Эксперименты с катушкой тесла. «Исследование электромагнитного поля на примере катушки Тесла (качер Бровина). Современное применение идей Николы Тесла

В 1891 г. Никола Тесла разработал трансформатор (катушку) при помощи которого он ставил эксперименты с электрическими разрядами высоких напряжений. Разработанное Теслой устройство состояло из блока питания, конденсатора, первичной и вторичной катушек, установленных так, что пики напряжения чередуются между ними, и двух электродов, разведенных друг от друга на расстояние. Устройство получило имя своего изобретателя.
Принципы, открытые Тесла при помощи этого устройства, используется сейчас в различных областях, начиная от ускорителей частиц, заканчивая телевизорами и игрушками.

Трансформатор Тесла может быть сделал своими руками. Данная статья посвящена рассмотрению этого вопроса.

Сначала необходимо определиться с размером трансформатора. Можно построить большой прибор, если позволяет бюджет. Следует помнить, что это устройство генерирует разряды высокого напряжения (создают микромолнии), которые нагревают и расширяют окружающий воздух (создают микрогром). Создаваемые электрические поля могут вывести из строя другие электрические приборы. Поэтому строить и запускать трансформатор Тесла не стоит дома; безопаснее делать это в удаленных местах, например, в гараже или сарае.

Величина трансформатора будет зависеть от расстояния между электродами (от величины возникающей искры), которое в свою очередь будет зависеть от потребляемой мощности.

Составные части и сборка схемы трансформатора Тесла

  1. Нам понадобится трансформатор или генератор с напряжением 5-15 кВ и силой тока 30-100 миллиампер. Эксперимент не удастся, если эти параметры будут не соблюдены.
  2. Источник тока нужно подключить к конденсатору. Важен параметр емкости конденсатора, т.е. способность удерживать электрический заряд. Единица измерения емкости – фарад – Ф. Он определяется как 1 ампер-секунда (или кулон) на 1 вольт. Как правило, емкость измеряется в мелких единицах – мкФ (одна миллионная доля фарада) или пФ (одна триллионная доля фарада). Для напряжения 5 кВ конденсатор должен иметь номинал 2200 пФ.
  3. Еще лучше соединить несколько конденсаторов последовательно. В этом случае каждый конденсатор будет удерживать часть заряда, общий удерживаемый заряд увеличится кратно.

  4. Конденсатор(ы) подключается к искровику — промежуток воздуха, между контактами которого происходит электрический пробой. Для того, чтобы контакты выдерживали тепло, выделяемое искрой во время разряда, необходимый их диаметр должен быть 6 мм. минимум. Искровик необходим для возбуждения резонансных колебаний в контуре.
  5. Первичная катушка. Делается из толстого медного провода или трубки диаметром 2,5-6 мм., который закручивается в спираль в одной плоскости в количестве 4-6 витков
  6. Первичная катушка подключается к разряднику. Конденсатор и первичная катушка должны образовывать первичный контур, попадающий в резонанс с вторичной катушкой.
  7. Первичная катушка должны быть хорошо изолирована от вторичной.
  8. Вторичная катушка. Делается из тонкой эмалированной медной проволоки (до 0,6 мм). Проволока наматывается на полимерную трубку с пустым сердечником. Высота трубки должна составлять 5-6 ее диаметров. На трубку следует аккуратно намотать 1000 витков. Вторичная катушка может быть помещена внутрь первичной катушки.
  9. Вторичную катушку одним концом обязательно заземляют отдельно от других приборов. Лучше всего заземление непосредственно «в землю». Второй провод вторичной катушки подключается к тору (излучателю молний).
  10. Тор можно сделать из обыкновенной вентиляционной гофры. Он размещается над вторичной катушкой.
  11. Вторичная катушка и тор образуют вторичный контур.
  12. Включаем питающий генератор (трансформатор). Трансформатор Тесла работает.

Отличное видео с объяснением принципов работы трансформатора Теслы

Меры предосторожности

Будьте осторожны: напряжение, накапливаемое в трансформаторе Тесла, очень велико и при пробоях ведет к гарантированной смерти. Сила тока также очень большая, гораздо превосходящая величину, безопасную для жизни.

Практического применения трансформатора Тесла нет. Это экспериментальная установка, подтверждающая наши знания о физике электричества.

С эстетической же точки зрения, эффекты, которые порождает трансформатор Тесла, удивительны и красивы. Они во многом зависят от того, насколько правильно он собран, достаточной ли силы ток, правильно ли резонируют контуры. Эффекты могут включать в себя свечение или разряды, образуемые на второй катушке, а могут – полноценные молнии, пробивающие воздух из тора. Возникающие свечения смещены в ультрафиолетовый диапазон спектра.

Вокруг трансформатора Тесла формируется высокочастотное поле. Поэтому, например, при помещении в это поле энергосберегающей лампочки, она начинает светиться. Это же поле приводит к образования большого количества озона.

1

Кочнева Л.С. (г. Пермь, МБОУ «Гимназия № 17»)

1. Пиштало В. Никола Тесла. Портрет среди масок. – М: Азбука-классика, 2010.

2. Ржонсницкий Б.Н. Никола Тесла. Жизнь замечательных людей. Серия биографий. Выпуск 12. – М: Молодая гвардия, 1959.

3. Фейгин О. Никола Тесла: Наследие великого изобретателя. – М.: Альпина нон-фикшн, 2012.

4. Тесла и его изобретения. http://www.374.ru/index.php?x=2007-11-19-20.

5. Цверава Г. К. Никола Тесла, 1856-1943. – Ленинград. Наука. 1974.

6. Википедия https://ru.wikipedia.org/wiki/?%D0?%A2?%D0?%B5?%D1?%81?%D0?%BB?%D0?%B0,_?%D0?%9D?%D0?%B8?%D0?%BA?%D0?%BE?%D0?%BB?%D0?%B0.

7. Никола Тесла: биография http://www.people.su/107683.

О сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных,

И гений, парадоксов друг,

И случай, бог изобретатель...

А.С. Пушкин

Актуальность темы

Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент - это мощный импульс к пониманию сущности явлений в природе.

В наше время остро стоит вопрос о передаче энергии на расстояние, в частности передача энергии беспроводным способом. Здесь можно вспомнить идеи великого ученого Николы Тесла, который занимался этими вопросами еще в 1900х годах и добился внушительного успеха, построив свой знаменитый резонансный трансформатор - катушку Тесла. Вот и я решил разобраться в этом вопросе самостоятельно, попытавшись повторить эти эксперименты.

Цели исследовательской работы

Собрать действующие катушки Тесла по транзисторной технологии (Class-E SSTC) и по ламповой технологии (VTTC)

Пронаблюдать образование различных видов разрядов и выяснить, насколько они опасны.

Передать энергию беспроводным способом, при помощи катушки Тесла

Изучить свойства электромагнитного поля, генерируемого катушкой Тесла

Изучить практическое применение катушки Тесла

Предмет исследования

Две катушки Тесла, собранные по разным технологиям, поля и разряды, генерируемые этими катушками.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов, исследование, эксперимент.

Теоретические: конструирование катушки Тесла, анализ литературы и возможных электрических схем сборки катушки.

Этапы исследования

Теоретическая часть. Изучение литературы по проблеме исследования.

Практическая часть. Изготовление трансформаторов Тесла и проведение опытов с построенным оборудованием.

Теоретическая часть

Изобретения Николы Тесла

Никола Тесла - изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. Именем Н. Тесла названа единица измерения плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В свободное время Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

В 1885 году Никола представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики.

В 1888-1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла - устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек - первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора - первичный и вторичный контуры - остается неизменным. Однако одна из его частей - генератор высокочастотных колебаний может иметь различную конструкцию.

Практическая часть

Катушка Тесла (Class-E SSTC)

Резонансный трансформатор состоит из двух катушек, у которых нет общего железного сердечника, - это нужно для создания низкого коэффициента связи. На первичной обмотке находится несколько витков толстого провода. На вторичную обмотку наматывают от 500 до 1500 витков. За счет такой конструкции катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на вторичной обмотке к количеству витков на первичной. При этом должно соблюдаться условие возникновения резонанса между первичным и вторичным колебательными контурами. Напряжение на выходе такого трансформатора может превышать несколько миллионов Вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Я выбрал одну из схем.

Установку я собирал сам на основе вышеуказанной схемы (Рис. 1). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 80 мм. Первичная обмотка содержит всего 7 витков, провод диаметром 1 мм, был использован одножильный медный провод МГТФ. Вторичная обмотка содержит около 1000 витков обмоточного провода диаметром 0,15 мм. Вторичная обмотка мотается аккуратно, виток к витку. В результате получилось устройство производящее высокое напряжение при высокой частоте (рис. 2).

Большая катушка Тесла (VTTC)

Эта катушка собрана на базе генераторного пентода гу-81м по автогенераторной схеме, т.е. с самовозбуждением тока сетки лампы.

Как видно по схеме (рис. 3), лампа подключена как триод, т.е. все сетки объединены между собой. Конденсатор C1 и диод VD1 образуют однополупериодный удвоитель. Резистор R1 и конденсатор C3 нужны для регулировки режима работы лампы. Катушка L2 нужна для возбуждения тока сетки. Первичный колебательный контур образуется из конденсатора C2 и катушки L1. Вторичный колебательный контур образован катушкой L3 и ее собственной межвитковой емкостью. Первичная обмотка на каркасе диаметром 16 см содержит 40 витков с отводами от 30, 32, 34, 36 и 38 витков, для подстройки резонанса. Вторичная обмотка содержит около 900 витков на каркасе диаметром 11 см. Сверху вторичной обмотки находится тороид, - он необходим для накопления электрических зарядов.

Обе этих установки (Рис. 2 и Рис. 3) предназначены для демонстрации высокочастотных токов высокого напряжения и способов их создания. Также катушки могут быть использованы для беспроводной передачи электрического тока. В ходе работы я продемонстрирую действие и возможности изготовленных мною катушек Тесла.

Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, однако необходимо соблюдать правила безопасности. Для проведения опытов должна быть очень надежная проводка, вблизи катушки не должно быть предметов, должна быть возможность аварийно обесточить оборудование.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Обычно люди собирают эти катушки для того, чтобы посмотреть на эти впечатляющие, красивые явления.

Катушка Тесла может создавать несколько видов разрядов:

Спарки - это искровые разряды между катушкой, и каким либо предметом, производит характерный хлопок, из-за резкого расширения газового канала, как при природной молнии, но в меньшем масштабе.

Стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример - это видимая ионизация воздуха. Т.е. свечение ионов, которые образует высокое напряжение трансформатора.

Коронный разряд - свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг высоковольтных частей конструкции с сильной кривизной поверхности.

Дуговой разряд - образуется при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет. Между ним и терминалом загорается дуга.

Некоторые химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет голубоватый цвет разряда на оранжевый, бор - на зелёный, марганец - на синий, а литий - на малиновый окрас.

При помощи данных катушек можно провести ряд довольно интересных, красивых и эффектных экспериментов. Итак, начнем:

Опыт 1: Демонстрация газовых разрядов. Стример, спарк, дуговой разряд

Оборудование: катушка Тесла, толстая медная проволока.

Рис. 4 Рис. 5

При включении катушки, с терминала начинает выходить разряд, который в длину 5-7 мм

Опыт 2: Демонстрация разряда в люминесцентной лампе

Оборудование: катушка Тесла, люминесцентная лампа (лампа дневного света).

Наблюдается свечение в люминесцентной лампе на расстоянии до 1 м. от установки.

Опыт 3: Эксперимент с бумагой

Оборудование: катушка Тесла, бумага.

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага загорается

Опыт 4: «Дерево» из плазмы

Оборудование: катушка Тесла, тонкий многожильный провод.

Разветвляем жилы у заранее зачищенного от изоляции провода, и, прикручиваем к терминалу, в результате получаем «дерево» из плазмы.

Опыт 5: Демонстрация газовых разрядов на большой катушке Тесла. Стример, спарк, дуговой разряд

При включении катушки, с терминала начинает выходить разряд, который в длину 45-50см, при поднесении предмета к тороиду - загорается дуга.

Опыт 6: Разряды в руку

Оборудование: большая катушка Тесла, рука.

При поднесении руки к стримеру разряды начинают бить в руку, не причиняя боль

Опыт 7: Демонстрация газовых разрядов из предмета, находящегося в поле катушки Тесла.

Оборудование: большая катушка Тесла, толстая медная проволока.

При внесении медной проволоки в поле катушки Тесла (с убранным терминалом), происходит появление разряда из проволоки в сторону тороида.

Опыт 8: Демонстрация разряда в шаре, наполненного разреженным газом, в поле катушки Тесла

Оборудование: большая катушка Тесла, шар наполненный разреженным газом.

При внесении шара в поле катушки Тесла загорается разряд внутри шара.

Опыт 9: Демонстрация разряда в неоновых и люминисцентных лампах.

Оборудование: большая катушка Тесла, неоновые и люминисцентные лампы.

При внесении лампы в поле катушки Тесла загорается разряд внутри неоновых и люминисцентных ламп на расстоянии до 1,5 м.

Опыт 10: Разряды из руки.

Оборудование: большая катушка Тесла, рука с напальчниками из фольги.

При внесении руки в поле катушки Тесла (с убранным терминалом), происходит появление разряда с напальчников в сторону тороида.

Заключение

Все поставленные цели выполнены. Я построил 2 катушки и на их примере доказал следующие гипотезы:

Катушка Тесла может генерировать реальные электрические разряды различных видов.

Разряды, создаваемые катушкой тесла, безопасны для человека и не могут нанести ему урон путем удара электрическим током. К выходной катушке высокого напряжения можно даже прикоснуться куском металла или рукой. Почему при прикосновении к источнику напряжения 1 000 000 В высокой частоты с человеком ничего не случается? Потому что при протекании тока высокой частоты наблюдается так называемый скин-эффект, т.е. заряды текут только по краям проводника, не трогая сердцевину.

Ток протекает по коже, и не касается внутренних органов. Именно поэтому можно безопасно касаться этих молний.

Катушка Тесла может передавать энергию без проводов путем создания электромагнитного поля.

Энергия этого поля может передаваться как на любые предметы в этом поле, от разреженных газов, до человека.

Современное применение идей Николы Тесла

Переменный ток является основным способом передачи электроэнергии на большие расстояния.

Электрогенераторы являются основными элементами в генерации электроэнергии на электростанциях турбинного типа (ГЭС, АЭС, ТЭС).

Электродвигатели переменного тока, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах.

Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т.п.

Беспроводные заряжающие устройства уже используются для зарядки мобильных телефонов.

Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния

Использование в развлекательных целях и шоу.

В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх.

В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Ошибочно мнение, что катушки Тесла не имеют широкого практического применения. Основное их использование приходится на развлекательно-медийную сферу развлечений и шоу. При этом сами катушки или устройства, использующие принципы работы катушек, довольно распространены в нашей жизни, о чем свидетельствуют вышеприведенные примеры.

Библиографическая ссылка

Кошкин А.А. КАТУШКА ТЕСЛА И ИССЛЕДОВАНИЕ ЕЕ ВОЗМОЖНОСТЕЙ // Международный школьный научный вестник. – 2018. – № 1. – С. 125-133;
URL: http://school-herald.ru/ru/article/view?id=530 (дата обращения: 21.03.2019).

Фролов Андрей Юрьевич

Цель исследования:

Задачи исследования:

Скачать:

Предварительный просмотр:

XXVII Ставропольская краевая открытая научная конференция школьников

Секция: физика

Название работы: «Исследование электромагнитного поля на примере катушки Тесла (качер Бровина)»

Место выполнения работы: ст.Григорополисская

МОУ СОШ №2, 11 класс.

Научный руководитель: Анохина Галина Владимировна, учитель физики МОУ СОШ № 2

Ставрополь, 2016

  1. Введение.
  1. Актуальность исследования проблемы.
  2. Цели и Задачи.
  1. Основная часть часть.
  1. Биография Николы Тесла и Владимира Бровина.
  2. Выдающиеся изобретения
  3. Экспериментальная часть.
  1. Заключение.
  1. Выводы.
  2. Современное применение идеи Тесла
  3. Библиографический список
  4. Приложение
  1. Ведение.
  1. Актуальность темы:

Физика – это удивительная наука! Это наука из наук! Еще из незапамятных времен она держалась и всегда будет держаться на трех китах: гипотеза, закон, эксперимент. Экспериментальная физика имеет огромное значение в развитии науки. Эксперименты с электричеством… кажется, что тут еще можно открывать и экспериментировать, ведь сейчас мы воспринимаем электричество как самое обыденное явление: холодильник, телевизор, компьютер, микроволновка. Однако, сам ток доходит к нам, увы, лишь по проводам. А как воспользоваться током на расстояние, без проводов? Это всё очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика не может объяснить до сих пор. Ещё в 1900–х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Современная физика достичь таких показателей просто не в состоянии. Современные учёные достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды. Однако, в наше время, энтузиасты и учёные мира пытаются повторить опыты гениального учёного и найти им применение. В современном мире, стоит задача передачи электроэнергии беспроводной связи. Собираю катушку Тесла, я получил сильное электромагнитное поле, которое исследовал. Поэтому я думаю, что в будущем я добьюсь широкого использования этого явления. Я считаю, что моя работа имеет просветительный характер, вызывает появление интереса к более углубленному изучению школьных предметов как физика, побудит к исследовательской и экспериментальной деятельности, а возможно приведет к увлечению на всю жизнь.

Цель исследования:

Исследовать высокочастотный трансформатор Тесла, на основе собранного мной действующей установки. Демонстрация свойств электромагнитного поля катушки Тесла и опытов по применению катушки.

Задачи исследования:

Познакомиться с биографией Никола Тесла и историей изобретения трансформатора Тесла, Владимира Бровина

  • Сконструировать катушку Тесла
  • Провести опыты, с собранной мною катушкой демонстрирующих действие электромагнитного поля
  • Исследовать электромагнитное поле, созданное качером Бровина

Методы и приемы исследования:

  • Поиск информации в различных источниках
  • Эксперимент

Гипотеза исследования: Вокруг катушки Тесла образуется электромагнитное поле огромной напряженности электромагнитное поле катушки Тесла способно передавать электрический ток без проводного способа.

  1. Основная часть
  1. Биография Никола Тесла и Владимира Бровина.

Ни́кола Те́сла (10 июля 1856 г (Хорватия) – 7 января 1943 г (Нью-Йорк, США) - физик, инженер, изобретатель в области электротехники и радиотехники. Широко известен благодаря своему научно-революционному вкладу в изучение свойств электричества и магнетизма, теоретические работы Теслы дали основу для изобретения и развития многих современных устройств, работающих на переменном токе. Именем Н. Теслы названа единица измерения магнитной индукции. Среди многих наград учёного - медали Э. Крессона, Дж. Скотта, Т. Эдисона. Современники-биографы считали Теслу «человеком, который изобрёл XX век» и «святым заступником» современного электричества, который получил повсеместное признание как выдающийся инженер-электротехник и изобретатель. Его считают одним из гениев 20 века. Многие изобретения Теслы до сих пор хранятся правительством США под грифом "Совершенно секретно". Он настолько обогнал науку, что многие из его опытов учёные не могут повторить даже сейчас. Он открыл переменный ток, беспроводную передачу энергии, построил первые электрические часы, турбину, двигатель на солнечной энергии. Он включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. По идее, от экспериментатора не должно было бы остаться и уголька. А Тесла улыбался как ни в чём не бывало. Убивает не напряжение, а сила тока и ток высокой частоты проходит только по поверхностным покровам. Но это мы знаем сейчас. А Тесла знал это более 100 лет назад.
Теоретики современной физики так и не смогли дать толкование взглядам Теслы на физическую реальность. Почему он сам не сформулировал своей теории? Ответа на этот вопрос мы уже не узнаем.

Владимир Ильич Бровин

Гражданин России Бровин В.И.образование высшее - окончил Московский институт электронной техники в 1972 году. В 1987 г. обнаружил несоответствия общепринятым знаниям в работе электронной схемы созданного им компаса и стал их изучать. Это он делал на дому на собственных приборах. Через три года у него сформировалось убеждение, что это новое неизвестное физическое явление. Бровин написал об этом в Комитет по изобретениям и открытиям, но ему ответили, что он составил описание не в соответствии с инструкцией. Он не стал с ними спорить и решил изучать это явление сам. За 10 лет экспериментов и исследований в 1998 г. Бровину удалось объяснить физику странностей в работе схем.

Цитата Бровина:

"Я пытаюсь показать Вам, что есть электростатическая составляющая, ёмкостная составляющая и открытое Н. Тесла "радианное электричество" и естественно электромагнитное излучение по Максвеллу. Эти проявления электричества и формируют "странную работу" Качера.”

  1. Выдающиеся изобретения.

Одним из его самых знаменитых изобретений является Трансформатор Тесла.

Трансформатор Тесла, также катушка Тесла - устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек - первичной и вторичной, а также разрядника конденсатора тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник. Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.
С помощью катyшки pазмеpом в 61 метр, полюс котоpой возглавляла большая медная сфеpа, возвышающейся над его лабоpатоpией, Тесла генеpиpовал потенциалы, котоpые pазpяжались стpелами молний длиной до 40 метров. Гpом от высвобождаемой энеpгии мог быть yслyшан за 24 километра. Вокpyг экспеpиментальной башни пылал шаp света диаметpом в 30 метров.

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способствует созданию внушительных электрических разрядов в воздухе. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (телеуправление).

Вы не найдете трансформатор Теслы в кабинете физики в школе. Ими перестали комплектовать кабинеты, поэтому я решил сделать такой трансформатор для школы.

  1. Экспериментальная часть.

В катушке Тесла используется разрядник и переменный ток. Бровин же заменил в схеме Тесла разрядник транзистором, подключил транзистор к источнику постоянного тока, который на выходе выдает переменный ток.

Я хочу продемонстрировать вам работу одной из таких катушек Тесла и результаты исследования, которые я проводил. Установку я собирал сам на основе схемы «Качера Бровина». Это устройство производит высокое напряжение при высокой частоте.

Моя установка состоит:

Проволока медная –диаметром сечения 0,2мм. (0,64м.)

Проволока медная – диаметром 2мм (200 м.)

Пластиковая трубка- длина 42см.

Транзистор – КТ 805 БМ и др.

Резисторы: 12КОм и 47КОм

Конденсатор- 0,5 мкФ от 160В.

Источник питания- трансформатор 24 В.

Сглаживающий электролитический конденсатор 2000 мФ на 50 В.

Диодный мостик.

В качере(как в общем-то и в блокинг-генераторе) теоретически, можно использовать любые транзисторы и радиолампы. Я проделал опыты с различными видами (N-P-N) транзисторами (см. таблица в приложения). Однако, практически очень неплохо себя зарекомендовали именно транзисторы КТ805, в частности - КТ805БМ, т.к. имел наибольшую длительность работы при постоянной нагрузке, а также я убедился, что работа катушки должна проводиться с временными интервалами в 15-20 минут, для охлаждения установки. Для охлаждения я использовал радиатор (5см.x8см.) схема №1 (см.приложение)

В самостоятельной сборке качера самый серьезный момент - намотка вторичной обмотки(L2). Как правило, она содержит в себе от 800 до 1800 витков. Намотка производится виток, к витку проводом диаметром 0,1 - 0,25 мм на диэлектрическое основание, например - пластиковую трубку. Соответственно, габариты полученного трансформатора (длина) напрямую зависят от толщины используемого провода. Диаметр каркаса при этом не важен - может быть от 15мм до 40мм,но при его увеличении эффективность качера должна возрастать (как и ток потребления).

К неподключенному концу катушки можно подсоединить иглу - это даст возможность наблюдать "стример" - коронообразное свечение, которое возникнет на ее кончике, во время работы устройства. Можно обойтись и без иглы - стример точно так же будет появляться на конце намоточного провода, без затей отогнутого к верху.

Вторичная обмотка представляет из себя бескаркасный четырехвитковой соленоид намотаный проводом диаметром (не сечением!) от 1,5 до 3 мм. Длина этой катушки может составлять от 7-8 до 25-50 см, а диаметр зависит от расстояния между ее витками и поверхностью катушки L2. Оно должно составлять 1 - 2 см. Направление витков обеих катушек должно совпадать обязательно.

Резисторы R1 и R2 можно взять любого типа с мощностью рассеивания не менее 0,5 Вт. Конденсатор C1 так же любого типа от 0,1 до 0,5 мФ на напряжение от 160 в. При работе от нестабилизированного источника питания необходимо подсоединить параллельно C1 еще один, сглаживающий конденсатор 1000 - 2000 мФ на 50 в.
Транзистор обязательно устанавливается на радиатор - чем больше, тем лучше.

Источник питания для качера должен быть рассчитан на работу при токе до 3 А (с запасом), с напряжением от 12 вольт, а желательно – выше. Будет гораздо удобнее, если он будет регулируемым по напряжению.
В собранном мной образце качера, я использовал источник питания трансформатор на 24 В. Диаметре вторичной катушки 5 см (длина - 42см) и площадь поперечного сечения провода 0.2мм2, а первичной - 8см (длина – 0,64 м), при площади поперечного проводника сечения 1.18мм2, стример возникал сразу. Причем, обычные эффекты, вроде зажигания светодиодных и газоразрядных ламп на расстоянии, возникали, так же сразу, как я их подносил.

В качестве источника питания был использован трансформатор, который подключен к осветительной сети 220В., последовательно подключил диодный мост, а также сглаживающий электролитический конденсатор 2000 мФ на 50 В.

При попытке заменить (из чистого интереса) КТ805 на более мощные КТ8102, КТ819, КТ918А, обнаружилось что режимы работы устройства значительно поменялись. На многих, заметно упал рабочий ток. Он составил всего - от 100 до 250 мА.

При увеличении напряжения до 42 В., то транзистор быстро перегревался и сгорал, на моем опыте так, сгорело 8-10 шт., поэтому пытался подобрать другие транзисторы КТ 805-819, но сильных изменений не произошло. Я брал для работы разные виды транзисторов и исследовал длительность работы при постоянной нагрузке, что отраженно в таблице №1 (см. приложение). Лидером среди этого списка, оказался транзистор КТ805БМ.

Следующий эксперимент, который я провел, был таков: на вверх катушки, к стримеру, прикрепил тор (который служил для увеличения радиуса действия электромагнитного поля.Как бы проще говоря, он является своеобразным конденсатором, с помощью которого, стример, увеличился и расстояние, работы лампочек увеличилось. Так же заметил, что, используя любой кусочек проволоки, стример, исходил из проволоки. Мне, показалось это очень странным, причины этому, считаю, что тор стал передавать, всю энергию на проволоку, и как бы, добился взаимодействия.

А так же, хочу предложить способ создания тора: Соединить концы трубы вместе можно алюминиевым скотчем. Так же, существует «бюджетный» вариант, например, взять шарик для пинг-понга и обмотать его фольгой, или просто, скомкать в шар фольгу, определенного диаметра. Все, тероид готов.

Кстати, функции тора таковы:

Снижение рабочей частоты за счёт изменения ёмкости во вторичном LC-контуре;

Значительное увеличение выходного напряжения за счёт гладкости (большого радиуса кривизны) поверхности;

Экранирование вторичной обмотки дополнительным электростатическим полем;

Формирование направления истечения разряда при помощи терминала;

Придание общему виду катушки классических форм и пропорций; и многие другие.

  1. Заключение

Одной из самых ярких, интересных и неоднозначных личностей среди ученых-физиков является Никола Тесла.

Тесле удалось соединить в одном приборе свойства трансформатора и явление резонанса. Так был создан знаменитый резонанс-трансформатор, сыгравший огромную роль в развитии многих отраслей электротехники, радиотехники и широко известный под названием " трансформатора Теслы".

Его инженерные разработки нашли применение в области электроэнергетики, электротехники, кибернетики, биофизике, медицине. Вопросы, которыми занимался Николай Тесла, остаются актуальными и сегодня. Их рассмотрение позволяет творческим инженерам и студентам физических специальностей шире смотреть на проблемы современной науки, отказаться от шаблонов, научиться отличать правду от вымысла, обобщать и структурировать материал. Поэтому взгляды Н. Тесла можно считать актуальными ныне не только для исследований в области истории науки и техники, но как достаточно действенной средство поисковых работ, изобретение новых технологических процессов и использования новейших технологий .

В результате проведённых в данной работе исследований, был сделан вывод: что трансформатор Тесла, является простым в изготовлении и настройке прибором, предложенная мною конструкция, является недорогой. Проверка вредного воздействия трансформатора на организм человека показала, что устройство является безопасным для использования в учебных целях при соблюдении правил техники безопасности работы с трансформатором.

С помощью трансформатора Тесла можно продемонстрировать множество красивых и эффектных экспериментов. Во время работы катушки мы можем наблюдать 4 типа разрядов.

  1. Выводы

В результате моих экспериментов, я убедился, что вокруг катушки Тесла, возникает электромагнитное поле высокой напряженности и высокой частоты, которое оказывает действие на светодиодные лампы, лампы заполненными инертными газами и они дают яркий свет. А в лампах накаливания возникает стример. лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов. Необходимо отметить и еще одну важную вещь: действие этой установки на человека: Как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого организма не причиняют ему вреда, наоборот, оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине. Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не советую!

  1. Современное применение идей Теслы:
  • Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния
  • Электрогенераторы, которые изобрел Никола Тесла, являются основными элементами в генерации электроэнергии на ГЭС, АЭС, ТЭС и т. д.
  • Электродвигатели используются во всех современных электропоездах, электромобилях, трамваях, троллейбусах
  • Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран.
  • Беспроводные заряжающие устройства начинают использоваться для зарядки мобильных телефонов или ноутбуков.
  • Оригинальные современные противоугонные средства для автомобилей работают по принципу все тех же катушек.
  • Использование в развлекательных целях и в медицине.
    Выходное напряжение трансформатора Тесла может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно к созданию внушительных электрических разрядов в воздухе, которые могут иметь длину многих метров, также, как и других явлений.
  • Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (телеуправление), беспроволочной связи (радио), и беспроволочной передачи энергии, которые все были им достигнуты. В начале столетия, трансформатор Тесла также нашел популярное использование в медицине. Пациентов обрабатывали высоко частотными токами, способными к путешествию через человеческое тело без вреда оказывая тонизирующее и оздоравливающе влияние.

электромагнитного поля катушки Тесла

Введение………………………………………………………..………...............2 стр.

Теоретическая часть Никола Тесла и его изобретения…………………..…………............5 стр. Схема установки катушки Тесла…………………………..…............8 стр. Практическая часть Социологический опрос среди обучающихся ФСОШ №5…… 8 стр. Сборка катушки Тесла…………….…………….…..…………......9 стр. Расчет основных характеристик изготовленной катушки Тесла 9 стр. Экспериментальные опыты применения катушки Тесла….……11 стр. Современное применение идей Тесла…………………………..13 стр. Фото и видео отчет проведения исследования………………..14 стр.

Заключение………………………………………………….……..................15 стр.

Список литературы……………………………………….……………….…..16 стр.

Приложения………………………………………………….…….……….…..18 стр.

Введение

Я мог бы расколоть земной шар, но никогда

не сделаю этого.

Моей главной целью было указать на новые явления

и распространить идеи, которые и станут

отправными точками для новых исследований.

Никола Тесла

«Я, наконец, преуспел в создании разрядов, мощность которых значительно превосходит силу молний. Вам знакомо выражение «выше головы не прыгнешь»? Это заблуждение. Человек может все». В Международный год света и световых технологий, думаю, стоит вспомнить о легендарной личности Никола Тесла, причем о смысле некоторых его изобретений спорят, и по сей день. О нем сказано много и разного, но люди в большинстве своем, в том числе и я, единодушны в своем мнении – Тесла сделал немало для развития науки и техники для своего времени. Многие его патенты воплотились в жизнь, часть же до сих пор остается за гранью понимания сути. Но основными заслугами Тесла можно считать исследования природы электричества. Особенно высоковольтного. Тесла поражал своих знакомых и коллег удивительными экспериментами, в которых без труда и опаски он управлял высоковольтными генераторами, которые вырабатывали сотни, а иногда и миллионы вольт. Еще в 1900-х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Для тех, кто жил рядом с ним, мир менялся, превращался в сказочное пространство, где ничему не стоит удивляться. Вспыхивали северные сияния над всей Атлантикой, обычные бабочки превратились в ярких светлячков, шаровые молнии запросто доставались из чемоданов и использовались для освещения гостиных. Его опыты всегда балансировали на грани зла и добра. Падение тунгусского метеорита, землетрясение в Нью-Йорке, испытания чудовищного оружия, способного мгновенно уничтожать целые армии – вот что еще, кроме светящихся бабочек приписывают экспериментам Тесла. Именно он послужил для многих писателей-фантастов образом безумного профессора, изобретения которого грозят уничтожить всю планету. На самом деле мы ничего не знаем о том, каким человеком был Никола Тесла, каким героем он должен стать для биографов хорошим или плохим.

Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент - это мощный импульс к пониманию сущности явлений в природе. Любоваться природой можно, и не зная физики. Но понять ее и увидеть то, что скрыто за внешними образами явлений, можно лишь с помощью точной науки и проведения эксперимента. Сегодня можно с уверенностью сказать, что точным в природе является только свершившийся факт, т. е. опыт или эксперимент, или результаты природного процесса, течение которого не зависит от человека. Непоколебимым остается только результат, полученный посредством того или иного действия. Как уже сказал, это единственное несомненное в гипотезе. Всем известно, что любая гипотеза держится на трех китах: результат эксперимента, его описание и вывод, который опирается на признанные стереотипы (Приложение 1).

Эксперименты с электричеством. Если рассуждать, ну что еще можно открывать и экспериментировать? Ведь сейчас без электричества человечество уже давно не мыслит своего существования. С помощью него работают все бытовые приборы, вся наша промышленность, медицинские приборы. Одно но, сам ток доходит к нам, увы, лишь по проводам. Это все очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика и не может объяснить до сих пор. Современная физика достичь таких показателей просто не в состоянии. Он включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. Современные ученые достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды.

Актуальность заключается в том, что в наше время, энтузиасты и ученые мира пытаются повторить опыты гениального ученого и найти их применение. В мистику вдаваться не буду, я попытался сделать кое-что эффектное по «рецептам» Тесла. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище.

Объект исследования: катушка Тесла.

Предмет исследования: электромагнитное поле катушки Тесла, высокочастотные разряды в газе.

Цель исследования: изготовить высокочастотную катушку Тесла и на основе собранной действующей установки провести эксперименты.

Объект, предмет и цель исследования обусловили постановку следующей гипотезы: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом.

Изучить литературу по проблеме исследования. Познакомиться с историей изобретения и принципом работы катушки Тесла. Поиск деталей и изготовление катушки Тесла. Провести социологический опрос среди учащихся 7-11 классов «Федоровской СОШ№5». Провести расчеты характеристик катушки Тесла и опыты, демонстрирующие ее работу. Подготовить фото и видеоотчет о проделанной работе для ознакомления учащихся 9-11 классов.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов в газовой среде, исследование, эксперимент. Теоретические: конструирование катушки Тесла, анализ литературы, статистическая обработка результатов.

Этапы исследования:

Теоретическая часть. Изучение литературы по проблеме исследования. Практическая часть. Изготовление трансформатора Тесла и демонстрация невероятных свойств электромагнитного поля катушки Тесла

Новизна: заключается в том, что, как и многие изобретатели-экспериментаторы, я

впервые, изучив , собрал катушку Тесла и в рамках проведения Международного года света и световых технологий-2015 провел серию опытов и тем самым, показал значимость трудов Тесла.

Практическая значимость: результат работы носит просветительный характер, это позволит, повысит заинтересованность учеников к углубленному изучению таких предметов, как физика, юных исследователей - к , и возможно для кого-то определит область дальнейшей деятельности.

Теоретическая часть

I.1.Никола Тесла и его изобретения

Что мы знаем о Николе Тесла и его работах? Простому обывателю деятельность Тесла безразлична и неинтересна. В школах и институтах о Тесла упоминается только когда говорят об одноименной единице индуктивности. Так общество "отблагодарило" великого практика за весь вклад, который он внес в развитие электротехники. Вся его деятельность окутана завесой таинственности, а многие просто считают его шарлатаном от науки. Попытаемся рассмотреть значимость «наследия» Тесла.

НИКОЛА ТЕСЛА — изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. есла названа плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

До 1882 года Тесла работал инженером-электриком в правительственной телеграфной компании в Будапеште. В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

1884 года Тесла прибыл в Нью-Йорк. Он устроился на работу в компанию Томаса Эдисона в качестве инженера по ремонту электродвигателей и генераторов постоянного тока. Эдисон довольно холодно воспринимал новые идеи Тесла и всё более открыто высказывал неодобрение направлению личных изысканий изобретателя. Весной 1885 года Эдисон пообещал Тесле 50 тыс. долларов, если у него получится конструктивно улучшить электрические машины постоянного тока, придуманные Эдисоном. Никола активно взялся за работу и вскоре представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики. Одобрив все усовершенствования, в ответ на вопрос о вознаграждении Эдисон отказал Тесле. Оскорблённый Тесла немедленно уволился.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является Трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

I.2. Схема установки катушки Тесла

Резонансный генератор, катушка или трансформатор Тесла – гениальное изобретение великого сербского изобретателя, физика и инженера. Трансформатор состоит из двух катушек, у которых нет общего железного сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже как минимум 1000 витков. Учтите, что катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой. На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. Очень важно: и конденсатор, и первичная обмотка обязательно должны, в конечном счете, образовывать специфический колебательный контур, входящий в состояние резонанса с вторичной обмоткой. К Схема установки катушки Тесла предполагает силу тока 5-8 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности.

В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Мы выбрали одну из схем (Приложение 2), которая состоит из:

Источник питания (220В – 24 В) Переменный резистор Резистор Первичная катушка (9 витков) Вторичная катушка (1000 витков) Транзистор на радиаторе (MJE 13007) Практическая часть

II.1 Социологический опрос среди обучающихся 7-11 классов ФСОШ№5

В опросе приняло участие 325 человек. Были предложены вопросы:

1. Слышали ли Вы об изобретениях Никола Тесла (катушка Тесла)?

2. Хотели бы Вы увидеть серию экспериментов применения катушки Тесла?

После обработки результатов, итог следующий: 176 обучающихся слышали об изобретениях Тесла, 156 учащихся - не слышали. 97 человек видели видео экспериментов по сети Интернет, 228 не имеют представления, как выглядит катушка и ее применение. Все, 325 учащихся хотели бы посмотреть результат исследовательской работы и серию опытов применения катушки Тесла.

II.2 Сборка катушки Тесла

Обратимся к устройству, которое сейчас известно, как трансформатор (катушка) Тесла. Во всем мире "тесластроители" ежегодно воспроизводят его многочисленные модификации. Основной целью у большинства таких радиолюбителей Тесла, является получение световых и звуковых эффектов, достигаемых в экспериментах с высоким напряжением, которое присутствует на выходе высоковольтной катушки трансформатора Тесла (ТТ). Многих также привлекают идеи Тесла по генерации энергии большой мощности, а еще более привлекательным, является попытка создания "сверхединичного" (СЕ) устройства на основе ТТ. Эта сфера альтернативной науки.

Установку я собирал сам на основе схемы (Приложение 2, Рис.1, 2, 3, 4, 5). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 5 см. Первичная обмотка содержит всего 9 витков, провод диаметром 1,5 мм, был использован одножильный медный провод в резиновой изоляции. Вторичная обмотка содержит 1000 витков провода 0,1 мм. Вторичная обмотка мотается аккуратно, виток к витку. Это устройство производит высокое напряжение при высокой частоте. Катушка Теслы - это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В ходе исследования я продемонстрирую действие изготовленной мною катушки Тесла (Приложение 3, Рис.6).

II.3 Расчет основных характеристик изготовленной катушки Тесла

    ЭДС: 24 В. Два аккумулятора от шуруповёрта по 12 В каждый. Сопротивление: R=50075 Ом. R= R1+ R2 (последовательное соединение) Внутренним сопротивлением источника, проводов, обмоток посчитано необходимым, пренебречь. 1)Переменный резистор (Реостат) 50 КОм. 2)Резистор 75 Ом. Сила тока: 0,5 мА. Рассчитано из закона Ома для полной цепи I= ЭДС/ R+r

и проверено амперметром.

    Частота колебаний: 200 МГц. Расчеты произведены при помощи CircutLab.

    Входное напряжение: 24 В. Выходное напряжение: ~2666,7 В. Коэффициент трансформации – это величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора.

K=U1/U2=N1/N2, где

N1 - число витков на первичной обмотке трансформатора

N2- число витков на вторичной обмотке трансформатора

при условии K < 1, U2 > U1, N2> N1 – повышающий трансформатор

при условии K >1, U1> U2, N1> N2 – понижающий трансформатор

K=U1/U2 =24/2667=0,009 < 1 повышающий трансформатор

K= N1/N2 =9/1000=0,009 < 1 повышающий трансформатор

Построим график зависимости выходного напряжения от числа витков вторичной катушки (Приложение 4). Из диаграммы видно, чем больше число витков на вторичной обмотке, тем больше выходное напряжение катушки.

ВЫВОД: разряды катушки не являются опасными для человеческого организма при кратковременном воздействии, так как сила тока ничтожно мала, а частота и напряжение слишком высоки.

II.4 Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, соблюдая правила безопасности. Для проведения опытов у вас должна быть очень надежная проводка, иначе беды не избежать. К выходной катушке высокого напряжения можно даже прикоснуться куском металла. Почему при прикосновении к источнику напряжения 250000 В высокой частоты 500 кГц с экспериментатором ничего не случается? Ответ прост. Николой Тесла была открыта и эта «страшная» тайна – токи высоких частот при высоких напряжениях безопасны.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают катушки Тесла ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Тесла производит несколько видов разрядов:

    Спарк — это искровой разряд. Также имеет место особый вид искрового разряда — скользящий искровой разряд. Стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга

Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный, марганца – на синий, лития – на малиновый окрас.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление это связано с превращением стримеров в искровые каналы, который сопровождается резким возрастанием силы тока и энергии, выделяющейся в них.

С помощью изготовленной катушки Тесла демонстрирую множество красивых и эффектных экспериментов. Демонстрации с использованием трансформатора. Пронаблюдаем разряды.

Демонстрация №1. Демонстрация газовых разрядов. Стример, спарк, дуговой разряд.

Оборудование: катушка (трансформатор) Тесла, отвертка.

При включении катушки, с терминала начинает выходить разряд, который в длину 6-7 мм. (Приложение 5, Рис.7, 8).

Демонстрация №2. Демонстрация тлеющего разряда. Свечение спектральных трубок, наполненных инертными газами: гелием, неоном.

Оборудование: катушка (трансформатор) Тесла, набор спектральных трубок.

При поднесении этих ламп к катушке Тесла, мы будем наблюдать, как газ, которыми наполнены трубки, будет светиться (Приложение 6, Рис.9, 10,11).

Демонстрация №3. Демонстрация разряда в люминесцентной лампе и лампе дневного света (ЛДС).

Оборудование: катушка (трансформатор) Тесла, люминесцентная лампа, лампа дневного света.

Наблюдается разряд в люминесцентной лампе (Приложение 7, Рис.12, 13).

Демонстрация №4. Эксперимент с линейками.

Оборудование: катушка (трансформатор) Тесла, металлическая линейка, деревянная линейка.

При внесении металлической линейки в разряд стример ударяется об нее, при этом линейка остается холодной. При внесении деревянной линейки в разряд, стример быстро охватывает ее поверхность и через несколько секунд линейка загорается (Приложение 8, Рис.14, 15, 16).

Демонстрация №5. Эксперимент с бумагой.

Оборудование: катушка (трансформатор) Тесла, бумага.

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага вспыхивает (Приложение 9, Рис.17).

Демонстрация №6. Эксперимент с венчиком.

Разветвляем жилы, заранее припаиваем к терминалу (Приложение 10, рис.18).

Демонстрация №7. Дерево из плазмы.

Оборудование: катушка (трансформатор) Тесла, тонкий многожильный провод.

Разветвляем жилы, у заранее зачищенного от изоляции провода, и прикручиваем к терминалу (Приложение 11, Рис.19,20, 21, 22).

Демонстрация №8. Ионный мотор.

Оборудование: катушка (трансформатор) Тесла, пластина-крест.

К терминалу трансформатора прикручиваем иглу, сверху по центру устанавливаем пластину-крест. После включения катушки из 4 концов креста начинают выходить стримеры и под их действием пластина начинает вращаться (Приложение 12, Рис.23).

II.5 Современное применение идей Тесла

Переменный ток является основным способом передачи электроэнергии на большие расстояния.

    Электрогенераторы являются основными элементами в генерации электроэнергии на ГЭС, ТЭС и т. д. Электродвигатели, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах. Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т. п. Беспроводные заряжающие устройства начинают использоваться для зарядки мобильных телефонов или ноутбуков.
    Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния
    Оригинальные современные противоугонные средства для автомобилей работают по принципу все тех же катушек. Использование в развлекательных целях и шоу. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов, беспроводной передачи данных и беспроводной передачи энергии. В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние. Он используется для поджига газоразрядных ламп и для поиска течей в системах. Основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Вывод: неверно считать, что катушка Тесла не имеет широкого практического применения. Перечисленные мною выше примеры ярко об этом свидетельствуют. Тем не менее, основное его применение в наши дни — познавательно-эстетическое (Приложение 13, Рис.24).

II.6. Фото и видео отчет проведения исследования

В приложении фото отчет, видео отчет прилагается к работе на электронном носителе. Буклет-памятка «Современное применение идей Тесла» (Приложение 14).

Заключение

Одной из самых ярких, интересных и неординарных личностей среди ученых-физиков является Никола Тесла. Почему-то его несильно жалуют на страницах школьных учебников физики, хотя без его трудов, открытий и изобретений трудно представить себе существование обыденных, казалось бы, вещей, таких как, например, наличие электротока в наших розетках. Подобно Ломоносову, Никола Тесла опередил своё время и не получил заслуженного признания при жизни, впрочем, и поныне его труды не оценены по достоинству.

Тесла удалось соединить в одном приборе свойства трансформатора и явление резонанса. Так был создан знаменитый резонанс-трансформатор, сыгравший огромную роль в развитии многих отраслей электротехники, радиотехники и широко известный под названием "трансформатора Тесла".

Трансформатор (катушка) Тесла - удивительное устройство, позволяющее получить мощный интенсивный поток автоэлектронной эмиссии чрезвычайно экономичным способом. Однако его уникальные свойства и полезные применения далеко еще не исчерпаны.

Бесспорно, Никола Тесла является интересной фигурой с точки зрения на перспективу использования на практике его нетрадиционных идей. Сербскому гению удалось оставить заметный след в истории науки и техники.

Его инженерные разработки нашли применение в области , электротехники, кибернетики, медицине. Деятельность изобретателя окутана мистическими рассказами, среди которых надо выбрать именно те, в которых содержится правдивая информация, действительные исторические факты, научные достижения и конкретные результаты.

Вопросы, которыми занимался Никола Тесла, остаются актуальными и сегодня. Их рассмотрение позволяет творческим инженерам и студентам физических специальностей шире смотреть на проблемы современной науки, отказаться от шаблонов, научиться отличать правду от вымысла, обобщать и структурировать материал. Поэтому взгляды Н. Тесла можно считать актуальными ныне не только для исследований в области истории науки и техники, но как достаточно действенной средство поисковых работ, изобретение процессов и использования новейших технологий.

В результате моих исследований гипотеза подтвердилась: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом:

    лампочки, наполненные инертным газом светятся вблизи катушки, следовательно, вокруг установки действительно существует электромагнитное поле высокой напряженности; лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.

Необходимо отметить и еще одну важную вещь: действие этой установки на человека: как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого организма не причиняют ему вреда, наоборот, оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине (из научно-популярной литературы). Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не рекомендуется!

Никола Тесла заложил основы новой цивилизации третьего тысячелетия и его роль нуждается в переоценке. Только будущее даст настоящее объяснение явлению Теслы.

Тесла – это единица измерения электромагнитной индукции, названная так по фамилии известного физика-практика Никола Тесла. Этот учёный прославился своим участием в «войне тока», исследованиями в сфере электричества и электромагнитной индукции. Именно благодаря ему сейчас в бытовых целях используется именно переменный ток от крупных производящих предприятий.

Кроме того Никола Тесла известен созданием трансформатора своего имени, знаменитого тем, что обладает довольно интересными визуальными и физическими характеристиками.

Тайна Николя Тесла

Ранние годы Никола Теслы не предвещали ничего странного: учился, получил аттестат зрелости, после чего закончил Грацкий технический университет. Все изменилось в 1880 году. После смерти отца Никола пришлось переехать в Прагу, где он устроился работать инженером в одну из государственных компаний, занимающихся телефонным сообщением. В 1882 году у молодого Никола появляется теория о вращающемся магнитном поле.

Что достаточно интересно, одновременно законы электромагнитной индукции и вращающего поля заинтересовали и другого физика – итальянца Г. Феррариса. Они практически одновременно приступают к работе над электродвигателем, использующим энергию этого поля. В 1882 году Тесла увольняется из телефонной компании и переходит работать в компанию Эдисона, и с 1883 года Никола работает в Страсбурге, занимаясь асинхронным двигателем в свободное от основных задач время. В 1883 году двигатель был окончен, а его работа была продемонстрирована учёному совету.

По окончанию работ над вокзалом в Страсбурге Тесла возвращается в Париж, но так как руководство компании не выплатило ему причитающейся премии за проведённые работы, он увольняется и перебирается на постоянное место жительства в США. Существует ряд версий, что молодому учёному было предложено перебираться в Российскую империю, что, однако, представляется довольно спорным вопросом истории. В Российской Империи на тот момент не было достаточно развитых производств, где бы пригодился опыт молодого инженера-электрика.

Летом 1884 года по прибытию в Нью-Йорк Тесла вновь устраивается на работу в компании, принадлежащей Томасу Эдисону. Но уже в 1885 году между Эдисоном и молодым инженером Теслой возникает конфликт на почве спора, в результате которого Никола увольняется из компании. Нужно отметить, что в очередной раз причиной ссоры послужили финансовые средства, которые были обещаны Эдисоном за работу по усовершенствованию двигателей постоянного тока, но эти деньги так и не были выплачены. Речь шла о довольно значительной сумме в 50 тыс. долларов США.

После увольнения Тесла открыл свою компанию, в ходе развития которой он снова перешёл дорогу Томасу Эдисону, который был сторонником развития электросетей постоянного тока, в то время как Тесла предугадал выгоды переменного. В ходе конкурентной борьбы между этими направлениями началась так называемая «война токов», закончившаяся только в 2007 году.

Тем не менее, компания Тесла динамично развивалась, а сам учёный выдвигал все новые теории и предъявлял на суд учёного сообщества новые устройства и изобретения. Так, в 1917 году Теслой было предложено первое в мире устройство радиолокации для обнаружения подводных лодок. Но основной темой исследования Никола по-прежнему был закон электромагнитной индукции.

8 января 1943 года Никола Тесла умер в гостинице «Нью-Йоркер». С этим закончилась и эпоха его изобретений. В 20-ом веке вряд ли найдётся равный ему по живости ума и видению мира физик. Именем Теслы не названы законы физики, так как исследуемая им теория электромагнитного резонанса была открыта ещё до него. Тесла больше известен как физик-практик, созидатель, изобретавший новые устройства и пробивавший их использование.

Деятельность Н. Теслы до сих пор окружена загадками и тайнами, среди всего прочего ему приписывают взрыв на реке Тунгуска, известный как Тунгусский метеорит, не оставивший после себя никаких следов. Тайна Николы Теслы – это и землетрясение в Нью-Йорке, и мифические «Лучи смерти», и, конечно, Филадельфийский эксперимент и исчезновение эсминца «Элдридж».

Легенды о тайне Теслы будоражат воображения, хотя зачастую от них остались только слухи и байки очевидцев.

Трансформатор Теслы

Никола Тесла известен своими исследованиями в сфере высокочастотных резонансных трансформаторов, классическим образцом которых является трансформатор Теслы.

Патент на него был получен Никола в 1896 году, в нем трансформатор описывался как устройство для производства высокочастотных и высокопотенциальных токов. В этом аппарате использовались резонансные стоячие электромагнитные волны в двух катушках.

Первичная – включает в себя небольшое количество витков и служит рабочим элементом искрового контура, в котором также находится конденсатор. Вторичной обмоткой является прямая катушка, состоящая из большого количества витков обмотки. Если частота колебаний обоих контуров совпадает, то между концами катушки образуется высокое переменное напряжение. Этот эффект до настоящего времени используется в антеннах и усилителях.

При работе катушки возникают достаточно интересные вторичные эффекты, в том числе визуально различимые разряды четырёх типов:

  1. Стримеры, похожие на молнии, – разряды, состоящие из ионизированных частиц газа, стекающих на землю, но не уходящих в неё;
  2. Спарки – искровые разряды в виде молний, уходящих в землю, пучки ярких быстро меняющих цвет и направление искровых каналов;
  3. Дуговые разряды – возникает при высокой мощности трансформатора между ним и заземлённым предметом, который находится в непосредственной близости от устройства;
  4. Коронные – разряды в виде свечения ионизированного воздуха вокруг работающего трансформатора.

Нужно отметить, что большая часть световых эффектов возникает только при большой мощности работающего устройства. Обычным спутником высокочастотного трансформатора Теслы служат стримеры.

Мини-катушка Теслы своими руками

Энтузиасты собирают такие катушки из-за интересных оптических и физических характеристик этого устройства. Так, при работе трансформатора возникает свечение стримеров, кроме того ощутимое магнитное поле вокруг устройства.

Для того чтобы собрать трансформатор малой мощности самостоятельно, понадобятся навыки работы с паяльником, инструментом и некоторые материалы:

  • резистор, 22 кОм;
  • транзистор типа 2N2222A или его аналог;
  • батарея типа «Крона»;
  • медный эмаль-провод сечением 0,5м², около 200 см;
  • медный эмаль-провод сечением 0,5 мм, длиной около 15 см;
  • ПВХ или другая трубка из непроводящего материала для намотки.

На трубку ПВХ нужно ровно, без перехлестов, намотать 800-1000 витков проволоки, это будет вторичный контур трансформатора. Для удобства намотки конец провода лучше зафиксировать липкой лентой. Сама катушка в вертикальном положении фиксируется на основании из текстолита или ламината.

На это же основание устанавливается коннектор от батареи типа «Крона» и выключатель. К среднему контакту транзистора, также зафиксированному на основании, припаивается нижний провод от вторичной обмотки катушки, туда же припаивается резистор. Первичная катушка наматывается из десятка витков второго провода, поверх вторичной.

Верхний провод первичной обмотки припаивается к свободному контакту резистора, нижний конец провода ² к правому контакту транзистора. После чего концы проводов соединяются с выключателем и элементом питания.

Эта мини-катушка Тесла крайне маломощна – её поля хватит только на то, чтобы зажечь близко поднесённую лампу. Но в тоже время нужно отметить, что высокочастотные резонансные трансформаторы, особенно высокой мощности, являются достаточно опасными устройствами. Их работа может влиять как на незащищённые электроприборы, так и на состояние человека.

Законы электромагнитной индукции, исследованные Фарадеем и развитые Никола Теслой, по-прежнему нерушимы. Несмотря на флёр таинственности и загадочности, окружавший всю сознательную жизнь этого учёного, его опыты в большей степени привели к развитию физики и эволюции электросистем переменного тока.

Нужно отметить, что не будь Тесла столь настойчивым или уступи он Эдисону, сейчас на просторах мира работали бы не АЭС и ГЭС, а мини-электростанции, питавшие небольшие районы. Не нужно думаю напоминать, что дальняя передача постоянного тока крайне затруднена и требует большого сечения проводов.

Известен Тесла и участием в полумифическом Филадельфийском эксперименте, именно с его именем и исследованиями связывают исчезновение эсминца «Элдридж».

«Война токов», начатая в начале XX века между Эдисоном и Теслой, шла и после их смерти. Так, в некоторых европейских странах до 60-х годов использовался постоянный ток во внутренних сетях. Последний пользователь постоянного тока в США был отключён только в 2007 году. Нужно отметить, что именно благодаря этой борьбе появились поезда Вестингауза и казнь на электрическом стуле. Её пролоббировал Эдисон, чтобы показать опасность переменного электрического тока. Но, несмотря на опасность для человека, законы физики не обмануть, именно переменный ток обладает рядом преимуществ при передаче его на большие расстояния.

Что такое тесла? Это единица измерения электромагнитной индукции, получившее своё название в честь величайшего учёного-физика ХХ-века, посвятившего свою жизнь изучению явлений магнетизма.

Видео



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: