Солнечные панели и их использование. Принципы работы солнечных батарей и как они устроены

Областей применения солнечных батарей становится все больше с каждым днем. Эти устройства с успехом проявляют себя в сфере промышленности, сельского хозяйства, военно-космических отраслях и даже в быту. Чтобы понять, насколько обширно использование солнечных батарей, давайте совершим небольшое виртуальное турне по нашему необъятному миру.

Там, куда электричество никак не дойдет
К сожалению, линии электропередач, опутавшие большую часть нашей планеты, всё ещё не могут добраться в самые труднодоступные уголки, которые подключать к ресурсам электростанций оказывается дороже, чем установить солнечную батарею, преобразующую в электроэнергию обычный дневной свет.

Солнечные батареи обеспечивают электроэнергией прибайкальскую метеостанцию на склонах Хамар-Дабан

Как Вы думаете решают вопрос отсутствия электроэнергии в некоторых отрезанных от цивилизации домах? Устанавливать электростанцию на жидком или твердом топливе оказывается дороже и ущербнее для окружающей экологии, чем использовать солнечные батареи. Чаще всего ими укрывают крыши домов, так что в солнечный день они вырабатывают электричество, которого достаточно и для освещения и работы бытовых устройств. А специальный проект в Испании оказался ещё успешнее. Из экономических соображений ряд современных домов был оборудован солнечными батареями, энергия которых используется для нагрева воды. Оказавшись отключенными от электричества, дефицит горячей воды и проблема с отоплением им не грозит.

Дом с солнечными батареями на крыше не подвержен перепадам в электросети



Что интересно, такими панелями можно оборудовать практически любой дом, например, дачу или домик в деревне, к которой не подведен "свет". Дабы удостовериться в этом, специалисты провели эксперимент, в котором водрузили солнечную батарею "AP-640" на крышу одного из домов. Результат — автономное освещение внутри и работа нескольких электрозависимых устройств (телевизор, холодильник и т.п.).

Солнечные батареи AP-640 решают проблему электроснабжения домов

Аргументов в пользу солнечных электростанций не счесть, но основным из них является экологичность. Примером, где отсутствие вредных выбросов солнечными батареями в окружающую среду сделало их альтернативой традиционными источникам электроэнергии, стала солнечная электростанция, расположенная недалеко от испанского местечка Севильи. Солнечные батареи водрузили на башню, на которую направили зеркала, отражающие и фокусирующие свет. Довольными остались около 10 тысяч близлежащих домохозяйств, которые снабжаются электроэнергией, преобразованной из света от солнца.

Самая крупная солнечная электростанция в Испании имеет мощность в 20 мегаватт

Солнечные батареи оказались практически единственным источником электроэнергии за пределами Земли. Ими оснащаются все космические аппараты. Когда Солнце освещает их, они вырабатывают электроэнергию, которая аккумулируется бортовыми батареями и используется для питания оборудования в тех местах, где свет недосягаем. В отличие от атомных электрогенераторов они не выделяют вредных веществ.

Солнечные батареи обеспечивают электроэнергией МКС

Солнечные батареи нашли применение и в наземном транспорте. Не так давно компания Toyota стартовала продажи своей модели Prius, оборудованной гибридным двигателем. На крыше автомобиля нового поколения располагаются солнечные батареи, от которых тот при внезапно закончившемся топливе сможет проехать ещё километров 5.

Автомобиль на солнечных батареях экологически безопасен и беспрецедентно экономичен

Солнечные батареи для бытовых нужд

Встретить солнечные батареи в рознице по разумной цене становится всё проще. На глаза они попадаются, как в виде отдельных, работающих в качестве резервного источника питания устройств, так и встраиваются в различные приборы. Например, многие помнят, как в нашу жизнь вторглись калькуляторы, практически сразу получившие небольшие панели, позволяющие им работать без батареек, лишь попав на свет.

Калькулятор на солнечных батареях может работать всегда и везде, где есть свет

Разработчики устройств, которые могут работать от альтернативных источников электроэнергии пошли ещё дальше. На свет появились аккумуляторные фонарики, которые днем можно зарядить, просто положив встроенной солнечной батареей на свет, а в темное время суток пользоваться как обычно. Получается, по сути, универсальный спутник для путешествий, способный придти на помощь там, куда не добрался электрический ток. Не менее интересным оказался проект корейской компании Samsung, представившей на свет свой недорогой мобильник E1107 Crest Solar, задняя стенка которого получила небольшую солнечную панель, которой достаточно, чтобы пополнять заряд аккумулятора без подключения к сети. При положительном балансе на счету и в зоне действия операторов без связи с этим телефоном остаться просто невозможно.

Внешняя солнечная батарея для питания мобильных телефонов и других компактных устройств

А как часто вам приходилось скучать во время загородного отдыха или туристического похода без музыки или света в палатке, выбросив батарейки, которые исчерпали свой электрический заряд? Конечно, карманные солнечные батареи вряд ли помогут в этом, но вот более крупные модели вполне. Такими переносными солнечными электростанциями очень часто оснащаются походные сумки и рюкзаки, а стоят они ненамного дороже обычных моделей, без которых не обходится ни один туристический поход.

Рынок солнечной энергии для россиян пока остаётся диковинкой, а вот для жителей многих стран он уже стал «прозой жизни». Во всяком случае, наши соотечественники, побывавшие за рубежом, обращают внимание на массовое использование солнечных батарей в быту и коммунальном хозяйстве. В число «технологически продвинутых» регионов входят не только солнечные курорты Испании, Италии или, скажем, западное побережье США, но также, например, Германия, Швеция или Финляндия, где климатические условия близки к условиям Европейской части России. Поэтому опыт североевропейских стран для нас особенно интересен.

Солнечные батареи постепенно начинают применяться и в России. В первую очередь - как вспомогательная и аварийная система энергоснабжения, но они могут работать и автономно. Некачественное энергоснабжение обычно характерно для сельской местности - скажем, устаревшая сеть не рассчитана на большую нагрузку (раньше расчётная нагрузка на один дом составляла 2,5 кВт). Такая сеть способна выдержать подключение холодильника, телевизора и нескольких осветительных приборов. Если при этом будет работать ещё и современная стиральная машина с подогревом воды, то, вероятно, возникнут проблемы. Ну а при подключении более мощного водонагревателя или сварочного аппарата сеть просто не выдержит.

Солнечные батареи позволяют компенсировать недостаточную мощность сети (обычно 1,5-3 кВт) без потери комфорта. Причём управляющий компьютер способен составить расписание включения-выключения основных энергопотребляющих устройств в доме в зависимости от предполагаемого объёма выработанной электроэнергии, которую он высчитывает на основании метеопрогнозов, полученных через сети связи (Интернет). Допустим, завтра ожидается солнечная погода-значит, можно запланировать стирку.

ПОДБИРАЕМ СИСТЕМУ

Автономная система энергоснабжения, помимо солнечных батарей, включает в себя ещё несколько компонентов. Перечислим основные из них.

  • Инвертор - так сокращённо называют инверторный преобразователь постоянного тока в переменный (и наоборот). Инвертор - важнейшее устройство системы, к которому подключаются и другие источники тока (солнечные батареи, ветрогенератор, дизельный генератор и т. д.) через соответствующие контроллеры, комплект аккумуляторных батарей, внешнюю и внутридомовую электросети. Следует учесть, что модели инверторов, используемые совместно с электросетью, отличаются по конструкции от работающих автономно.
  • Контроллеры заряда солнечных батарей - устройства, отвечающие за эффективное преобразование вырабатываемой электроэнергии. Без контроллеров невозможна работа солнечных панелей с аккумуляторами - их пришлось бы вручную отключать от аккумуляторных батарей каждую ночь и в конце каждого заряда. Кроме того, контроллеры повышают эффективность функционирования солнечных панелей на 30-50 %.
  • Аккумуляторные батареи (АКБ) запасают энергию, ведь солнечные панели работают только в светлое время суток. Мы подробно поговорим о них в отдельной статье.
  • Реле управления внешними устройствами. В автономной системе они используются для включения и выключения групп устройств, на которые подаётся электроэнергия. Также реле применяются, например, для автоматического включения дизельного генератора в случае сильного снижения уровня заряда АКБ.

Кроме того, в систему могут входить дополнительные генераторы тока. Чаще всего-дизельный генератор, который играет роль аварийного, когда капризы погоды не позволяют солнечным батареям работать на полную мощность. Дизельный генератор целесообразнее использовать в системах с большим периодом времени отключения от сети (от нескольких суток и более).

Перед подбором компонентов системы необходимо рассчитать её технические характеристики - они будут определяться временем автономной работы установки, а также объёмом электроэнергии, который должны вырабатывать солнечные батареи. Оба параметра обуславливают стоимость системы, и при их выборе неопытные пользователи часто допускают досадные ошибки. Лучше всего доверить расчёт профессионалам.

ТИПЫ БАТАРЕИ

Производительность и долговечность солнечных батарей могут сильно различаться. Так, у недорогих китайских панелей КПД всего 4-5 %, а срок службы составляет 3-4 года. «Нормальные» батареи (в том числе китайские) имеют КПД 12-15 %, а срок службы - 25 лет. У высококлассных производителей (Kyocera, Sharp, Panasonic, Samsung) КПД батарей может достигать 15-18 %, а срок службы измеряется десятками лет. Зато и стоят такие устройства на порядок дороже. С каждым годом эффективность переработки солнечного света в электроэнергию растёт. Так, в 2014 г. разработанные Panasonic солнечные панели HIT, представляющие собой пластины из монокристаллического кремния, который окружён сверхтонкой плёнкой из аморфного кремния, обеспечили рекордный КПД в 25,6 %. В ближайшие годы ожидается появление панелей с КПД выше 30%.

Солнечные панели изготавливаются из кремния и в зависимости от его структуры бывают трёх типов: монокристаллические, поликристаллические и из аморфного кремния. Все разновидности имеют свои особенности.

Поликристаллические панели состоят, грубо говоря, из осколков монокристалла. Отличаются меньшим КПД (15 %у элементов и 12 % у всей системы), срок службы составляет 20-25 лет. Зато они стоят дешевле монокристаллических. Панели из аморфного кремния по своим характеристикам примерно соответствуют поликристаллическим (несколько лет назад аморфные устройства отставали по сроку службы, который составлял 5-10 лет, но у новых моделей параметры значительно улучшились).

Солнечные батареи различаются и по эффективности работы в разных условиях. Так, монокристалл и поликристалл хорошо функционируют при ярком солнечном освещении, а при облачности выработка энергии у них заметно падает. Панели из аморфного кремния в пасмурную погоду работают немного лучше, чем устройства из монокристалла или поликристалла (при одинаково установленной мощности). Поэтому первые предпочтительнее во время малосолнечного и дождливого лета. Кроме того, батареи из аморфного кремния менее зависимы от точности ориентации плоскости панели относительно угла падения солнечных лучей. Эффективны они и при косых лучах солнца. Кристаллические батареи рекомендуется размещать так, чтобы угол падения солнечных лучей был максимально близок к 90°. Однако аморфники имеют меньший срок службы и занимают достаточно большую площадь при одинаковой с монопанелями мощности (из-за низкого КПД), поэтому с финансовой точки зрения их установка менее выгодна.

Солнечные батареи обычно монтируют на крыше. Лучше всего подходит южный скат, особенно если угол его наклона совпадает с географической широтой.

Также распространён вариант размещения на двух смежных скатах, развёрнутых в юго-западном и юго-восточном направлениях. В этом случае на каждый скат помещают половину батарей. При этом общий объём выработанной электроэнергии немного уменьшается, но увеличивается время работы панелей. Когда оптимальное (в нашем случае - южное) направление использовать не получается, солнечные батареи можно разместить на скатах, развёрнутых на восток или запад. При этом придётся увеличить количество панелей, чтобы компенсировать снижение эффективности их работы. В населённых пунктах с географической широтой 55-60° и больше солнечные батареи можно располагать вертикально - на стене или даже на заборе. Если не удаётся разместить их на имеющихся сооружениях, для установки выбирают поворотные стенды, позволяющие использовать солнечные лучи с максимальной эффективностью. Стоимость стенда, изготовленного фабричным способом, составляет 50-70 тыс. руб., но можно сэкономить, уменьшив количество панелей, цена которых составляет по 10-20 тыс. руб. и более. Отдача от поворачивающихся панелей увеличивается примерно в 1,6 раза по сравнению с закреплёнными стационарно.

Обсуждение: есть 1 комментарий

    До тех пор, пока не будет решен вопрос о производстве двунаправленных счетчиков (типа снятого с производства СО-505 модификации без стопора обратного хода)и о изменении закона о энергетике, позволяющем производить возврат энергии в домовую сеть без выхода за границы раздела с городскими сетями, до тех пор все разговоры о возобновляемых источниках энергии будет не что иное как словесный онанизм недойобышей, весьма далеких от реалий.

Солнечная батарея — это группа фотоэлементов, вырабатывающая электрический ток под воздействием солнечных лучей.

Схема солнечной фотоэлектрической системы.

Внешняя простота конструкции очень привлекательна по сравнению с турбинами гидроэлектростанций и атомными реакторами, но больших электрических мощностей, чем получаемые на ГЭС и АЭС, использование солнечных батарей пока дать не может.

Солнечный свет — основа тепла и жизни на Земле, своим обилием и легкой доступностью привлекал пытливые умы всех времен. Тысячи лет назад великий Архимед с помощью вогнутых отполированных поверхностей бронзовых щитов сфокусировал лучи солнца и поджег деревянную эскадру римлян. Солнечные коллекторы — собиратели солнечного тепла — популярны и сегодня при использовании в летних душах на дачах и садовых участках.

Схема водонагревательной гелиосистемы.

Солнечная энергия для получения электричества стала применяться только в середине прошлого века. Открытие и использование внутреннего фотоэффекта в полупроводниковых фотоэлементах, развитие технологии их производства позволили создать надежные конструкции солнечных батарей.

В результате падения световых лучей на поверхность полупроводникового фотоэлемента в последнем возникает направленный поток электронов, который и называется электрическим током. Величина его измеряется в микроамперах. Электрическая мощность одного фотоэлемента очень маленькая, поэтому их соединяют в блоки. Основными недостатками, тормозящими широкое использование таких батарей, являются:

  • невысокая электрическая мощность;
  • высокая стоимость производства.

Малая мощность солнечных батарей обусловлена еще тем, что большая часть падающего на них светового потока рассеивается, отражается или поглощается без выработки электрического тока (потери — до 75%). Отсюда низкие мощности фотоэлементов и высокая стоимость их электроэнергии.

Схема принципа работы и устройства солнечной батареи.

Основным материалом для производства полупроводниковых фотоэлементов является кристаллический кремний. Морские и речные пляжи переполнены песком — ярким представителем кремния, но содержат всевозможные примеси. Технология очистки природного кремния — очень дорогостоящее мероприятие, что сказывается на стоимости фотоэлементов.

Солнечную энергию активно стали использовать в космосе. Солнечные батареи в космических аппаратах — основа для обеспечения питания всей бортовой космической техники. В быту применение фотоэлементов встречается чаще всего в калькуляторах на солнечных батареях. Совершенствование технологий производства кристаллического кремния привело к созданию солнечных батарей на фотоэлементах нового поколения.

Применение солнечных батарей в быту

Схема солнечных модулей.

Бытовое использование фотоэлементов, объединенных в блоки для создания достаточной электрической мощности, находит применение в качестве резервных источников энергии для самых нужных бытовых приборов.

Дачи и загородные дома в условиях нашей действительности весьма уязвимы для временных отключений электроэнергии. Даже элитные участки, застроенные роскошными зданиями, не застрахованы от этих явлений. Отсутствие, хотя бы временное, возможности использования привычной бытовой техники: холодильника, микроволновой печи, тостера, телевизора — создает бытовые неудобства и раздражает.

Солнечные батареи устраняют зависимость от временных отключений электроэнергии и создают ощущение свободы и комфорта. За дополнительный комфорт приходится платить, так как применение таких батарей возможно только в комплекте со специальными приборами:

  • аккумуляторы для накопления электроэнергии, выработанной фотоэлементами батареи;
  • контроллер для регулировки оптимального расходования накопленной электроэнергии;
  • инвертор для питания бытовых приборов.

Подключение и обслуживание

Правильно подключить и использовать солнечную батарею — такая задача встает сразу же после приобретения этого недешевого оборудования. Вот самый минимальный перечень мероприятий по организации автономного электроснабжения:

  • выбрать необходимое число модулей из фотоэлементов для сборки батарей;
  • выбрать способ подключения;
  • предусмотреть установку диодного шунта от возможного затенения фотоэлементов;
  • установить регулятор зарядки аккумуляторов;
  • установить контроллер для всей системы фотоэлементов.

Специфика работ требует привлечения специалиста, чтобы правильно подключить батарею.

Обслуживание солнечных батарей несложно, но требует внимания. Фотоэлемент, точнее, кристаллический полупроводник, долговечен и неприхотлив к изменению внешних условий. Элементы конструкции фотоэлектрических модулей и батарей в период эксплуатации изменяют свои свойства:

  • загрязнение поверхностей фотоэлементов снижает их эффективность;
  • защитная пленка снижает со временем светопропускание на 10-20%, что требует регулировки в электрических цепях;
  • перегрев контроллера и инвертора нарушает электрические характеристики системы;
  • изоляция подводящих проводов разрушается от влаги и перепада температуры.

Пользоваться неисправной батареей категорически запрещено.

Перспективы развития использования солнечной энергии

Схема электросети при использовании солнечных батарей.

Установка на крышах домов в городах солнечных преобразователей очень перспективна для экономии электроэнергии, но требует государственной поддержки. Например, бытовым потребителям фотоэлектрической энергии в Германии субсидируют коммунальные платежи.

В государствах, где солнечные дни преобладают (Испания, Израиль), разрабатываются проекты жилых и промышленных зданий с солнечными батареями на крыше. Сложность технологии производства и высокая стоимость фотоэлементов не позволяют добиться массового производства.

Электромобили сегодня реально эксплуатируются, но в небольших масштабах из-за необходимости частых подзарядок аккумуляторов. Зарядка автомобильных аккумуляторов солнечными батареями — это прорыв в автомобильной промышленности по созданию конкурентоспособных электромобилей.

По долгосрочным техническим прогнозам к середине 21 века, себестоимость электроэнергии фотоэлементов приблизится к себестоимости ее типовых поставщиков. С точки зрения экологии, автономные мощные источники электроэнергии в виде солнечных батарей получат широкое распространение.

В современном мире человек больше не может представить свою жизнь без использования электрической энергии. Помимо стандартных способов получения электрического питания, существуют и альтернативные. Применив солнечные батареи на даче, вы сможете обеспечить постоянное освещение, питание любых бытовых электрических приборов, некоторых видов садовой техники, и многое другое. Полученная энергия будет абсолютно бесплатной и практически бесперебойной.

Для правильного выбора солнечной батареи (СБ) необходимо знать, как она работает, ведь многие рядовые пользователи (без специального образования) считают, что солнечные батареи - это некий элемент, способный накапливать солнечную энергию.

Схема получения электричества с помощью солнца

На самом деле, преобразование солнечных лучей, попавших на поверхность батареи, в электрический ток — процесс достаточно сложный. Солнечный модуль – кристаллическая (кремневая или галлиевая) пластина, преобразующая энергию светового потока в электроток в силу физико-химических свойств и процессов.

С солнечного модуля электричество по проводам стекает в аккумуляторную батарею (АБ), подпитывая ее. Полный заряд АБ определяется контроллером. В рабочем режиме ток поступает с аккумулятора на инвертор, а с него на электроприборы и освещение. В этом процессе есть и режим ожидания, когда зарядка уже полностью завершилась, а инвертор еще не включен (например, люди спят или поехали в гости).

Основные элементы СБ:

  • Солнечный модуль. В зависимости от исполнения выдает напряжение 6-40 вольт. В домашних условиях, обычно применяют модули на 12 или 18 вольт, реже на 24 или более.
  • Регулятор уровня заряда (контроллер) – необходим для своевременного перехода устройства из режима зарядки в состояние ожидания или работы. Соблюдение этих режимов позволяет значительно увеличить срок службы аккумуляторных батарей.
  • Аккумуляторы – накопительный элемент, который на протяжении некоторого времени способен сохранять энергию, полученную от солнечных модулей.
  • Инвертор – устройство, преобразующее постоянный ток в переменный, который необходим для питания многих бытовых электроприборов.

Схема расположения солнечных панелей

Для надежной и бесперебойной работы, в схему, описанную выше, необходимо добавить дополнительные элементы, обеспечивающие безотказную работу солнечного модуля, аккумулятора и инвертора.

  • Защитные устройства (прерыватели, реле) – необходимый элемент для безопасного использования батареи и ее составляющих.
  • Автоматика – совокупность элементов системы, переключающих электросистему дома с СБ-питания на обычную (городскую) электросеть, при возникновении неисправностей, и обратно, при их устранении. Все элементы «солнечной» сети (в этом случае) переходят в режим ожидания.

Батареи, работающие от солнца, изготавливают из разных материалов и бывают они разных видов. Полная мощность одного модуля для бытовых нужд (в зависимости от размеров) составляет 10-350 ватт.

Для расчета необходимого количества элементов берут среднее значение, которое должна обеспечивать любая батарея в пасмурную погоду – 80-100 Вт/кв. м.

Если полностью покрыть дом с площадью крыши – 100 кв. м, то средняя мощность составит:

100*100=10000 Вт = 10 кВт,

что вполне хватит для работы всех электроприборов.


Солнечные батареи на крыше

Но в быту применяются кремниевые СБ всего трех типов:

  1. Монокристаллические.
  2. Поликристаллические.
  3. Тонкопленочные.

Рассмотрим каждый из них.

Монокристаллические модули

Для изготовления используются однородные кристаллы кремния. Специальные условия, создаваемые при выращивании, определяют их высокое качество, а также надежность и эффективность самой СБ.

Монокристаллические модули

Цена на них высока (по сравнению с другими), а монтаж устройства и последующая эксплуатация иногда вызывает трудности. При чистке пластин необходимо действовать с осторожностью. Малейший нажим и они могут треснуть.

Такие СБ часто загрязняются и КПД их падает. Эффективное использование может быть организовано, если вы имеете достаточное количество средств на очистку или же используете такую систему в качестве временного резерва.

Кремниевые модули с использованием поликристаллов (поликристаллические)

Производительность модулей такого типа невелико из-за того, что для их создания используются материалы более низкого качества. В результате этого, поликристаллические модули имеют эффективность на 5-10% меньше монокристаллических.


Но чистку они выдерживают свободно. Из-за поликристаллической структуры повредить их достаточно сложно

Тонкопленочные модули

Их изготовление производится из кремния (аморфного) или же из других материалов, имеющих в своем составе, необходимые для процесса преобразования примеси.

Тонкопленочные модули

Покупка и эксплуатация модулей этого типа имеют свои позитивные и негативные стороны

  • маленький вес;
  • легкая транспортировка и установка;
  • низкая стоимость;
  • гибкость конструкции.
  • малый КПД (10-12%);
  • краткий срок использования.

Желательно, чтобы вы подыскали специалиста по монтажу СБ. Можно узнать о нем в магазине, где вы совершаете покупку или в глобальной сети. Если же установку производите вы сами, необходимо знать несколько особенностей работы такого оборудования.

Монтаж солнечных панелей

Смонтировать батареи на вашей даче лучше и легче всего на крыше дома. Это самая большая площадь, но тут есть несколько нюансов:

  1. Монтаж лучше производить там, где лучи будут освещать батарею под углом 90 0 большую часть дня.
  1. При самостоятельном монтаже СБ помните, что для наилучшего результата (максимального КПД), батареи летом располагают под 40-45 градусов к горизонту с направлением на юг

Правильное расположение батарей

При неточном размещении, лучи дневного светила попадают на поверхность модуля под неправильным углом, что значительно снижает их мощность.

  1. Для поддержания постоянного КПД батареи должны устанавливаться на специальные поворотные кронштейны.

Это необходимо чтобы в разные сезоны можно было сменить угол наклона. Ведь зимой солнце располагается намного ниже, чем в остальное время года.

В идеале, желательно, чтобы даже в течение дня, батареи были повернуты к светилу под углом 90 0 . Ведь при стационарном положении СБ будут отдавать полную мощность, когда солнце расположится в зените. А при восходе или заходе светила КПД будет низким.


Крепления для солнечных батарей

Для устранения этого недостатка необходим специальный сервомеханизм с фотоэлементами и автоматикой (можно купить или выписать через глобальную сеть). Это система, фактически, будет «следить» за солнцем и поворачивать СБ на нужный угол.

Она работает так.

К электромоторам, которые перемещают СБ, подключена схема с фотоэлементом, настроенная на определенный уровень освещения. Как только количество света изменится (солнце «ушло», облако), устройство дает команду моторам, и они вращаются, пока уровень освещения фотоэлемента не достигнет нужного значения.

Такое устройство можно сделать своими руками. Один из вариантов можно увидеть на видео:

В данной конструкции угол наклона батарей (зависит от высоты солнца над землей) меняется с помощью насоса и поршней, а слежение за перемещением солнца в течение дня, осуществляется отдельным (для каждого модуля) мотором.

Отопление дома (если у вас нет подвода газопровода) можно полностью сделать электрическим. Это возможно осуществить с помощью солнечных модулей, если они покрывают большую площадь.

Причем существует два варианта такого обогрева:

  1. Непосредственное. К источнику тока прямо подключаются нагревательные приборы (плитка, калорифер и прочее).
  2. Косвенного нагрева, например, водное. В электрокотле закипает жидкость, которая, проходя по трубам, разогревает их и разносит тепло (при помощи насоса) по всем помещениям.

Первый вариант считается эффективным. Его достоинства в заключаются в отсутствии труб, экономичности и простоте эксплуатации.

Отопление частного дома солнечными батареями

Из недостатков выделяют быстрое остывание и большое потребление энергии, ведь приборы должны быть все время включены на полную мощность (1-3 кВт в каждой комнате).

Второй вариант намного дороже, но имеет много положительных качеств:

  1. Малое потребление электричества. Подача основного количества энергии нужна только в самом начале – при разогреве жидкости.
  2. Большую часть времени работает только один маленький насос мощностью 0,3-1 кВт.
  3. Большая теплоемкость.

Из недостатков:

  • затраты на котел, трубы, соединительные элементы;
  • оплата монтажных сантехнических работ;
  • трудности в установке и подключении.

Схема отопления при участии солнечных батарей и газового котла

Из вышеописанного можно выяснить, что СБ площадью менее 70 кв. м не смогут обогреть все комнаты в полной мере, если у вас установлены приборы непосредственного обогрева – просто не хватит энергии. Но ее вполне может хватить на второй (водный) вариант.

К позитивным свойствам относятся:

  • Бесплатная электрическая энергия (без учета стартовых вложений) и возможность полной автономии.
  • Бесконечный источник энергии.
  • Абсолютно тихий процесс получения энергии.
  • При выборе качественного оборудования – долгие года эксплуатации (без дорогого обслуживания).
  • Отсутствие каких-либо документов на разрешение установки или использование.
  • Возможна установка своими руками.

Зимой батареи работают менее эфективно из-за сокращения времени светового дня

К негативным свойствам относятся:

  • Высокая стоимость оборудования.
  • В областях и регионах, где солнце светит редко, а пасмурных дней много, оборудование будет работать неэффективно.
  • Производительность (в процентном соотношении) каждый год снижается на 1-2%.

Целесообразность установки солнечных батарей

Для того, чтобы эффективно и выгодно вложить собственные средства, необходимо заранее определиться, какие цели вы преследуете.

Если в вашем регионе происходят частые, но кратковременные отключения электроэнергии, и вы хотите обзавестись резервом – это не лучший выход.

Установка солнечной батареи достаточно дорога, поэтому, ее приобретение стоит осуществлять только при долговременных отключениях электричества или при полном его отсутствии.

Факторы, которые могут повлиять на покупку солнечных батарей

  • Необходимость автономии или желание использовать экологически чистую добычу энергии.
  • Потребность в резервном источнике при частых отключениях или полном отсутствии электроэнергии
  • Желание снизить расходы на оплату коммунальных услуг.

Если вы все-таки хотите устанавливать батареи, то вам необходимо привлечь специалистов-энергетиков, чтобы рассчитать ваше среднесуточное и среднемесячное потребление электричества. И только после этого, учитывая ваши потребности, решите – тратить вам деньги на приобретение СБ или нет.

Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.
Солнечные батареи удобно применять там, куда нельзя подвести электричество

Принцип работы

Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок». Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В. Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.

Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов. В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.


Принцип работы солнечной батареи

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

Технические характеристики: на что обратить внимание

Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.

Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели.

В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.

Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.

К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.


Внешний вид моно- и поликристаллических панелей

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.


Солнечные батареи из аморфного кремния

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation — PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

Виды аккумуляторов, используемых в батареях


Различные виды аккумуляторов, которые можно использовать для солнечной батареи

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.

AGM батарея изнутри

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

Как определить размер и количество фотоэлементов?

Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже. Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее. Общее их количество зависит от площади одного элемента и необходимой мощности.

Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.

При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.


Расчет количества солнечных батарей исходит из необходимого электричества

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: