Блок питания для компьютера информация. Типы компьютерных блоков питания. Селектор внешнего напряжения

Блок питания обеспечивает электроэнергией все компоненты ПК. Мы расскажем о том, как работает это устройство.

Несмотря на то, что компьютер подключается к стандартной электрической розетке, его комплектующие не могут получать энергию напрямую из силовой электросети по двум причинам.

Во-первых, в сети используется переменный ток, а компьютерным компонентам необходим постоянный. Поэтому одной из задач блока питания является «выпрямление» тока.

Во-вторых, разные компоненты компьютера для работы требуют различного напряжения питания, а некоторым необходимо сразу несколько линий с разным напряжением. Блок питания обеспечивает каждое устройство током с необходимыми параметрами. Для этого в нем предусмотрено несколько линий питания. К примеру, на разъемы питания винчестеров и оптических приводов подается напряжение 5 В для электроники и 12 В для мотора.

Характеристики блока питания

Блок питания является единственным источником электроэнергии для всех компонентов ПК, поэтому от характеристик выдаваемого им тока напрямую зависит стабильность функционирования всей системы. Основной характеристикой БП является мощность. Она должна быть, по меньшей мере, равна суммарной мощности, которую потребляют комплектующие ПК при максимальной вычислительной нагрузке, а еще лучше, если она превышает этот показатель на 100 Вт и более. В противном случае компьютер будет выключаться в моменты пиковой нагрузки или, что гораздо хуже, БП сгорит, прихватив с собой «на тот свет» другие компоненты системы.

Для большинства офисных компьютеров достаточно мощности 300 Вт. Блок питания игровой машины должен иметь мощность не менее 400 Вт – высокопроизводительные процессоры и быстрые видеокарты, а также необходимые им дополнительные системы охлаждения потребляют очень много энергии. Если в компьютере несколько видеокарт, то для его питания потребуются 500- и 650-ваттные БП. В продаже уже есть модели мощностью более 1000 Вт, но покупка их практически бессмысленна.

Нередко производители БП бессовестно завышают номинальное значение мощности, чаще всего с этим сталкиваются покупатели дешевых моделей. Советуем вам выбирать блок питания, основываясь на данных тестирования. Кроме того, мощность БП легче всего определить по весу: чем он больше, тем выше вероятность того, что реальная мощность блока питания соответствует заявленной.

Помимо общей мощности блока питания, имеют значение и другие его характеристики:

Максимальная сила тока на отдельных линиях. Общая мощность БП складывается из мощностей, которые он может обеспечить на отдельных линиях питания. Если нагрузка на одну из них превысит допустимый предел, то система потеряет стабильность даже если суммарная потребляемая мощность будет далека от номинала блока питания. Нагрузка на линии в современных системах, как правило, неравномерна. Тяжелее всех приходится 12-вольтовому каналу, особенно в конфигурациях с мощными видеокартами.

Габариты. При указании габаритов БП производители, как правило, ограничиваются обозначением форм-фактора (современный ATX, устаревший AT или экзотический BTX). Но производители компьютерных корпусов и блоков питания не всегда строго придерживаются нормы. Поэтому при покупке нового блока питания советуем сравнивать его габариты с размерами «посадочного места» в корпусе вашего ПК.

Разъемы и длина кабелей. Разъемов Molex у блока питания должно быть не меньше шести штук. В компьютере с двумя жесткими дисками и парой оптических приводов (например, пишущим DVD-RW и DVD-«читалкой») уже задействованы четыре такие разъема, а к Molex могут подключаться и другие устройства – например, корпусные вентиляторы и видеокарты с интерфейсом AGP.

Длина кабелей питания должна быть достаточной для того, чтобы они могли дотянуться до всех необходимых разъемов. Некоторые производители предлагают блоки питания, кабели которых не впаяны в плату, а подключаются к разъемам на корпусе. Это сокращает количество болтающихся в корпусе проводов, а следовательно – уменьшает беспорядок в системном блоке и способствует лучшей вентиляции его внутренностей, так как не создает помех циркулирующим внутри компьютера потокам воздуха.

Шум. Во время работы компоненты блока питания сильно нагреваются и требуют усиленного охлаждения. Для этого используются вентиляторы, встроенные в корпус БП, и радиаторы. Большинство блоков питания используют один вентилятор типоразмера 80 или 120 мм, а работают вентиляторы довольно шумно. Причем, чем выше мощность БП, тем более интенсивный поток воздуха требуется для того, чтобы охладить его. Для снижения уровня шума в качественных блоках питания используются схемы контроля скорости вращения вентиляторов в соответствии с температурой внутри БП.

Некоторые блоки питания позволяют пользователю самому определять скорость вращения вентилятора с помощью регулятора на задней стенке БП.

Существуют такие модели БП, которые продолжают вентилировать системный блок некоторое время после выключения компьютера. Благодаря этому компоненты ПК быстрее остывают после работы.

Наличие тумблера. Выключатель на задней стенке блока питания позволяет полностью обесточить систему, если возникает необходимость вскрыть корпус компьютера, поэтому его наличие приветствуется.


Дополнительные характеристики блока питания

Высокая мощность блока питания сама по себе не гарантирует качественной работы. Помимо нее, имеют значение и другие электрические параметры.

Коэффициент полезного действия (КПД). Этот показатель говорит о том, какая доля потребляемой блоком питания энергии из электрической сети достается комплектующим компьютера. Чем ниже КПД, тем больше энергии тратится на бесполезное выделение тепла. К примеру, если КПД составляет 60%, то 40% энергии из розетки теряется. Это повышает расход электроэнергии и приводит к сильному нагреву компонентов БП, а следвательно – к необходимости усиленного охлаждения с помощью шумного вентилятора.

Хорошие блоки питания имеют КПД, равный 80% и выше. Их можно узнать по знаку «80 Plus». С недавних пор действуют три новых более строгих стандарта: 80 Plus Bronze (КПД не ниже 82%), 80 Plus Silver (от 85%) и 80 Plus Gold (от 88%).

Значительно поднять КПД блока питания позволяет модуль PFC (Power Factor Correction). Он бывает двух видов: пассивный и активный. Последний гораздо эффективнее и позволяет добиваться уровня КПД до 98%, для БП с пассивным PFC характерен КПД на уровне 75%.

Стабильность напряжения. Напряжение на линиях блока питания колеблется в зависимости от нагрузки, но при этом оно не должно выходить из определенных границ. В противном случае возможны сбои в работе системы или даже выход из строя отдельных ее компонентов. Надеяться на стабильность напряжения позволяет в первую очередь мощность блока питания.

Безопасность. Качественные блоки питания оснащаются различными системами для защиты от скачков напряжения, перегрузки, перегрева и короткого замыкания. Эти функции защищают не только блок питания, но и другие компоненты компьютера. Заметим, что наличие таких систем в блоке питания не исключает необходимости использования источников бесперебойного питания и сетевых фильтров.

Основные характеристики блока питания

На каждом блоке питания есть наклейка с указанием его технических характеристик. Основным параметром является так называемая Com­bined Power или Combined Wattage. Это предельная совокупная мощность по всем существующим линиям питания. Кроме того, имеет значение предельная мощность и по отдельным линиям. Если на какой-то линии для того, чтобы «прокормить» подключенные к ней устройства, не хватает мощности, то эти компоненты могут работать нестабильно, даже если общей мощности БП вполне достаточно. Как правило, не на всех блоках питания указывается предельная мощность по отдельным линиям, но на всех обозначена сила тока. С помощью этого параметра легко рассчитать мощность: для этого надо умножить силу тока на напряжение в соответствующей линии.

12 В. 12 вольт подается, прежде всего, на мощные потребители электроэнергии – видеокарту и центральный процессор. Блок питания должен обеспечивать на этой линии как можно большую мощность. К примеру, 12-вольтовая линия БП рассчитана на силу тока 20 А. При напряжении 12 В это соответствует мощности в 240 Вт. Высокопроизводительные видеокарты могут развивать мощность до 200 Вт и выше. Питание на них подается через две 12-вольтовые линии.

5 В. Линии с напряжением 5 В снабжают питанием материнскую плату, жесткие диски и оптические приводы ПК.

3,3 В. Линии на 3,3 В идут только на материнскую плату и обеспечивают питанием оперативную память.

Блок питания - это устройство, которое используется для создания напряжения, необходимого для работы компьютера, из напряжения домашней электросети. В России блок питания (в дальнейшем просто БП) преобразует переменный электрический ток домашней электрической сети напряжением 220 В и частотой 50 Гц в заданный постоянный ток. В разных странах стандарты домашней электросети отличаются. В США, к примеру, в дома обычных жителей подаётся переменный ток напряжением 120 В и частотой 60 Гц.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

Виды блоков питания и их различия.

Существуют два основных вида блоков питания : трансформаторные и импульсные. Ниже будут рассмотрены их устройства и различия, а также преимущества и недостатки.

Трансформаторный блок питания и его устройство.

Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП - это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

(1/n)~f*S*B

В этой формуле n - это число витков на 1 вольт, f - частота переменного тока, S - площадь сечения магнитопровода, B - индукция магнитного поля в магнитопроводе.

Формула описывает не мгновенное значение, а амплитуду B!

Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

В современных БП идут по другому пути - увеличивания значения f, которое достигается использованием импульсных блоков питания . Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

Преимущества трансформаторных БП

  • Простота изделия;
  • Надёжность конструкции;
  • Доступность элементов;
  • Отсутствие создаваемых радиопомех.

Недостатки трансформаторных БП

  • Большой вес и габариты, которые увеличиваются вместе с мощностью;
  • Металлоёмкость;
  • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

Импульсный БП и его устройство.

Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

Достоинства импульсных БП.

  • Значительно меньший вес и габариты (это достигается благодаря тому, что при повышении частоты можно использовать трансформаторы с меньшими габаритами при одинаковой мощности. Большинство линейных стабилизаторов производятся в большинстве своём из мощных низкочастотных силовых трансформаторов и радиаторов, которые работают в линейном режиме;
  • Намного более высоким КПД (до 98%). Такой высокий коэффициент полезного действия достигается благодаря тому, что большую часть времени ключевые элементы находятся в устойчивом состоянии (а потери возникают во время включения/выключения ключевых элементов);
  • Меньшей стоимостью (это преимущество было достигнуто благодаря повсеместному выпуску унифицированной элементной базы и разработке транзисторов повышенной мощности);
  • Надёжностью наравне с линейными стабилизаторами;
  • Большим диапазоном входной частоты и напряжения электрической энергии. Благодаря этому один и тот же БП может использоваться в различных странах мира с различными стандартами домашней электрической сети;
  • Наличие защиты от непредвиденных ситуаций (короткое замыкание).

Недостатки импульсных БП

  • Затруднение ремонта БП вследствие того, что большая часть схемы работает в отсутствии гальванической развязки электросети
  • Является источником высокочастотных помех. Этот недостаток выходит из самого принципа работы импульсных БП. Из-за него производителям блоков питания приходится предпринимать меры шумоподавления, которые, в большинстве случаев, не могут полностью устранить данную проблему
  • Эффект гармоник кратный трём (при наличии корректоров фактора мощности и фильтров данный недостаток неактуален)

Многие пользователи, которые пытаются разобраться в устройстве своего ПК, не понимают, что такое БП в компьютере. А между тем, это один из самых важных элементов в системе, без которого вообще ни одно комплектующее работать не будет. Давайте разберемся, что собой представляют блоки питания, определим их устройство, виды, плюсы и минусы.

Определение

Что такое БП в компьютере? Если сказать коротко, это - устройство для преобразования сетевого переменного напряжения в постоянное для питания всех комплектующих в системном блоке. В частности, блок питания подает напряжение на компоненты: видеокарту, оперативную память, жесткий диск, сетевую карту, процессор, подключенные периферийные устройства. Если все эти комплектующие подключить напрямую к сети 220 В, то они просто сгорят. Комплектующие для работы требуют наличия напряжения 12 или 24 В (в основном), и задача блока питания - дать требуемое напряжение.

Также есть и другая задача этого элемента - защищать комплектующие компьютера от возможных перепадов напряжения. По сути, это устройство изменения сетевого напряжения, которое выглядит как небольшая черная коробка с вентилятором. Она устанавливается в системный блок, и именно в нее входит сетевой кабель.

Требуемое напряжение

Питание БП компьютера осуществляется от сети с напряжением 220 В. Но в разных странах напряжение тока и его частота в сети могут различаться. Например, в России и в большинстве европейских стран напряжение в сети составляет 220/230 В при частоте 50 Гц. Однако в США напряжение в сети равно 120 В при частоте 60 Гц. Австралия в этом плане тоже отличается - там напряжение равно 240 В/50 Гц. Следовательно, при создании блока питания учитывают параметры сети той страны, в которую планируются поставки. То есть, если привезти в Россию блок питания, купленный в США, то он, вероятнее всего, работать не будет.

Есть также универсальные блоки питания со специальным регулятором напряжения. То есть на блоке можно выставить значение напряжения в сети, и прибор самостоятельно будет адаптирован к нему.

Если компьютер не включается при нажатии на кнопку включения, то в первую очередь причину нужно искать именно в блоке и при необходимости заменять его. К сожалению, недорогие модели, которыми сегодня завален рынок России, ломаются слишком часто.

Мощность БП компьютера

Сегодня есть много разных блоков, которые способны выдавать мощность в огромном диапазоне. В современных ноутбуках мощность может варьироваться в диапазоне 25-100 Вт. Что касается персональных компьютеров, то здесь в зависимости от энергопотребления комплектующих можно использовать БП на 2000 Вт.

Среди пользователей ходят слухи, что чем мощнее будет блок, тем лучше, хотя на самом деле это не совсем так. Не каждому пользователю нужно столь мощное и дорогое устройство. Если рассудить, то приобретение дорогого и мощного БП для слабого компьютера - это бесполезная трата денег не только при покупке самого агрегата, но и при эксплуатации, так как он будет потреблять много лишней электроэнергии.

Впрочем, на сегодняшний день на полках магазинов в основном представлены устройства на 400-500 Вт. Мощности таких комплектующих вполне достаточно для обеспечения питанием стандартного компьютера с хорошим "железом". Но стабильную работу мощного игрового компьютера они обеспечить не способны.

Виды и различия БП

Теперь, когда мы понимаем, что такое БП в компьютере, можно поговорить про их виды и отличительные особенности. Сегодня существуют импульсные и трансформаторные блоки. Каждый вид имеет свои достоинства и недостатки, которые необходимо рассмотреть подробнее.

Трансформаторные

Это самый распространенный вид, который продается чаще всего. В большинстве современных системах практически не используется подобное устройство БП компьютера, которое представлено следующими элементами:

  1. Трансформатор.
  2. Выпрямитель.
  3. Сетевой фильтр.

Один из таких блоков показан на фото ниже.

Принцип работы

Принцип работы такого устройства относительно прост: через первичную обмотку трансформатор принимает на себя напряжение сети. Затем с помощью выпрямителя переменный разнонаправленный ток преобразовывается в постоянный и однонаправленный. При этом может использоваться разные выпрямители: одно- или двухполупериодный. В любом случае применяются диодные мосты, которые состоят из:

  1. Двух диодов - в первом типе.
  2. Четырех диодов - во втором типе.

Применение двух элементов в выпрямителе характерно для БК с удвоенным напряжением либо в трехфазных устройствах.

Сетевой фильтр в устройстве БП компьютера - это обычный конденсатор с большой емкостью. Он сглаживает пульсации тока, из-за чего на комплектующие подается относительно чистый и равномерный ток.

Также вместо обычных трансформаторов внутри таких блоков могут использоваться автоматические устройства.

Работа трансформаторных БП

Чтобы детальнее понять, что такое БП в компьютере и как они работают, нужно иметь хотя бы начальные знания законов электротехники. Габариты блоков питания трансформаторного типа напрямую зависят от габаритов используемых внутри трансформаторов. Размеры устройств высчитываются по формуле:

В этой формуле:

  1. N - число витков на 1 В напряжения;
  2. f - частота тока (переменного);
  3. B - образующаяся в магнитопроводе индукция магнитного поля;
  4. S - площадь сечения магнитопровода.

Следовательно, чем будет больше витков и сечение провода, тем и трансформатор будет больше. Это влечет за собой увеличение габаритов самого блока. Однако если сечение провода уменьшить, то придется увеличить количество витков (N), что не удастся в компактных трансформаторах. Если трансформатор является маломощным, то много витков с малым сечением не повлияет на работу самого блока питания, так как сила тока в подобных устройствах будет низкой. Однако при повышением мощности ток будет расти, что приведет к рассеиванию тепловой мощности.

Следовательно, трансформаторные блоки питания с частотой работы 50 Гц могут быть только большими и тяжелыми. Подобные устройства непрактично использовать в современных компьютерах в силу их веса и габаритов, а также низкого КПД.

Однако есть и положительные стороны: надежность и простота, удобство ремонта (все элементы легко заменить в случае поломки), отсутствие радиопомех.

Импульсные блоки питания

В этих устройствах используются иные конструкторские решения, позволяющие увеличить частоту тока. Ниже представлен классический БП подобного типа.

Работает подобный блок питания следующим образом:

  1. Переменный ток из сети поступает в устройство, выпрямляется и становится постоянным.
  2. Постоянный ток конвертируется в частотные импульсы.
  3. Эти импульсы поступают на трансформатор. Если предусмотрена гальваническая развязка, то прямоугольные импульсы поступают на выходной ФНЧ.

Отметим, что есть кардинальные отличия между этими двумя типами БП. В частности импульсные отличаются следующими особенностями:

  1. При повышение частоты тока возрастает КПД трансформатора.
  2. Требования к сечению сердечника минимальные.
  3. Возможность создания компактных и легких блоков питания за счет установки эффективных и небольших трансформаторов.
  4. Применение отрицательной обратной связи дает возможность стабилизировать выходное напряжение, что положительно повлияет на стабильность работы всех комплектующих и системы в целом.

Достоинства импульсных блоков питания

  1. Высокий КПД, который достигает 92-98%.
  2. Малый вес и габариты.
  3. Надежность.
  4. Возможность работы в широком частотном диапазоне. Один и тот же импульсный блок способен работать в разных странах мира.
  5. Защита от короткого замыкания.
  6. Низкая стоимость.
  1. Плохая ремонтопригодность. Если обычный трансформаторный блок легко отремонтировать, заменив практически любой элемент на плате, то с импульсным устройством все сложнее. Поэтому переделка БП компьютера импульсного типа считается сложной задачей. Ремонт в мастерской может обойтись дорого.
  2. Излучение высокочастотных помех.

Теперь мы выяснили, что такое БП в компьютере и как они работают. На данный момент на рынке продаются в основном импульсные приборы, а трансформаторные практически отсутствуют.

Как проверить БП компьютера?

Если компьютер не включается, то проблема может заключаться именно в БП. Для проверки устройства нам понадобится мультиметр. Итак, перед тем, как проверить БП компьютера на работоспособность, необходимо отключить все комплектующие и сам БП. Затем берем обычную скрепку, распрямляем ее в форме U. Берем коннектор на 20/24 пина (самый большой) и с помощью нашей скрепки замыкаем черный и зеленый контакты. Учитывая, что пальцы будут касаться металла, нужно убедиться, что блок питания отключен от розетки.

Теперь опускаем скрепку и включаем БП в розетку. Если вентилятор начал вращаться при включении устройства, то значит, что оно рабочее.

Теперь необходимо замерить напряжение на разъемах. В зависимости от модели блока питания напряжение на разъемах может немного отличаться. Поэтому в инструкции (или в интернете) необходимо найти информацию о том, какие параметры напряжения должны быть на разных разъемах и замерить их мультиметром. Если параметры отличаются от нормальных, то значит, что с БП что-то не так.

Вторичный источник электропитания - устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.

Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах - например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания , стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

Задачи вторичного источника электропитания

  • Обеспечение передачи мощности - источник электропитания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения - преобразование переменного напряжения в постоянное , и наоборот, а также преобразование частоты , формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения - как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.
  • Стабилизация - напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита - напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей - одна из мер защиты от протекания тока по неверному пути.
  • Регулировка - в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление - может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль - отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России - 240 В 50 Гц, в США - 120 В 60 Гц).

Две наиболее типичных конструкции - это трансформаторные и импульсные источники питания.

Трансформаторный

Линейный блок питания

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора , у которого первичная обмотка рассчитана на сетевое напряжение . Затем устанавливается выпрямитель , преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр , сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от короткого замыкания (КЗ), стабилизаторы напряжения и тока.

Габариты трансформатора

E e f f 1 = S 33...70 , {\displaystyle E_{eff1}={\frac {S}{33...70}},}

Здесь S {\displaystyle S} выражено в см 2 , E e f f 1 {\displaystyle E_{eff1}} - в вольтах. Меньшие значения знаменателя выбирают для маломощных трансформаторов, большие - для мощных.

Другой путь повышения мощности трансформатора - повышение рабочей частоты. Приблизительно можно считать, что при заданных размерах трансформатора его мощность прямо пропорциональна рабочей частоте. Поэтому увеличение частоты в k {\displaystyle k} раз при неизменной мощности позволяет уменьшить размеры трансформатора в ∼ k {\displaystyle \sim {\sqrt {k}}} раз (площадь сечения магнитопровода уменьшается в ∼ k {\displaystyle \sim k} раз), или, соответственно, его массу в ∼ k 3 / 2 {\displaystyle \sim {\sqrt[{3/2}]{k}}} раз.

В частности, в том числе и этими соображениями, в силовых бортовых сетях летательных аппаратов и судов обычно применяется частота 400 Гц с напряжением 115 В.

Но повышение частоты ухудшает магнитные свойства магнитопроводов, в основном из-за увеличения потерь на гистерезис, поэтому при рабочих частотах свыше единиц кГц применяют ферродиэлектрические магнитопроводы трансформаторов, например, ферритовые или изготовленные из карбонильного железа.

Современные источники вторичного электропитания различной бытовой техники, компьютеров, принтеров и др. сейчас практически полностью выполняются по схемам и практически полностью вытеснили классические трансформаторы. В таких источниках гальваническое разделение питаемой цепи и питающей сети, получение набора необходимых вторичных напряжений, производится посредством высокочастотных трансформаторов с ферритовыми сердечниками. Источником высокочастотного напряжения являются импульсные ключевые схемы с полупроводниковыми ключами, обычно транзисторными . Применение таких устройств, часто называемых инверторами позволяет многократно снизить массу и габариты устройства, а также, дополнительно - повысить качество и надёжность электропитания, так как импульсные источники менее критичны к качеству электропитания в первичной сети, - они менее чувствительны к всплескам и провалам сетевого напряжения, изменениям его частоты.

Достоинства и недостатки

Достоинства трансформаторных БП. Недостатки трансформаторных БП.
  • Большой вес и габариты, пропорционально мощности.
  • Металлоёмкость.
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсный источник питания

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы .

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на , через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших , будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно - схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 - это используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или . Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: