и веет синтетикой и, как ни странно, они кажутся более громкими (измерения АЧХ этого не демонстрируют — чисто слуховой эффект).

Исследуем теперь Ogg Vorbis. Как и в предыдущем тесте, берем семплы, сжатые в режиме 256 кбит/с. После неудачи с MP3 сложно поверить в полученный результат — звучание Ogg Vorbis лучше по всем параметрам и не идет ни в какое сравнение с тем, что выдает LAME на 320 кбит/с! Сравнивая с оригиналом, также очень сложно найти разницу. Ogg Vorbis на битрейте 287 побил LAME на битрейте 320. Именно об этом я и говорил в начале статьи: формат OGG вполне может победить MP3.

Хорошо, а что нам может сказать титулованный формат LQT на битрейте всего в 252? Но и здесь получается шокирующий результат — чрезвычайно близкое соответствие оригиналу! По-крайней мере, разница настолько мала, что можно считать ее несущественной. Еще, обратите внимание на интересный факт: при кодировании семплов Roxette средний битрейт получался порядка 230 кбит/с, а на, казалось бы, более простых семплах Clayderman — 250 кбит/с. Это говорит о том, что LQT значительно лучше адаптирован под реальное звучание музыки, в нем более точно учитываются все нюансы. Великолепный формат. Вот ему бы нормальный кодер без выкрутасов и битрейт чуть-чуть повыше, чтобы смог кодировать более сложные семплы.

Это были мои субъективные "слуховые" исследования. Теперь посмотрим на АЧХ.

И снова анализ АЧХ сигналов только подтверждает мои выводы по результатам прослушивания: LQT выдает просто выдающийся результат, на сей раз лучше LAME. Прекрасная передача частотного диапазона, а потери на уровне 21 кГц это удаленный высокочастотный шум, что даже приветствуется. LAME отстает, но не сильно. Как и ожидалось, с передачей частотного диапазона у MP3 все нормально. А вот АЧХ семпла Ogg Vorbis принесло разочарование: посмотрите, какое урезание частот. Но звучит он лучше, чем можно было бы подумать, взглянув на его АЧХ. По всей видимости, за счет урезания некоторых частот получается возможным более точно передать общую звуковую картину.

И что же мы получаем в итоге? Два лидера: LAME и LQT на максимальном битрейте. OGG очень сильно наступает на пятки MP3 и победит в дальнейшем, если его разработчики доведут свою идею до финального воплощения: меньший размер и лучшее качество.

Исследование дельта-сигналов

Формат MP3 за счет высокого битрейта лучше на большинстве записей. Однако он сдает позиции, когда мы имеем дело с очень качественным звуком. Здесь LQT — абсолютный фаворит. Но разница между 256 и 320 не такая уж и большая, поэтому ею чаще всего можно поступиться ради более удобного и распространенного формата. Многие, да и я в том числе, так и делают в своей фонотеке, а особо качественные записи просто покупают на дисках.

Все это конечно хорошо, но два формата звучат по-разному, и это не дает многим покоя. Есть еще одно интересное исследование. Можно вычислить разностный сигнал (далее он будет упоминаться как дельта-сигнал ) двух семплов и тем самым узнать, а в чем же они различаются. Это, конечно же, сугубо цифровое исследование, т.к. разница может быть не настолько значительной, чтобы ее можно было услышать. В нашем случае все оказалось совсем не так.

Громкость разностного сигнала доходит до -25дБ, а его АЧХ внешне сильно напоминает широкополосный шум. Если прослушать дельта-сигнал, он звучит как широкополосный набор искажений, т.е. в нем явно слышна разница психоакустических моделей MP3 и LQT.

Сравнив по той же схеме MP3 с форматом OGG, ничего нового не получили (разница, конечно, меньше, но она все же значительная):

Аналогичные результаты получаются и для пары LQT и OGG.

Результаты исследования дельта сигналов говорят о том, что психоакустические модели трех рассмотренных форматов очень сильно отличаются друг от друга и их бессмысленно сравнивать между собой по разнице АЧХ.

Заключение

Что ж, попытаемся сделать некоторые окончательные выводы, представив их в виде практических рекомендаций:

  1. LAME — лучший представитель кодеров формата MP3, выдает практически максимум того, что можно получить из MP3. Для всех очень громких и "плотных" записей я бы рекомендовал использовать LAME на 320.
  2. OGG — некоторая структурная модификация формата MP3 с новой психоакустической моделью, математическая обработка и практическая реализация которой в корне отличается от MP3. Для малоценных и низкокачественных записей пойдет OGG в режиме 192 кбит/с (либо LQT в режиме 128 Transparent, в среднем получается 160-180 кбит/с).
  3. В отличие от MP3 и OGG, которые являются представителями кодеров формата MPEG-1, формат LQT базируется на спецификации MPEG-2 AAC. Формат AAC передает значительно лучшее качество на более низких битрейтах за счет принципиально другой обработки звука. Для записей средней ценности рекомендую LQT (на максимуме), либо на выбор (разница между ними невелика): OGG в режиме 256 кбит/с, LAME на 256. VBR режим кодера LAME лучше не использовать, он заметно хуже.
  4. Для очень качественных записей, на которых даже при кодировании в 320 кбит/с ясно слышно отсутствие чего-либо значительного в звучании семпла, попробовать закодировать семпл кодером Ogg Vorbis на 350 кбит/с.
  5. Если сжатый с потерями звук Вас всё-таки не устроит, придется покупать понравившиеся композиции на CD-DA диске.

Возможно, какая-то часть статьи Вас заинтересовала в большей степени. Пишите мне — буду очень рад отзывам.

1. Очевидной техникой сжатия, которую можно применять к речи, является удаление пауз, ᴛ.ᴇ. вместо того, чтобы использовать 44 100 выборок с нулевым значением для записи каждой секунды тишины (частота дискретизации 44,1 кГц) просто указывается длительность паузы - ϶ᴛᴏ сжатие без потерь.

2. В случае если амплитуда звука не достигает максимального уровня, который можно представить при данном размере выборки, эффективным должна быть кодирование Хаффмана (Хофмана). В этом случае сигнал представляется выборками меньшего размера. Это алгоритм сжатия без потерь – всœего лишь частный случай сжатия.

3. Техника компандирования (расширения) также внесла вклад в технологии сжатия речи. Она основывается на восприятии человеком разных уровней громкости и состоит в использовании нелинœейных уровней квантования. В случае если расстояние между более высокими уровнями больше расстояния между низкими, то тихие звуки представляются детальнее, чем громкие.

4. Другая техника сжатия - ϶ᴛᴏ дифференциальная импульсно-кодовая модуляция. Эта схема связана с межкадровым сжатием и основана на записи разностей последовательных выборок, а не их абсолютных значений.

5. Эффективное сжатие с потерями состоит в определœении данных, не имеющих значения (ᴛ.ᴇ. не влияющих на восприятие сигнала), и их отбрасывании. В случае если аудиосигнал оцифровывается прямолинœейным образом (в ПК), в оцифрованную версию могут включаться данные, соответствующие неслышным звукам. Это объясняется тем, что сигнал записывает всœе физические колебания давления воздуха, являющиеся причиной звука, но за восприятие звука отвечает мозг, который (вместе с ухом) совсœем не так просто реагирует на звуковые волны.

Звук часто используется как часть видео- или анимационной продукции. В этом случае необходима синхронизация звука и изображения. Для решения этой проблемы используется временная шкала, которая позволяет упорядочить аудио- и видео в некоторых приложениях редактирования видео, к примеру, в Final Cut Pro. Изучая сигналы, редактор может определить контрольные точки звуковой дорожки (начало слогов или ударные такты в музыке), по которым выстраиваются подходящие картины.

Существует два способа генерации движущихся изображений в цифровой форме для мультимедийной продукции.

В первую очередь, с помощью видеокамеры можно записать последовательность кадров реального движения в реальном мире.

Во-вторых, можно создать всœе кадры по отдельности либо с помощью ПК, либо записывая по одному неподвижные изображения.

В первом случае мы будем создавать видео , а во втором – анимацию .

Видеоряд состоит из набора кадров, каждый из которых является отдельным изображением.

n Считается, что для адекватной передачи исходного изображения требуется 16 млн. оттенков, в связи с этим используется 24-битовый формат хранения цветной картинки. В случае если размер изображения 640 пикселœей (ширина) на 480 пикселœей (высота) и глубина цвета 24 бита͵ то каждый кадр потребует 640х480х3=900 Кбайт.

n Запись последовательности кадров в цифровом виде требует от компьютера больших объёмов внешней памяти. Одна секунда несжатого видео стандарта NTSC (сев. Америка, Япония) содержит 30 кадров. Каждая секунда видео потребует более 26 Мбайт памяти. А для стандарта видео PAL (Зап. Европа и Австралия, 24 кадра) для записи одной секунды нужен 21 Мбайт памяти, для минуты – 1,25 Гбайт.

n Но последовательность кадров недостаточно только запомнить, ее нужно еще вывести на экран в соответствующем темпе. Подобной скоростью передачи информации - около 30 Мбайт/с - не обладает ни одно из существующих внешних запоминающих устройств. При таких цифрах запись (воспроизведение) видео на CD, DVD и передача по сетям – проблематична. Запись видео возможна для видео- и телœестудий.

n Для уменьшения объёма данных необходимы схемы сжатия для видео, а также использование других методов.

Чтобы выводить на экран компьютера оцифрованное видео, приходится идти на уменьшение объёма передаваемых данных, ĸᴏᴛᴏᴩᴏᴇ достигается при помощи:

n вывода уменьшенного изображения в небольшом окне

n снижения частоты кадровой развертки до 10-15 кадров/с

n уменьшение числа бит/пиксель

Это приводит к ухудшению качества изображения.

Существуют различные форматы видео: WMA, ASF, RM, SWF, DVC, VOB, но используются редко, так как либо имеют серьезные недостатки, либо плохо совместимы с обычными средствами создания мультимедийных приложений (но можно конвертировать в другой формат с помощью любого видеоредактора).

n Самые распространенные форматы –AVI и MPEG.

n Audio Video Interleaved (AVI) – ʼʼроднойʼʼ формат для Windows Media от Microsoft. Система Windows использует запатентованный кодек. При записи в данном формате используются несколько различных алгоритмов сжатия (компрессии) видеоизображения. Среди них: Cinepak, Indeo video, Motion-JPEG (M-JPEG) и др.
Размещено на реф.рф
Но только M-JPEG был признан среди них как

международный стандарт для сжатия видео. Первоначально для захвата и воспроизведения видео использовались возможности программного комплекта Video for Windows, разработанного Microsoft, однако сейчас у пользователя имеется для этого лучшие возможности. Файл формата AVI не может иметь размер больше 2 Гбайт. Понимая это, компания Microsoft объявила о разработке новых форматов, призванных заменить формат AVI:

n ASF (Advanced Screaming Format)

n AAF (Advanced Authoring Format)

Поддержка указанных форматов началась с 1999 ᴦ. При этом старый формат AVI также применяется, существуют средства для преобразования этих форматов.

Формат AVI – не только видео, но и синхронизированный с ним звук. Обычно звуковую составляющую называют звуковой дорожкой или аудиотреком . Для AVI это звук в формате WAV. В любом видеоредакторе можно выделить звуковую дорожку, сохранить в звуковом файле, отредактировать в звуковом редакторе

n Windows Media Video (WMV) – новый формат видео от Microsoft, который приходит на смену формату AVI. В его базе Windows Video Codec, разработанный на базе стандарта MPEG-4.

n Quick Time Movie (MOV) – наиболее распространенный формат для записи и воспроизведения видео, разработанный фирмой Apple для компьютеров Macintosh в рамках технологии QuickTime. Включает поддержку не только видео, но и звука, текста͵ потоков MPEG, расширенного набора команд MIDI, векторной графики, панорам и объектов (QT VR) и трехмерных моделœей . Поддерживает несколько различных форматов сжатия видео, в т.ч. MPEG и Indeo, а также свой собственный метод компрессии.

n MPEG (MPG, MPEG ) – формат для записи и воспроизведения видео, разработанный в 1992 ᴦ. группой экспертов по движущимся изображениям (Moving Pictures Expert Group - MPEG). Предназначен для сжатия звуковых и видеофайлов, для загрузки или пересылки, к примеру, через Интернет.

MPEG-4 – стандарт, описывающий правила кодирования цифровой мультимедийной информации. При разработке данного стандарта основное внимание было сконцентрировано на возможности сжимать видеоданные значительно сильнее, чем предусмотрено, к примеру, стандартом MPEG-2. Это позволяет передавать данные на низких скоростях, менее 1 Мбит/с. Такие скорости характерны для большинства пользователœей Интернет и актуальны для потребителœей мобильных беспроводных устройств. Записи MPEG-4 компактнее и значительно дешевле по сравнению с файлами мультимедийной информации, закодированными с MPEG-2. Также средства кодировки и расшифровки MPEG-4 проще

В общих чертах смысл сжатия без потерь таков: в исходных данных находят какую-либо закономерность и с учётом этой закономерности генерируют вторую последовательность, которая однозначно описывает исходную. Например, для кодирования двоичных последовательностей, в которых много нулей и мало единиц, мы можем использовать такую замену:

00 > 0
01 > 10
10 > 110
11 > 111

В таком случае шестнадцать битов:

00 01 00 00 11 10 00 00

будут преобразованы в тринадцать битов:

0 10 0 0 111 110 0 0

Если мы запишем сжатую строку без пробелов, мы всё равно сможем расставить в ней пробелы - а значит, восстановить исходную последовательность.

FLAC (Free Lossless Audio Codec - свободный аудио-кодек без потерь)

Принцип кодирования: алгоритм пытается описать сигнал такой функцией, чтобы полученный после её вычитания из оригинала результат (называемый разностью, остатком, ошибкой) можно было закодировать минимальным количеством битов.

Когда модель подобрана, алгоритм вычитает приближение из оригинала, чтобы получить остаточный (ошибочный) сигнал, который затем кодируется без потерь.

Сжатие с потерями (MP3, AAC, WMA, OGG)

Используется алгоритм сжатия с потерями, размер MP3-файла со средним битрейтом 128 кбит/с примерно равен 1/11 от оригинального файла с аудио CD (несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с). MP3 файлы могут создаваться с высоким или низким битрейтом, что влияет на качество результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Звуковой сигнал разбивается на равные по продолжительности отрезки, каждый из которых после обработки упаковывается в свой фрейм (кадр). Разложение в спектр требует непрерывности входного сигнала, в связи с этим для расчётов используется также предыдущий и следующий фрейм. В звуковом сигнале есть гармоники с меньшей амплитудой и гармоники, лежащие вблизи более интенсивных - такие гармоники отсекаются, так как среднестатистическое человеческое ухо не всегда сможет определить присутствие либо отсутствие таких гармоник. Такая особенность слуха называется эффектом маскировки. Также возможна замена двух и более близлежащих пиков одним усреднённым (что, как правило, и приводит к искажению звука). Критерий отсечения определяется требованием к выходному потоку. Поскольку весь спектр актуален, высокочастотные гармоники не отсекаются, а только выборочно удаляются, чтобы уменьшить поток информации за счёт разрежения спектра. После спектральной «зачистки» применяются математические методы сжатия и упаковка во фреймы.

Типы битрейта MP3

CBR расшифровывается как Constant Bit Rate, то есть постоянный битрейт, который задаётся пользователем и не изменяется при кодировании произведения. Таким образом, каждой секунде произведения соответствует одинаковое количество закодированных бит данных (даже при кодировании тишины).

VBR расшифровывается как Variable Bit Rate, то есть изменяющийся битрейт или переменный битрейт, который динамически изменяется программой-кодером при кодировании в зависимости от насыщенности кодируемого аудиоматериала и установленного пользователем качества кодирования (например, тишина закодируется с минимальным битрейтом). Минусом данного метода кодирования является то, что VBR считает «незначительной» звуковой информацией более тихие фрагменты, таким образом получается, что если слушать очень громко, то эти фрагменты будут некачественными, в то время как CBR делает с одинаковым битрейтом и тихие, и громкие фрагменты.

ABR расшифровывается как Average Bit Rate, то есть усредненный битрейт, который является гибридом VBR и CBR: битрейт в кбит/c задаётся пользователем, а программа варьирует его, постоянно подгоняя под заданный битрейт. Таким образом, кодек будет с осторожностью использовать максимально и минимально возможные значения битрейта, так как рискует не вписаться в заданный пользователем битрейт. Это является явным минусом данного метода, так как сказывается на качестве выходного файла, которое будет немного лучше, чем при использовании CBR, но хуже, чем при использовании VBR (при том же размере файла) .

Формат сжатия звука MP3

Методы сжатия звуковой информации

Сжатие звуковых данных

Сжатие аудиоданных представляет собой процесс уменьшения скорости цифрового потока за счет сокращения статистической и психоакустической избыточности цифрового звукового сигнала.

Сжатие звуковых данных (сжатие аудио) - тип сжатия данных, кодирования, применяемая для уменьшения объема аудиофайлов или для возможности уменьшения полосы пропускания для потокового аудио. Алгоритмы сжатия звуковых файлов реализуются в компьютерных программах, называемых аудиокодеками. Изобретение специальных алгоритмов сжатия звуковых данных мотивировано тем, что общие алгоритмы сжатия неэффективны для работы со звуком и делают невозможным работу в реальном времени.

Как и в общем случае, различают сжатия звука без потерь, что делает возможным восстановление исходных данных без искажений, и сжатие с потерями, при котором такое восстановление невозможно. Алгоритмы сжатия с потерями дают большую степень сжатия, например audio CD может вместить не более часа «несжатой» музыки, при сжатии без потерь CD вместит почти 2 часа музыки, а при сжатии с потерями при среднем битрейте - 7-10 часов.

Сжатие без потерь

Сложность сжатия звука без потерь заключается в том, что записи звука являются чрезвычайно сложными в своей структуре. Одним из методов сжатия является поиск образцов и их повторений, однако этот метод не эффективен для более хаотических данных, которыми являются, например оцифрованный звук или фотографии. Интересно, что если сгенерированная компьютером графика значительно легче поддается сжатию без потерь, то синтезированный звук в этом отношении не имеет преимуществ. Это объясняется тем, что даже сгенерированный компьютером звук обычно имеет очень сложную форму, которая представляет сложную задачу для изобретения алгоритма.

Другая сложность заключается в том, что звучание обычно меняется очень быстро и это также является причиной того, что упорядоченные последовательности байтов появляются очень редко.

Наиболее распространенными форматами сжатия без потерь являются:
Free Lossless Audio Codec (FLAC), Apple Lossless , MPEG-4 ALS , Monkey"s Audio , и TTA .

Сжатие с потерями

Сжатие с потерями имеет чрезвычайно широкое применение. Кроме компьютерных программ, сжатие с потерями используется в потоковом аудио в DVD, цифровом телевидении и радио и потоковому медиа в интернете.

Новацией этого метода сжатия было использование психоакустики для обнаружения компонентов звучания, которые не воспринимаются слухом человека. Примером могут служить или высокие частоты, которые воспринимаются только при достаточной их мощности, или тихие звуки, возникающие одновременно или сразу после громких звуков и поэтому маскируются ними - такие компоненты звучания могут быть переданы менее точно, или и вообще не переданы.

Для осуществления маскировки сигнал из временной последовательности отсчетов амплитуды превращается в последовательность спектров звуков, в которых каждый компонент спектра кодируется отдельно. Для осуществления такого преобразования используются методы быстрого преобразования Фурье, МДКП, квадратурной-зеркальных фильтров или другие. Общий объем информации при таком перекодировании остается неизменным. Сжатие в определенной частотной области может заключаться в том, что замаскированные или нулевые компоненты не запоминаются вообще, или кодируются с меньшим разрешением. Например, частотные компоненты в до 200 Гц и более 14 кГц могут быть закодированы с 4-битной разрядностью, тогда как компоненты в среднем диапазоне - с 16 битной. Результатом такой операции станет кодирования со средней разрядностью 8-бит, однако результат будет значительно лучше, чем при кодировании всего диапазона частот с 8-битной разрядностью.

Однако очевидно, что перекодированные с низким разрешением фрагменты спектра уже не могут быть восстановлены в точности, и, таким образом, теряются безвозвратно.
Главным параметром сжатия с потерями является битрейт, определяющий степень сжатия файла и, соответственно, качество. Различают сжатия с постоянным битрейтом (англ. Constant BitRate - CBR), переменным битрейтом (англ. Variable BitRate - VBR) и усереденим битрейтом (англ. Average BitRate - ABR).

Наиболее распространенными форматами сжатия с потерями являются: AAC, ADPCM, ATRAC, Dolby AC-3, MP2, MP3, Musepack Ogg Vorbis, WMA и другие.

Формат сжатия звука MP3

MPEG-1 Audio Layer 3 Расширение файла: .mp3 Тип MIME: audio/mpeg Тип формата: Audio

MP3 (более точно, англ. MPEG-1/2/2.5 Layer 3 (но не MPEG-3) - третий формат кодирования звуковой дорожки MPEG) - лицензируемый формат файла для хранения аудио-информации.

На данный момент MP3 является самым известным и популярным из распространённых форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для оценочной передачи музыкальных произведений. Формат может проигрываться практически в любой популярной операционной системе, на практически любом портативном аудио-плеере, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.

В формате MP3 используется алгоритм сжатия с потерями, разработанный для существенного уменьшения размера данных, необходимых для воспроизведения записи и обеспечения качества воспроизведения очень близкого к оригинальному (по мнению большинства слушателей), хотя меломаны говорят об ощутимом различии. При создании MP3 со средним битрейтом 128 кбит/с в результате получается файл, размер которого примерно равен 1/10 от оригинального файла с аудио CD. MP3 файлы могут создаваться с высоким или низким битрейтом, который влияет на качество файла-результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Данный метод называют кодированием восприятия. При этом на первом этапе строится диаграмма звука в виде последовательности коротких промежутков времени, затем на ней удаляется информация не различимая человеческим ухом, а оставшаяся информация сохраняется в компактном виде. Данный подход похож на метод сжатия, используемый при сжатии картинок в формат JPEG.

MP3 разработан рабочей группой института Фраунгофера (нем. Fraunhofer-Institut f?r Integrierte Schaltungen) под руководством Карлхайнца Бранденбурга и университета Эрланген-Нюрнберг в сотрудничестве с AT&T Bell Labs и Thomson (Джонсон, Штолл, Деери и др.).



Основой разработки MP3 послужил экспериментальный кодек ASPEC (Adaptive Spectral Perceptual Entropy Coding). Первым кодировщиком в формат MP3 стала программа L3Enc, выпущенная летом 1994 года. Спустя один год появился первый программный MP3-плеер - Winplay3.

При разработке алгоритма тесты проводились на вполне конкретных популярных композициях. Основной стала песня Сюзанны Веги «Tom"s Diner». Отсюда возникла шутка, что «MP3 был создан исключительно ради комфортного прослушивания любимой песни Бранденбурга», а Вегу стали называть «мамой MP3».

Описание формата

В этом формате звуки кодируются частотным образом (без дискретных партий); есть поддержка стерео, причём в двух форматах (подробности - ниже). MP3 является форматом сжатия с потерями, то есть часть звуковой информации, которую (согласно психоакустической модели) ухо человека воспринять не может или воспринимается не всеми людьми, из записи удаляется безвозвратно. Степень сжатия можно варьировать, в том числе в пределах одного файла. Интервал возможных значений битрейта составляет 8 - 320 кбит/c. Для сравнения, поток данных с обычного компакт-диска формата Audio-CD равен 1411,2 кбит/c при частоте дискретизации 44100 Гц.

MP3 и «качество Audio-CD»

В прошлом было распространено мнение, что запись с битрейтом 128 кбит/c подходит для музыкальных произведений, предназначенных для прослушивания большинством людей, обеспечивая качество звучания Audio-CD. В действительности всё намного сложнее. Во-первых, качество полученного MP3 зависит не только от битрейта, но и от кодирующей программы (кодека) (стандарт не устанавливает алгоритм кодирования, только описывает способ представления). Во-вторых, помимо превалирующего режима CBR (Constant Bitrate - постоянный битрейт) (в котором, проще говоря, каждая секунда аудио кодируется одинаковым числом бит) существуют режимы ABR (Average Bitrate - усредненный битрейт) и VBR (Variable Bitrate - переменный битрейт). В-третьих, граница 128 кбит/c является условной, так как она была «изобретена» в эпоху становления формата, когда качество воспроизведения звуковых плат и компьютерных колонок как правило было ниже, чем в настоящее время.

Цифровой звук, если это не музыка, которую можно закодировать в виде MIDI, столь же неудобен для сжатия, как и картинка. Звуковой сигнал редко обладает избыточностью, т.е. имеет повторяющиеся участки (в основном из-за шумов). А значит, плохо сжимается с использованием алгоритмов компрессии без потерь, аналогичных LZW или методу Хаффмана.

В 1940 г. Харви Флетчер, выдающийся американский физик, отец стереозвука, привлёк для исследований человеческого слуха большое число испытуемых. Он проанализировал зависимость абсолютного порога слышимости от частоты сигнала, т.е. при какой амплитуде звук определённой частоты не слышен для человека. В построенной на основе опытов кривой максимальные значения находятся, как и ожидалось, на границах диапазона слышимости (около 20 Гц и ближе к 20 кГц), а минимум - приблизительно 5 кГц. Но главное, на что он обратил внимание, - это способность слуха адаптироваться к появлению новых звуков, что выражается в повышении порога слышимости. Иначе говоря, одни звуки способны делать неслышимыми другие, что называют маскированием одного звука другим.

Последнее свойство слуха при компрессии позволяет после громкого звукового сигнала некоторое непродолжительное время вообще не воспроизводить, а значит и не сохранять никакого звука. Например, громкий щелчок продолжительностью в 0,1 с может замаскировать последующие за ним звуки на 0,5 с, которые не надо сохранять. Говорят, что коэффициент компрессии в этом примере достигает , а описанную процедуру сжатия обычно называют маскированием во временной области .

При маскировании в частотной области синусоидальный сигнал маскирует более тихие, близкие по частоте сигналы, в том числе и синусоидальные сигналы много меньшей амплитуды. Удобно использовать разбиение спектра на полосы различной ширины, основываясь на особенностях слуха человека. Обычно выделяют 27 так называемых критических полос (critical band): 0-я от 50 до 95 Гц, 1-я от 95 до 140 Гц, …, 26-я от 20250 Гц и выше.

Для выполнения алгоритма сжатия исходный сигнал разбивается на кадры, которые подвергаются частотному анализу. Алгоритм сжатия выглядит примерно так:

1. При помощи специальных алгоритмов (ими могут быть быстрое преобразование Фурье или аналогичные), сигналы разделяются на 32 равные полосы спектра, при этом в одну получившуюся полосу могут попасть сразу несколько критических полос.

2. Используя так называемую психоакустическую модель (в которую, как правило, и входит частотное маскирование), определяют уровень маскирования полосы соседними.

3. Уровень в полосе, не превышающий вычисленный порог, считается равным нулю и не сохраняется. Наоборот, немаскированный уровень записывается в выходные данные.


В дальнейшем на каждый ненулевой уровень выделяется некоторое число битов, достаточное для его примерного представления. Так, в той части спектра, где человеческое ухо имеет наименьший порог слышимости, информация кодируется шестнадцатью битами, а на краях, там, где ухо менее чувствительно к искажениям, шестью и менее битами. К полученному потоку битов можно, например, применить алгоритм сжатия Хаффмана.

Различаются три версии алгоритма описанного MPEG-сжатием звука. В каждой версии данные разделяются на кадры, т.е. отдельный кадр состоит из 32 полос по 12 значений в каждой.

В MPEG layer1 (дословно "слой 1") в частотном фильтре используются один кадр и алгоритмы, основанные на дискретном косинусе - преобразовании (DCT). Психоакустическая модель задействует только частотное маскирование. Алгоритм позволяет упаковывать при соотношении 1:4 с потоком 384 Кбит/с.

MPEG layer2 использует три кадра в частотном фильтре(предыдущий, текущий и последующий) общий объём 32 полосы по 12 значений в 3 кадрах. Модель использует и временное маскирование. Упаковывает с соотношением от 1:6 до 1:8.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: