Схема включения резервного питания. Четыре схемы резервного питания

В работе электроснабжения коттеджа или загородного дома нередко случаются перебои в электропитании, особенно при большом удалении от мегаполисов. Для обеспечения автономного резервного электроснабжения сегодня предлагается немало эффективных приборов и схем, которые защищают чувствительную к перепадам напряжения бытовую технику и высокотехнологичное оборудование. Несложно представить себе, как чувствуют себя в глубинке хозяева домов в холодное время года при отключении электричества, особенно если на нем работает система автономного отопления и все электроприборы. Чтобы решить эту проблему, стоит установить в доме резервное электроснабжение.

Способы устранения перебоев в системе подачи электроэнергии

Выключение линии электропередач несет немало неудобства, и чтобы предотвратить многие проблемы, связанные с отключением электричества, разработано немало вариантов. Специалисты рекомендуют не отказывать себе во всех благах цивилизации, тем более, что ничего не надо изобретать - приборы для резервного электроснабжения дома есть в продаже. Они призваны стать альтернативным источником, который будет обеспечивать электричеством в том объеме, который длительное время будет обеспечивать работу основных электроприборов:

  • охранных и противопожарных систем;
  • принудительную вентиляцию и кондиционирование;
  • запуск твердотопливного котла;
  • насосы для работы водоснабжения и канализации;
  • бытовые электроприборы и другое оборудование.

Все они не могут работать без электросети, поэтому так важна эффективная схема резервного электроснабжения. У многих загородных построек не всегда гарантируется надежная работа централизованной подачи электричества. Из-за нестабильных характеристик напряжения в сети и частых неплановых отключений электроснабжения на несколько часов, а то и суток, такие системы или чувствительные электроприборы выходят из строя. Загородный дом не должен быть местом решения постоянных проблем, а отличным местом для отдыха. Бесперебойное автономное электроснабжение коттеджа или загородного домовладения должно функционировать стабильно - для работы всех систем жизнеобеспечения.

Существует несколько вариантов решения проблемы с перебоями электропитания. Например, монтаж автономного резервного источника электроснабжения бесперебойного типа, который можно приобрести вместе с комплектом АКБ (аккумуляторных батарей). Они способны работать автономно некоторое время, в зависимости от их мощности и общей нагрузки.

Аккумуляторы для резервной системы питания гарантирует бесперебойное снабжение электроэнергией потребителей при длительных отключениях сети или при отсутствии внешних электросетей в удаленных районах.

Проект резервного электроснабжения

В проект резервного электроснабжения входит вся документация, где учитывается суммарная мощность всех автономных источников. В систему резервного автономного энергоснабжения загородного дома могут входить и ультрасовременные мини-электростанции, и традиционные источники электричества. Чем больше предполагается источников питания сети, тем больше эффективность. Однако, в такой проект должны быть внесены все показатели мощности генераторов и емкости аккумуляторов.

Проектная мощность автономного резервного электроснабжения, включая инвертор, рассчитывается так - суммарная мощность работающих устройств плюсуется и умножается на 3. Это вызвано тем, что при запуске техника тянет максимальное количество энергии. Данный показатель учитывается для того, чтобы автономная сеть справлялась с максимально возможной нагрузкой по проектной мощности. В расчеты входят потребности электропитания питаемых схемой приборов:

  • активные нагревательные (плита и электрочайник, лампочки накаливания);
  • индуктивные (холодильник, стиральная машина, телевизор, микроволновка и пр.)

Их потребляемую мощность суммируют (по таблице или согласно прилагаемой инструкции) и добавляют 20-25% от максимальной величины, на тот случай, если все электроприборы будут работать одновременно. То есть, небольшая дача с минимальным освещением, телевизором и холодильником будет работать по схеме резервного электроснабжения загородного дома при мощности в 2 кВт. Если пользоваться электроинструментом и другими приборами, то прибавляем еще 5-6 кВт.

Разновидности генераторов

Сегодня наиболее распространенные автономные резервные источники электроснабжения:

  • станция бесперебойного питания;
  • дизельный генератор;
  • ветряной генератор;
  • бензиновый генератор;
  • инвертор.

1. Бензиновый электрогенератор считается одним из наиболее эффективных, хотя экономичным его не назовешь. Но для его достаточно при потребляемой мощности порядка 6 кВт. Такие источники энергии уместны там, где нет другой альтернативы, а бензин можно транспортировать без проблем. Например, если загородный дом стоит где-то у трассы или недалеко от бензоколонки.

Основные преимущества:

  • почти бесшумная работа;
  • хорошо запускается в зимний период;
  • может использоваться как резервный источник.

2. В большом домовладении потребление энергии довольно больше, особенно если много осветительных приборов и нет другого отопления, кроме электрокаминов. При потребляемой мощности более 6 кВт специалисты рекомендуют приобрести дизельный генератор. Однако тут тоже не обойдется без значительных финансовых вложений. Зато он работает практические в любых условиях.

3. Ветряной генератор, или в просторечии «ветряк», довольно эффективен, но он может быть установлен в местности, где всегда дуют довольно сильные ветра или тянут по гонному ущелью сезонные сквозняки.

4. Среди резервных источников электроснабжения нового поколения также нередко используются импульсные конденсаторы (ИКЭ). Прекрасная альтернатива другим системам автономного электропитания, практически инновационное оборудование, которое можно приобрести в готовом виде. Эти портативные модели предлагают улучшенные характеристики бесперебойного питания, которые могут работать автономно или в системе резервного электроснабжения. Они предполагают такой комплект:

  • преобразователь напряжения;
  • реле переключения от сети к аккумулятору;
  • зарядное устройство.

При подключении к схеме инвертора и автономных аккумуляторных батарей тоже получается мини-электростанция с достаточной мощностью.

Инверторная система на основе солнечных панелей

Во всем мире установка на крышу солнечных панелей - не новинка, а привычное дело. Правда стоит это дорого, но инвестиции через время окупаются. Энергия солнца легко преобразуется в переменный ток, однако не в каждом регионе ее достаточно для зарядки мощных батарей и полноценного обеспечения целого жилого дома.

В летнее время для зарядки аккумулятора для резервного электроснабжения этого может быть вполне достаточно, чтобы накапливать его для работы электросети в вечернее время - в течение нескольких часов. С дрогой стороны, такие панели оправданы, когда есть второй источник автономного электроснабжения, такой как дизельный генератор или инвертор.

Основное оборудование для работы по схеме получения энергии солнца и преобразования в электричество:

  • солнечные панели, монтируемые на крыше дома или в другом месте;
  • контроллер электрической зарядки;
  • автоматическая защита постоянного/переменного тока;
  • набор аккумуляторных батарей большой емкости;
  • инверторный блок требуемой мощности.

Получается небольшая домашняя электростанция на территории удаленного больших городов коттеджа. Она может быть дополнена эффективной схемой инверторного типа, где источники энергии призваны эффективно дополнять друг друга.

Система инверторного типа идеально подходит для обеспечения бесперебойного питания в комплексе с солнечными панелями. Генератор можно отключать, пока работает аккумулятор, заряжаемый от энергии солнца, существенно увеличивая срок его работы.

Инвертор

Инвертор - важная составляющая автономного электроснабжения загородного дома или коттеджа. Он дает возможность периодически отключать генератор, чтобы минимизировать расходы топлива. За рубежом, как альтернативная схема обеспечения электричеством, инверторы считаются неотъемлемой частью автономного электропитания. Они универсальны и в том случае, когда нет возможности использовать энергию ветра и солнца.

Этот аппарат сверхнадежен, функционирует по схеме «включи и забудь». Современные инверторы гарантируют бесперебойное резервное питание не только объектов недвижимости, но и «мобильного» жилья типа вагончики, яхты и авто-трейлеры и пр.

Для защиты от перебоев электропитания при отключении электричества хорошо справляется инвертор для резервного электроснабжения дома. При напряжении 220В он способен обеспечить снабжение электроэнергией, при минимальных затратах на обслуживание. При этом он предоставляет возможность подключать аккумуляторные батареи, дающие длительное резервное снабжение электричеством. Инверторы относят к линейке наиболее выносливых ИБП для использования домашних электроприборов и чувствительной к перепадам напряжения технике.

Важные плюсы инвертора:

  • бесшумное функционирование;
  • возможность установки в любом помещении;
  • минимальный уход и обслуживание;
  • высокая надежность;
  • длительная гарантия производителя;
  • отменное качество;
  • стабильная подача электричества;
  • автоматический переход с подключением на схему резервного электроснабжения.

Инвертор при отключении питания линии электропередач на улице или в поселке сроком до суток - вне конкуренции. Бесперебойное электроснабжение дачи или загородного участка с помощью инвертора при частом отключении выгоднее схемы работы с генератором.

Совет: Как вариант - генератор плюс инвертор. Тут суммируются их «плюсы» и нивелируются «минусы». Инвертор способен запустить генератор если разряжены аккумуляторы, а потом отключится без необходимости. Генератор шумит, поэтому целесообразно включать его днём, пока находиться на работе или вне дома, а вечером переходить на бесшумный инвертор.

Особенности работы электрогенератора

Электрические генераторы работают на разных источниках энергии и вырабатывают:

  • 1-фазный ток - для питания приборов на 220 Вт;
  • 3-фазный ток - на 380 Вт.

Генератор для резервного электроснабжения очень эффективен, а его мощность может превышать 16 кВт, поэтому вполне подходит для полноценного автономного обеспечения загородного дома. Как вариант - для поддержки бесперебойного питания при частых отключениях электричества.

Генератор открытого исполнения идет в комплекте с:

  • автоматической системой вентиляции;
  • щитом для обеспечения работы;
  • системой газоотведения выхлопов;
  • модулем автоматической топливной дозаправки;
  • системой автоматического тушения пламени (противопожарные меры).

Минусы генератора:

Без смены фильтров, свечей и масла генератор выходит из строя, а также ему требуется:

  • помещение с вентиляцией;
  • канистры для транспортировки дизельного топлива или качественной зимней солярки для работы в холодное время года;
  • фоновый шум и претензии соседей при несогласованных включениях;
  • запах перерабатываемого дизтоплива;
  • потребность в периодическом облуживании, заправке и контроле работы;
  • соблюдение графика замены расходных материалов.

Хотя этих проблем не так много, чтобы отказаться от возможности его использования, но это нарушает покой и нормальный отдых в загородном доме. И хотя он гарантирует резервное электроснабжение и бесперебойное питание дома, его лучше использовать в комплексе с другими системами и в отсутствие хозяев дома.

Именно по этой причине дизельные электрогенераторы чаще всего применяется как резервный источник обеспечения электричеством. Сегодня на отечественном рынке предлагается немало разновидностей дизель-генераторов, используемых для резервного электроснабжения загородных домов, а также для отопления и подачи воды. Современные дизельные электростанции идут в модульном и классическом (открытом) варианте.

Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

Рис. 10.1. Основная схема резервирования источников питания

Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

Рис. 10.3. Схема резервирования источника питания охранного устройства

Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
использование резервного источника питания. Схема одного из них показана на рис. 10.5.
Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
В схеме использовано реле РЭС-64А РС4.569.724.
Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

Рис. 10.7. Схема автоматического коммутатора питания

Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

Рис. 10.8. Комбинированный блок питания электронно-механических часов

При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

Рис. 10.9. Схема резервированного питания электронных часов

С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

Рис. 10.10. Схема низковольтного источника бесперебойного питания

Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

Через диод VD7 и резистор R4 устройство подключено к ИР/7.
При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

Обеспечение надежности и бесперебойности электроснабжения имеет первостепенное значение. И, естественно, одним из основных средств решения этой задачи есть автоматизация включения резервного электропитания (АВР). Схемы АВР широко применяются в энергосистемах и распределительных электросетях всех напряжений.

Ниже даются описания трех вариантов выполнения АВР в простых электросетях напряжением до 1000 В, из который больше всего часто придется иметь дело электромонтерам.

Схема АВР в двухпроводных сетях напряжением до 220 В (рис.1) рассчитанная на наличие двух линий, одна из которых является рабочей, другая - резервной, и применяется как в однофазных сетях переменного тока, так и в двухпроводных сетях постоянного тока.

Практическое применение системы двух линий из АВР распространяется на ответственные электросети с небольшой подключенной мощностью токоприемников, как, например, аварийное освещение, цепи управления и сигнализации и др. В случаях питания исключительно ламп накаливания при равенстве напряжений рабочей и резервной линий схема может быть использована совместно для переменного и постоянного токов, например с питанием рабочей линии от источника переменного, а резервного - от источника постоянного тока.

Самая простая схема АВР осуществляется с помощью реле контроля наличия напряжения РКН, контакты которого непосредственно включены в линии рабочего и резервного питания. В двухпроводных сетях переменного тока 220 В в качестве реле РКН может быть применено реле типа ЭП -41/33Б. Контакты этого реле рассчитаны на рабочий ток до 20 А, что при 220 В отвечает мощности 4,4 кВт, достаточной для большинства небольших однофазных установок переменного тока. При постоянном току необходимо выбрать соответствующее реле другого типу, имея при этом в виду, что размыкать цепь при постоянном току значительно труднее, чем при переменном. Следовательно, даже при сравнительно небольших токах придется применить не реле, а контактор с дугогасящими камерами.

Действие схемы показано на мал.1. Реле РКН получает питание от рабочей линии и имеет запирающие контакты в той же линии, что и размыкающие линии резервного питания. Поэтому при наличии питания на рабочей линии реле РКН используется и питание нагрузки осуществляется от нее; резервная линия (независимо от того, есть на ней напряжение или нет) от нагрузки отсоединена. При отсутствии напряжения в рабочей линии происходит переключение контактов реле РКН, то есть размыкаются контакты в цепи питания от рабочей линии и защелкивающиеся в цепи питания резервной.

Рис 1. Схема АВР в двухпроводных сетях.

При возобновлении напряжения на рабочей линии происходит обратное переключение.

Схема АВР в трехфазных сетях переменного тока к 380/220В без контроля обрыва фаз (рис. 2). Как и в предыдущем случае, схема рассчитана на наличие двух линий, из которых одна рабочая, другая - резервная.

Вообще говоря, схемы АВР в трехфазных сетях переменного тока с электросиловой или смешанной электросиловой и осветительным нагрузками требуют контроля обрыва фаз. Это объясняется тем, что трехфазные электродвигатели не могут работать под нагрузкой на двух фазах: они остановятся, и их обмотки могут сгореть (предохранители в этом случае вовремя не перегорают). Однако в некоторых, но достаточно распространенных случаях необходимость контроля отпадает. Это имеет место при защите линий автоматическими выключателями, которые отключают все три фазы одновременно при любом повреждении в электросети, которая защищается, без предохранителей, и выполнении линий питания трехжильными или четырехжильными кабелями, в которых обрыв одной фазы маловероятен. Отсутствие контроля обрыва фаз позволяет существенно упростить схему АВР.

В противовес описанной выше схеме для двухпроводных сетей, где переключения в цепях рабочей и резервной линий осуществлялись непосредственно контактами реле, в схеме АВР для сетей трехфазного переменного тока как исполнительные органы используются магнитные или пускатели трехполюсные контакторы. Это позволяет существенно расширить область применения схемы, потому что номинальные рабочие токи для магнитных пускателей серии П лежат в пределах от 15 до 135 А, а трехполюсных контакторов (типов КТЭ и КТВ) - от 75 до 600 А.

Режимы работы схемы. В рассмотренной схеме каждое из четырех возможных положений переключателя режимов ПП (пакетный переключатель) определяет один из четырех режимов работы схемы.

Положение АВР-1: линия №1 является рабочей, линия №2 - резервной с автоматическим включением резерва.

Положение АВР-2: линия №2 рабочая, линия №1 резервная с автоматическим включением резерва.

Положение Мест, (местное управление) : переключение линий происходит пакетными выключателями 1В и 2В.

Положение 0 (нуль) : обе линии отключенные от цепи управления контакторами 1К и 2К и лишенные питания.

Прежде чем перейти к подробному рассмотрению схемы, необходимо обратить внимание на то, что в цепи управления обеими линиями введенные контакты того же переключателя Пп. Потому его контакты, которые отвечают потому или другому положению, в цепях катушек 1К и 2К обоих контакторов замкнуты одновременно. Так, например, при замыкании контакта переключателя 1-7 Линии №1 одновременно оказывается замкнутым контакт 11-13 Линии №2, на что указывают черные кружки на пунктирных линиях АВР-1.

Рис. 2. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В без контроля обрыва фаз.

Но контакты 1-3 и соответственно 11-17, а также контакты 1-5 и 11-15 разомкнуты. Контакты 1-3 и 11-17 замкнутся в положении ЛВР-2, при этом контакты 1-7, 11-13, 1-5 и 11-15 будут разомкнуты. Контакты 1-5 и 11-15 замкнуты в положении Мест и, наконец, в положении 0 все контакты разомкнуты, на что указывает отсутствие черных кружков на пунктирной линии 0.

Автоматическая работа схемы. В положении АВР-1, катушка контактора 1К питательного Линии №1 получает питание по цепи 1-7-0. При этом главные контакты 1К замкнуты и нагрузку питает Линия №1, тем временем катушка контактора 2К Линии №2 (цепь которой разомкнута блоком-контактом 1К) лишена питания. Следовательно, Линия №2 отключена от шин и является резервной.

Допустимо теперь, что Линия №1 осталась без напряжения. В этом случае контактор 1К отпустит, его главные контакты отсоединят Линию №1 от шин, а блок-контакт замкнет цепь катушки 2К (11-13- 17-0). Если на Линии №2 есть напряжение, то контактор 2К включится и питание шин возобновится. Другими словами, состоится АВР, то есть автоматическое включение резерва.

При возобновлении питания по Линии №1 создаются обратные переключения, то есть автоматически включится контактор 1К, а потом отключится контактор 2К, потому что при включении контактора 1К его блок-контакт 13-17 размыкает цепь катушки 2К.

Таким образом, рассмотренная схема относится к категории схем из самовозвратом.

Необходимо подчеркнуть, что такое самовозвратом не всегда допустимая, особенно в сложных сетях высокого напряжения. В этих случаях схема возвращается в исходное положение после ряда предыдущих операций, осуществляемых вручную или с помощью телемеханики.

Если переключатель ПП занимает положение АВР-2, то рабочей является Линия №2, а резервная - Линия №1. Катушка контактора 2К включена по цепи 11-17-0, тем временем как катушка контактора К1 отключена блоком-контактом 2К 3-7. При исчезновении напряжения на Линии №2 автоматически включается Линия №1 аналогично описанному выше.

Работа схемы на местном (ремонтному, «ручному») управлении. В положении переключателя Мест цепи АВР разомкнуты. Контактор 1К руководствуется выключателем 1В по цепи 1-5-7-0, контактор 2К. - выключателем 2В по цепи 11-15-17-0. Этот режим предвиден для испытания и проверок действия всего устройства потом или ремонту налаживания, а также на случай неисправности в цепях автоматического управления.

Наконец, положение переключателя 0 отвечает полному отключению как главных цепей, так и цепей управления, что необходимо при ремонтных работах.

Предупредительная сигнализация. Действие АВР возобновляет питание электроустановки по резервной линии, но вместе с тем свидетельствует о нарушении нормального режима работы и необходимости принять меры к устранению причины, что вызывало действие АВР. Поэтому нужно немедленное оповещение дежурного персонала пункта, в ведении которого находится электроустановка, о переключении. Для оповещения служит предупредительная сигнализация, которая особенно необходима для полностью автоматизированных установок, которые работают без дежурного персонала, где ненормальность в питании, которое вызывало действие АВР, может оставаться незамеченной очень долгое время.

Для предупредительной сигнализации используется третий полюс переключателя режимов ПП, через который включенные блоки-контакты 1К и 2К. Схема работает таким способом. При нормальном питании шин цепь предупредительной сигнализации разомкнута.

При автоматическом переключении введений в положение переключателя ПП АВР-1 Линия №2 включится, блок-контакт 2К замкнется, благодаря чему на дежурный пункт подается предупредительный сигнал. В положении переключателя АВР-2 при включении Линии №1 цепь предупредительной сигнализации защелкивающаяся блоком-контактом 1К.

Аварийная сигнализация. Оповещение о полном отключении установки выполняет аварийная сигнализация. Для аварийной сигнализации, которая действует при отсутствии напряжения на обеих линиях, используется специальная цепь с включенными последовательно блоками-контактами контакторов обеих линий. Если хотя бы одна из линий находится в рабочем состоянии, то цепь аварийной сигнализации прервана соответствующим блоком-контактом 1К или 2К. При исчезновении напряжения на обеих линиях оба блоки-контакта окажутся замкнутыми и по цепи аварийной сигнализации будет поданный сигнал на дежурный пункт.

Важное замечание. Рассмотренная схема, так же как рассмотрена ниже схема с контролем обрыва фаз, допускает возможность одновременного питания шин по двум линиям в течение очень короткого времени, необходимого для процесса переключения. Хотя это время вычисляется долями секунды, однако для обеих линий должны быть соблюденные условия рівнобіжної работы (тот же вид тока - постоянный или переменный, равенство напруг, соблюдение фаз).

Схема АВР в трехфазных сетях переменного тока к 380/220В с контролем обрыва фаз (рис. 3) применяется в случаях, когда возможен обрыв одной или двух фаз без отключения всей питательной линии.

Наиболее часто это возникает в электросетях, защищенных плавкими предохранителями, когда короткое замыкание или перегрузка вызывает перегорание предохранителя лишь в одной или двух фазах. Аналогичное явление возможно при обрыве одного или двух проводов в результате ветра, гололеда, неосторожность обслуживающего персонала и тому подобное

Как и в схеме на рис. 2, шины электроустановки получают независимое одно от одного питания по двум трехфазным линиям, одна из которых является рабочей, а вторая резервной. На введениях линий устанавливаются магнитные пускатели или трехполюсные контакторы.

Выбор режима осуществляется с помощью переключателя режимов ПП, что выполняет той же функции, что и в описанной выше схеме.

Реле контроля обрыва фаз. Для контроля обрыва фаз служит специальное реле типа Е-511 Киевского завода реле и автоматики. Оно состоит из двух электромагнитных реле напряжения: основного реле 2ПП для линии №1 (4ПП для линии №1) и вспомогательного реле 1ПП (3ПП), а также содержит конденсаторы C1, С2 и активные опоры R1 и R2. Как видно из схемы, конденсатор C1 и сопротивление R1 соединены последовательно и включены между фазами А1 и В1 линии №1 (А2, В2 линии №2). Конденсатор С2 и сопротивление R2 также соединены последовательно и присоединены между фазами В1 и С1 (У2, С2).

Величины сопротивлений и конденсаторов подобраны таким образом, что при отсутствии обрыва фаз (нормальный режим) между точками X1 и Y1 для реле линии №1 (Х2 и Y2 для реле линии №2) напряжение равняется нулю. Следовательно, реле 1ПП (3ПП, проходит между точками X1 и Y1 (X2 и Y2), отпущенный и его контакт в цепи реле 2ПП (4ПП) замкнут: реле 2ПП (4ПП) притянуто.

При обрыве одной из фаз симметрия напряжений нарушается. Вследствие этого между точками X1 и Y1 (Х2 и Y2) возникает разница потенциалов, достаточная для срабатывания реле 1ПП (3ПП). При срабатывании реле 1ПП (3ПП) его контакт размыкает цепь катушки реле 2ПП (4ПП), реле отпускает, что, как будет объяснено ниже, приводит к действию АВР.

Рис. 3. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В с контролем обрыва фаз. Пунктирными линиями обведенные элементы, которые входят в состав реле типа Е-511.

При обрыве двух фаз, например А1 и В1, реле 2ПП также отпускает, потому что оно остается присоединенным только к одной фазе С1. При обрыве фаз У1 и С1 реле 2ПП отпускает, потому что остается присоединенным только на одной фазе А1. И, наконец, при обрыве фаз А1 и С1 реле 2ПП полностью избавляется от питания.

Взаимодействие реле обрыва фаз с схемой АВР. Для приведения схемы в рабочее состояние необходимо переключатель режимов ПП установить в положение АВР-1, а потом включить рубильник 1P. При этом реле 2ПП сработает и включит катушку контактора 1К: на шины будет поданное напряжение от линии №1. Потом нужно включить рубильник 2Р. При включении рубильника 2Р контактор 2К не включится, потому что цепь его катушки уже разомкнута блоком-контактом 11-13 включенного ранее контактора 1К, но реле 4ПП сработает и замкнет свой контакт 15-13.

При перегорании предохранителей и обрыве проводов в одной, двух или трех фазах линий № 1 реле 2ПП отпустит и контактом 1-3 отключит контактор 1К, после чего через блок-контакт, который замкнулся, 1К 11-13 включится контактор 2К: питание шин возобновится от линии №2.

При возобновлении нормального питания по линии №1 схема автоматически вернется в первобытное положение: включится контактор 1КО, после чего отключится контактор 2К.

В положении переключателя ПП АВР-2 будут происходить аналогичные переключения.

Необходимо особенно подчеркнуть следующее:

а) В процессе возобновления питания после действия АВР обе линии кратковременно оказываются соединенными через шины.

б) При переключении переключателя ПП из положения АВР-1 (АВР-2) в положение АВР-2 (АВР-1) возможный перерыв питания шин на время, необходимое для включения контактора 2К (1К).

в) Прежде чем переводить схему на местное управление, необходимо включить выключатель 1В или 2В в зависимости от того, какая линия должна будет продолжать питать шины.

Причины применения в схеме реле типа Е-511. Реле типа Е-511, как видно из приведенного выше описания, являет собой сравнительно сложное устройство, и, естественно, возникает вопрос: или нельзя контролировать обрыв фаз более простыми средствами. Ответ дает рис. 4. На нем показано, что в системах трехфазного переменного тока при наличии присоединенных к сети электродвигателей обрыв одной фазы не вызывает полного отсутствия напряжения в этой фазе со стороны нагрузки. Некоторая часть напряжения в оборванной фазе Uост будет поддерживаться через обмотки неотключенного электродвигателя, и она достаточно большая, чтобы удерживать притянутым якорь простого промежуточного реле (какое с целью осуществления контроля за обрывом фазы должно было бы отпустить). Выходит, контроль даже с помощью трех промежуточных реле не достигает цели.

Рис. 4. Недопустимость контроля обрыва фаз тремя промежуточными реле.

а - при соединении обмоток электродвигателя в звезду; бы - при соединении в треугольник.

Надежный контроль обеспечивается или тремя реле минимального напряжения, значительно более чувственными, чем промежуточные реле, или специальным реле, например типа Е-511.

Для обеспечения надежной работы многих стационарных устройств необходимо применять резервное питание. Чаще всего для этих целей устанавливают аккумулятор, но за ним надо следить, не допуская сильного разряда и вовремя ставить на подза- ряд. Удобнее эту обязанность поручить автоматике.

Для подзаряда аккумулятора необходимо соответствующее устройство (внутреннее или внешнее). Зарядное устройство можно выполнить в составе системы бесперебойного питания и полностью автоматизировать процесс, т. е. оно может включаться при снижении напряжения на аккумуляторе ниже порогового уровня , или же применить «плавающий» подзаряд . Под плавающим зарядом подразумевают подключение аккумулятора параллельно с нагрузкой (рис. 2.18), когда источник питания служит только для компенсации токов саморазряда в элементах питания. В этом случае схема получается наиболее простой.

В этих схемах поступающее напряжение с трансформатора выбирается таким, чтобы зарядный ток, проходящий через аккумулятор, компенсировал ток естественного саморазряда. Нужное напряжение после выпрямителя можно подобрать экспериментально установкой дополнительных диодов или с помощью отводов от вторичной обмотки трансформатора (у некоторых унифицированных трансформаторов, например из серии TH, ТПП и др., есть возможность немного изменить напряжение во вторичной цепи за счет переключения отводов в первичной обмотке). При этом контролируем ток в цепи аккумулятора по амперметру. Обычно значение тока «плавающего» подзаряда не должно превышать 0,005…0,01 номинального для аккумулятора. Уменьшение тока заряда приводит только к увеличению продолжительности процесса (в данном применении время заряда значения не имеет - оно всегда будет достаточным).

Такие схемы можно применять, если ваша сеть достаточно стабильна и питающее напряжение не выходит за рамки допуска

Рис. 2.18. Схемы, обеспечивающиеплавающийподзаряд аккумулятора резервного питания

(в крупных городах за этим следят). В противном случае между трансформатором и аккумулятором устанавливается стабилизатор напряжения и диод, препятствующий прохождению тока аккумулятора в стабилизатор, когда трансформатор не включен (рис. 2.19). Микросхема KP142EH12 может быть заменена аналогичной импортной LM317.

Рис. 2.19. Схема зарядного устройства со стабилизатором напряжения

Более совершенная схема зарядного устройства приведена на рис. 2.20. Она не только поддерживает стабильное напряжение на

аккумуляторе, но и имеет настраиваемую токовую защиту, которая предотвращает повреждение элементов в случае короткого замыкания на выходе (или неисправности аккумулятора). Ограничение тока полезно и в тех случаях, когда подключается новый аккумулятор (еще не заряженный или сильно разряженный ранее). В этом случае ограничение тока на нужном уровне предотвращает перегрузку питающего сетевого трансформатора (он может быть маломощным - 14…30 Вт, так как в режиме «Тревога» необходимый ток вполне может обеспечить сам аккумулятор). Кроме того, внутри микросхемы есть температурная защита, отключающая ее выход при перегреве, что исключает повреждение компонентов.

Для сборки устройства можно воспользоваться односторонней печатной платой из стеклотекстолита, показанной на рис. 2.21, ее внешний вид приведен на рис. 2.22.

При монтаже применялись детали C1 - любой оксидный, С2-С4 - из серии K10. Подстроечный резистор R4 - многооборотный СП5-2В. В качестве микросхемы можно использовать любые из серии K142EH3 или K142EH4 - они имеют планарные выводы. Для установки микросхемы со стороны печатных проводников, в плате сделано окно размером 15 x 10 мм и отверстия для ее крепления. Между пластиной теплоотвода микросхемы и платой подкладываются диэлектрические шайбы так, чтобы выводы легли прямо на токопроводящие дорожки. Это позволит ко всей плоскости микросхемы закрепить отводящую тепло пластину.

Рис. 2.21. Топология печатной платы и расположение элементов

Рис. 2.22. Внешний вид монтажа элементов на плате

Трансформатор (T1) можно заменить на ТП115-K9 - он имеет 2 обмотки по 12 В с допустимым током до 0,8 А. В холостом ходу на обмотке будет напряжение 16 В, а после выпрямления и сглаживания конденсатором - 19 В, что вполне достаточно для работы стабилизатора (основную часть времени схема будет работать как раз в режиме хрлостого хода).

Работающая аналогично еще одна схема приведена на рис. 2.2,3- Основой ее является микросхема L200 (отечественных аналогов нет), имеющая выводы (2 и 5) для контроля тока в нагрузке. Приреденное включение микросхемы является типовым: от номинала резистора В2 зависит максимальный ток в цепи нагрузки (Lax = 0,45/R2), а нужное напряжение выставляется резистором R3. Стабилизатор может обеспечить выходной ток от 0,1 до 2 А и имеет внутреннюю защиту от перегрева.

Рис. 2.23. Второй вариант схемы зарядного устройства с ограничением тока

Для монтажа элементов второй схемы зарядного устройства можно воспользоваться печатной платой, показанной на рис. 2.24.

О настройке всех схем со стабилизацией. Вам потребуется миллиамперметр, вольтметр (лучше цифровой) и имитирующий нагрузку мощный резистор. Все это соединяется no схеме, показанной на рис. 2.25.

Сначала при отключенном аккумуляторе соответствующим подстроечным резистором выставляем на выходе стабилизатора напряжение 13 В, После этого переключателем S1 включаем резистор RH и проверяем ток ограничения. Его можно установить любым при помощи подбора резистора токовой обратной связи - R3 в схеме рис. 2.20 (например, для тока 220 мА - R3 = 3,9 Ом; для 300 мА - R3 = 3,3 Ом) или R2 в схеме на рис. 2.23.

Рис. 2.24. Топология печатной платы и внешний вид монтажа

Рис. 2.25. Стенддля настройки и проверки зарядногоустройства

Теперь вместо резистора RH подключаем аккумулятор GB1. Необходимый ток в цепи заряда (для энергоемкости конкрегного аккумулятора) устанавливаем подстройкой выходного напряжения. Окончательную установку следует делать уже после того, как аккумулятор полностью зарядится - этот ток должен компенсировать саморазрядОВ1.

Дополнительная литература

1. Кадино Э. Электронные системы охраны. Пер. с франц. - M.: ДМК Пресс, 2001,c. 11.

2. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 1. - M.: СОЛОН-Пресс, 2003, с. 84.

3. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 3. - M.: СОЛОН-Пресс, 2003, с. 133.

4. Сайт фирмы: http://www.dart.ru/index5.shtml?/cataloguenew/acoustics/oscillator.shtml

5. ХрусталевД. А. Аккумуляторы. - M.: Изумруд, 2003.

Могла сработать только тогда, когда пропадало напряжение основного источника, от понижение или повышения напряжения защитить нагрузку не могло. В новом варианте устройства были исправлены эти недочёты, а именно:

  1. Устройство не переключит нагрузку на резервный источник питания при наличии даже пониженного напряжения основного источника.
  2. Устройство не способно работать при напряжении менее 6-ти вольт.

    Устройство не защитит нагрузку при повышении напряжения сверх допустимой величины.

Новый вариант устройства обладает значительно улучшенными характеристиками.

    Способно работать при входном напряжении основного источника от 6 до 15 в.

    Защита нагрузки от пониженного или повышенного напряжения. Для контроля напряжения основного источника используются два компаратора. При отключении основного источника напряжения, работа устройства аналогична его предыдущей версии.

    Ток потребляемый нагрузкой ограничен только максимальным током, который могут выдержать контакты применяемого электромагнитного реле.

Питается устройство от резервного источника питания на 12 в и потребляет ток около 100 ма, в случае если напряжение основного источника меньше 12-ти вольт, нужно применить стабилизатор и включить его в разрыв показанный на схеме, а также установить пороги срабатывания защиты построечными резисторами.

Работа устройства

Напряжение основного источника поступает на резисторы R6 и R12 с которых напряжение поступает на входы компараторов, где сравнивается с напряжением поступающим со стабилизатора VR1. Отдельный стабилизатор VR1 применён для того, чтобы при изменении величины напряжения резервного источника питания не менялись пороги срабатывания защиты. Кратко опишу для чего предназначены эти подстроечные резисторы. Резистор R12 отвечает за срабатывание защиты при падении напряжения ниже минимального порога, который этим резистором выставляется. В моём случае этот порог 10.5 вольт и для того, чтобы его выставить, нужно при входном напряжении 10.5 вольт с помощью этого резистора выставить на выводе 7 компаратора напряжение 1.3в, что ниже порога срабатывания компаратора, так как на 6 ноге микросхемы напряжение 1.65 вольта, сразу же сработает защита. Резистор R6 отвечает за срабатывание защиты в случае критического повышения напряжения основного источника. В моём случае величина максимального напряжения установлена на уровне 13 вольт. При этом напряжении резистором R6 необходимо выставить на 5-й ноге микросхемы напряжение 4 вольта, что приведёт к срабатыванию защиты и переключению нагрузки на резервный источник. Благодаря этим резисторам защита срабатывает при понижении напряжения до 10.5 вольт, или повышении до 13.

Самой интересной частью схемы является узел собранный на микросхемах DD1 и DD2. Он собственно и является схемой защиты. Два входа этого узла подключены к компараторам, но для того, чтобы на выводе 8 микросхемы DD1 появился уровень логической 1 и сработала защита должны быть созданы определённые условия. Данный узел интересен ещё и тем, что логическая единица на выходе 8 DD1.1 появится при наличии одинаковых логических состояний на входах, либо два 0 , либо две 1. Если на одном входе будет 1, а на другом 0, то защита не сработает.

Работает схема защиты следующим образом. При нормальном входном напряжении основного источника работает только компаратор DA1.2, так как напряжение выше минимального порога отключения и следовательно открытый выходной транзистора компаратора DA1.2 замыкает выводы 4 и 5 элемента DD2.4 на массу, что аналогично состоянию логического 0, а на входах 1 и 2 элемента DD2.3 действует напряжение около 4.5 - 5 вольт, что аналогично состоянию логической 1, так как напряжение не достигает 13 вольт и компаратор DA1.1 не работает. При таком условии защита не сработает. При повышении напряжения основного источника до 13 вольт начинает работать компаратор DA1.1, открывается выходной транзистор и замыкая входы 1 и 2 DD2.3 на массу принудительно создаёт уровень логического 0, тем самым на обоих входах принудительно появляется уровень логического 0 и срабатывает защита. Если напряжение упало ниже минимального порога, то напряжение подводимое к 7-й ноге компаратора падает до уровня ниже 1.65 вольта, выходной транзистор закроется и перестанет замыкать входы 4 и 5 элемента DD2.4 на массу, что приведёт к установлению на входах 4 и 5 напряжения 4.5 - 5 вольт(уровень 1). Поскольку DA1.1 уже не работает и DA1.2перестал, то создаётся условие при котором уровень логической единицы появится на обоих входах узла защиты и она сработает. Подробнее работа узла показана в таблице. В таблице показаны логические состояния на всех выводах микросхем.

Таблица логических состояний элементов узла.

Налаживание устройства

Правильно собранное устройство требует минимальной наладки, а именно установки порогов срабатывания защиты. Для этого необходимо вместо основного источника напряжения подключить к устройству регулируемый блок питания и с помощью подстроечных резисторов выставить пороги срабатывания защиты.

Внешний вид устройства

Расположение деталей на плате устройства.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1, DD2 Логическая ИС

К155ЛА3

2 В блокнот
DA1 Компаратор

LM339-N

1 В блокнот
VR1, VR2 Линейный регулятор

LM7805

2 В блокнот
VT1 Биполярный транзистор

КТ819А

1 В блокнот
Rel 1 Реле RTE24012 1 В блокнот
R1 Резистор

3.3 кОм

1 В блокнот
R2, R3 Резистор

1 кОм

2


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: