Функция одной переменной и её характеристики. Учебное пособие по Математическим методам в географии

Рассмотрим сначала понятие переменной величины, или просто переменной.

Переменная величина х определяется множеством тех значений, которые она может принять в рассматриваемом случае. Это множество X назовем областью изменения значений переменной x .

Главным предметом изучения в математике является, однако, не изменение одной переменной самой по себе, а зависимость между двумя или несколькими переменными при их совместном изменении. Во многих случаях переменные не могут принимать любую пару значений из своих областей изменения; если одной из них придано конкретное значение, то этим уже определяется и значение другой. Тогда первая из них называется независимой , а вторая – зависимой переменной.

Пусть даны две переменные x и y с областями изменения X и Y . Если при этом каждому элементу x X по определенному правилу f поставлен в соответствие единственный элемент y Y , то говорят, что на множестве X задана функция y = f (x ).

Ясно, что при этом переменная x является независимой переменной. Ее часто называют аргументом функции.

Переменная y является зависимой переменной и называется значением функции, или просто функцией .

Множество X называется областью определения функции, а множество Y - областью ее значений .

Существует ряд способов задания функции:

а) наиболее простой - аналитический способ, т. е. задание функции в виде формулы. Если область определения функции X при этом не указана, то под X подразумевается множество значений x , при которых формула имеет смысл;

б) графический способ. Этот способ особенно нагляден. Для функции одной переменной y = f (x ) используется координатная плоскость (xy ).

Совокупность точек y , соответствующих заданным значениям x , определяет график функции на плоскости (xy );

в) табличный способ. Он часто используется, когда независимая переменная x принимает лишь конечное число значений.


5.2. Основные свойства функций

Рассмотрим основные свойства функций, которые упрощают проведение их исследования:

Четность. Функция y = f (x ) называется четной , если для любого значения x , принадлежащего области определения функции X , значение (–x ) тоже принадлежит X и при этом выполняется

f (–x ) = f (x ).

График четной функции симметричен относительно оси ординат.

Функция y = f (x ) называется нечетной , если для любого x X следует (–x ) X и при этом

f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат.

Если функция y = f (x ) не является ни четной, ни нечетной, то ее часто называют функцией общего вида .

Монотонность. Функция y = f (x ) называется возрастающей на некотором интервале (a , b ), если для любых x 1 , x 2 (a , b ), таких,

что x 1 < x 2 , следует, что f (x 1) < f (x 2), и убывающей , если f (x 1) > f (x 2).

Возрастающую и убывающую на интервале (a,b ) функции называют монотонными на этом интервале, а сам интервал (a,b ) - интервалом монотонности этих функций.

В некоторых учебниках такие функции называют строго монотонными , а монотонными называют неубывающую и невозрастающую на рассматриваемом интервале функции (вместо строгих неравенств для функций пишутся нестрогие).

Ограниченность. Функция y = f (x ) называется ограниченной на интервале (a , b ), если существует такое число С > 0, что для любого x (a , b ) следует |f (x )| < C , и неограниченной в противном случае, т. е. если для любого числа C > 0 существует такой x (a , b ), что |f (x )| > C. На рис. 5.1 показан график функции, ограниченной на интервале (a , b ).

Аналогичное определение ограниченности можно дать для любого вида промежутка.

Периодичность. Функция y = f (x ) называется периодической , если существует такое число t , что для любого x X выполняется

f (x + t ) = f (x ).

Наименьшее из таких чисел t называется периодом функции и обозначается Т .

Характерным признаком периодичности функций является наличие в их составе тригонометрических функций.

5.3. Элементарные функции и их графики

К элементарным функциям относятся:

а) простейшие элементарные функции

1. Константа y = c , где с - постоянное для данной функции действительное число, одно и то же для всех значений x .


2. Степенная функция , где - любое постоянное действительное число, кроме нуля. Вид графиков функций при некоторых целых положительных ( = n ), целых отрицательных ( = –n ) и дробных ( = 1/n ) значениях представлен ниже.


4. Логарифмическая функция y = log a x (a > 0; a 1).


5. Тригонометрические функции : y = sin x , y = cos x , y = tg x , y = ctg x .


6. Обратные тригонометрические функции .

y = arcsin x y = arccos x


y = arctg x y = arcctg x


б) сложные функции

Кроме перечисленных простейших элементарных функций аргумента x к элементарным функциям также относятся функции, аргументами которых являются тоже элементарные функции, а также функции, полученные путем выполнения конечного числа арифметических действий над элементарными функциями. Например, функция

тоже является элементарной функцией.

Функции, аргументами которых являются не независимые переменные, а другие функции, называются сложными функциями или суперпозициями функций. Пусть даны две функции: y = sinx и z = log 2 y . Тогда сложная функция (суперпозиция функций) может иметь вид

z = log 2 (sin x ).

Также можно ввести понятиеобратной функции .Пусть y = f (x ) задана в области определения X , а Y - множество ее значений. Выберем какое-нибудь значение y = y 0 и по нему найдем x 0 так, чтобы y 0 было равно f (x 0).Подобных значений x 0 может оказаться и несколько.

Таким образом, каждому значению y из Y ставится в соответствие одно или несколько значений x . Если такое значение x только одно, то в области Y может быть определена функция x = g (y ), которая называется обратной для функции y = f (x ).

Найдем, например, обратную функцию для показательной функции y = a x . Из определения логарифма следует, что если задано значение y , то значение x , удовлетворяющее условию y = a x , находится по формуле x = log a y . То есть каждому y из Y можно поставить в соответствие одно определенное значение x = log a y .

Следовательно, функция x = log a y является обратной для функции y = a x на множествах X и Y . Так как принято у любой функции независимую переменную обозначать x , то в этом случае говорят, что y = f (x ) и y = g (x ) - обратные функции.

Графики функции y = f (x ) и обратной ей функции y = g (x ) симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Повторим понятия функции и её свойства, которые нам потребуются для дальнейшего изложения материала.

Определение. Функция F (X ) представляет собой правило, которое позволяет каждому значению хХ поставить в соответствие единственное значение Y = F (X )У, где х - независимая переменная (аргумент), Y - зависимая переменная (значение функции). Говорят, что функция F имеет Область определения D (F )= X и Область значений R (F ) Y .

Определение. Множество пар {(X , F (X )): XD (F )} называется Графиком функции F .

Существует три основных способа задания функции:

 при Аналитическом способе задания функции зависимость между переменными определяется формулой;

 при Табличном способе задания функции выписываются в определенном порядке значения аргумента и соответствующие значения функции;

 при Графическом способе задания функции зависимость между переменными отражается с помощью графика.

Рассмотрим некоторые функциональные зависимости, используемые в экономике:

Функция спроса - зависимость спроса D на некоторый товар от его цены P ;

Функция предложения - зависимость предложения S некоторого товара от его цены P ;

Функция полезности - субъективная числовая оценка данным индивидом полезности И и количества Х товара для него;

Функция издержек - зависимость издержек I на производство Х единиц продукции;

Налоговая ставка - зависимость налоговой ставки N в процентах от величины годового дохода Q .

Все эти функции, кроме последней, весьма трудно выразить аналитически. При необходимости их находят путем кропотливого анализа. Последняя же функция, напротив, обычно довольно хорошо известна всему обществу и законодательно утверждена.

Определение. Функция F ( X ) имеет предел B , когда х стремится к а, если значения F (X ) сколь угодно близко приближаются к числу B , когда значения переменной х сколь угодно близко приближаются к числу а.

Обозначение. .

Следует отметить, что в этом определении рассматриваются значения Х , сколь угодно близкие к числу А , но не совпадающие с А .

Определение. Если функция F (X ) определена в точке а и выполняется равенство , то F (X ) называется непрерывной функцией в точке а.

Определение. Функция, непрерывная в каждой точке своей области определения, называется Непрерывной функцией . В противном случае функцию называют Разрывной .

График непрерывной функции можно начертить без отрыва руки.

Непрерывные функции обладают следующими свойствами:

 сумма или произведение непрерывных функций является непрерывной функцией;

 отношение двух непрерывных функций является функцией непрерывной во всех точках, в которых знаменатель отношения не обращается в нуль.

Замечание. Метод, эффективный при анализе непрерывных функций, может оказаться неэффективным при исследовании разрывных функций, хотя обратное не исключается .

Определение. Функция F (X ) называется Возрастающей (убывающей) на множестве X , если из того, что X 1 < X 2 вытекает, что F (X 1 )< F (X 2 ) (F (X 1 )> F (X 2 )). Функция F (X ) называется Неубывающей (невозрастающей) на множестве X , если из того, что X 1 X 2 , X 1 , X 2 X вытекает, что F (X 1 ) F (X 2 ) (F (X 1 ) F (X 2 )).

Теорема. Пусть функция F (X ) дифференцируема на интервале (A , B ). Тогда:

Если первая производная функции Всюду на этом интервале, то функция возрастает на нем;

Если первая производная всюду на этом интервале, то функция убывает;

Первая производная Всюду на этом интервале, то функция постоянна на этом интервале.

Определение. Возрастающие, убывающие, неубывающие, невозрастающие функции называются Монотонными.

Замечание. Монотонная функция не обязательно должна быть непрерывной.

Пример 1. Найти интервалы монотонности функции F (X )=(1- X 2 )3 .

. Находим производную: Решим уравнение . Получим Х1=0, х2=1, х3=-1 . Функция F (X ) определена и непрерывна на всей числовой оси. Поэтому точки Х1, х2, х3 являются критическими точками. Других критических точек нет, так как существует всюду.

Исследуем критические точки, определяя знак слева и справа от каждой этой точки. Для сокращения вычислений и для наглядности это исследование удобно записать в виде табл. 1:

Таблица 1

F (X )

Возр.

Возр.

Убыв.

Убыв.

В первой строке помещены все критические точки в порядке расположения их на числовой оси; между ними вставлены промежуточные точки, расположенные слева и справа от критических точек. Во второй строке помещены знаки производной в указанных промежуточных точках. В третьей строке - заключение о поведении функции на исследуемых интервалах. На интервале (-; 0) функция возрастает, на интервале (0; +) функция убывает.

Определение. Функция F (X ) является Унимодальной на отрезке [ A , B ] в том и только в том случае, если она монотонна по обе стороны от единственной на рассматриваемом интервале оптимальной точки х*.

Пример 2. Приведем примеры графиков унимодальных функций:

 на рис. 6 непрерывная функция;

 на рис. 7 - разрывная функция;

 на рис. 8 - дискретная функция.

Множество функций, унимодальных на отрезке [ A ; B ] , будем обозначать

Q [ A ; B ] .

Для проверки унимодальности функции F (X ) на практике обычно используют следующие критерии:

1) если функция F (X ) дифференцируема на отрезке [ A ; B ] и производная Не убывает на этом отрезке, то F (X ) Q [ A ; B ] ;

2) если функция F (X ) дважды дифференцируема на отрезке [ A ; B ] и При Х[ A ; B ] , то F (X ) Q [ A ; B ] .Х=-0,5 . Следовательно, Если Х-0,5 и, в частности, при Х. Используя второй критерий унимодальности, получаем, что F (X ) Q .

Определение. Рассмотрим множество SR . Мы можем определить соответствие, с помощью которого каждой точке XS приписывается единственное числовой значение. Такое соответствие называется Скалярной функцией F , определенной на множестве S .

Определение. В теории оптимизации F называется Целевой функцией , а S - Допустимой областью , множеством точек, удовлетворяющих ограничениям, или областью допустимых значений х .

Если каждому элементу х множ-ва Х (х є Х) ставится в соответствие вполне определённый элемент у множ-ва У (у є У), то говорят, что на множ-ве Х задана функция у = f(x). При этом х назыв. независимой переменной (или аргументом), у – зависимой переменной, а буква f обозначает закон соответсвия. Множ-во Х назыв. областью определения, а множ-во У – областью значений функции.

Способы задания фун-ий.

а)аналитический, если фун-ия задана формулой у = f(x)

б)табличный способ. Состоит в том, что фун-ия задаётся таблицей, содержащей значения аргумента х и соответствующие значения фун-ии f(x).

в)графический. Состоит в изображении графика фун-ии – множества точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения фун-ии f(x).

г)логический

3 . Односторонний предел. Существование предела в точке.

Число назыв. односторонним пределом слева фун-ии f(x) в точке сгущения x 0, если для ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0

∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0 ∃δ>0, такое,что х ∈[ x 0, x 0 + δ) =>

Сущ-ие предела в точке. Число А назыв. пределом фун-ии f(x) при х, стремящемся к х 0 (или точке х 0), если для любого, даже сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющее условию , выполняется неравенство

Обозначается или

2. Предел функции и его свойства.

Предельной точной сгущения множества A называется точка x 0 , если в любой окрестности этой точки найдутся такие множества, отличные от x 0 .

Определение предела по Коши. Функция y=f(x), определенная в A, имеет предел С в точке сгущения x 0 , если ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0) ∪(x 0 , x 0 +δ) ⇒ f(x)∈(C-ε, С+ε). Существование предела записывают в виде lim x → x 0 f(x)=C или |x-x 0 |<δ⇒|f(x)-C|< ε.

Определение предела по Гейне. Если для различных последовательностей {x n }, стремящихся к x 0 , последовательность значений функции {f(x n)} сходится к некоторому числу C, то это число называется пределом функции f(x).

Определение Коши используется для обоснования существования предела, а опред-ие Гейна – для обоснования отсутствия предела.

Свойства предела: предел единственен и фун-ия в некоторой окрестности предельной точки ограничена.

1)Предел постоянной величины

Предел постоянной величины равен самой постоянной величине.

Функция одной переменной

Функции одной переменной.

Введение

В математике основополагающими понятиями являются понятие множества, элемента множества. Математический анализ имеет дело, в основном, с числовыми множествами.

В дальнейшем будем использовать следующую символику:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел;

R - множество действительных чисел;

С – множество комплексных чисел;

Î - знак принадлежности: х Î Х – элемент х принадлежит множеству Х, х Ï Х – х не принадлежит множеству Х;
Ì - знак включения: Х Ì У – множество Х есть подмножество У;
È - знак объединения: Х È У – множество, элементы которого принадлежат Х или У;
Ç - знак пересечения множеств: Х Ç У – множество, элементы которого принадлежат и Х и У одновременно;
\ - знак вычитания множеств: Х \ У – множество, состоящее из элементов множества Х, не принадлежащих У;
" - квантор всеобщности, читается: «для любого», «для всех», «каждый», «всякий» и т. п. ;
$ - квантор существования, читается: «существует», «найдется»;
Ù - логическое «и» (конъюнкция);
Ú - логическое «или» (дизъюнкция);
Þ - знак следствия, читается: «следует», «выполняется», «влечет за собой»;
Û - знак эквивалентности, читается: «тогда и только тогда», «необходимо и достаточно»;
| или: - знаки описания (расшифровки), читаются: «такой, что...», «для которых выполняется...», и т. п.

Например, символьная запись "х ÎN $ y ÎN: (y > x Ú y < x ) читается «для любого натурального числа х найдется натуральное число у такое, что либо y > x , либо y < x ».

Как известно, каждому действительному числу ставится в соответствие единственная точка на числовой прямой. Поэтому в дальнейшем договоримся отождествлять термины «действительное число» и «точка» числовой прямой. Для числовых промежутков будем использовать следующие обозначения:

[a ; b ] или a £ x £ b – замкнутый промежуток или отрезок с началом в точке а и концом в точке b ;


(a ; b ) или a < x < b – открытый промежуток или интервал ;


(a ; b ] или a < x £ b ,

[a ; b ) или a £ x < b

– полуоткрытые промежутки или полуинтервалы;

[a ; +¥) или x ³ a , (–¥; b ] или x £ b – лучи;

(a ; +¥) или x > a , (–¥ ; b ) или x < b – открытые лучи;

(–¥ ; +¥) или –¥ < х < +¥ – координатная прямая (множество R действительных чисел).

В науке и практике приходится иметь дело с разного рода величинами. Одни из них в конкретных условиях остаются неизменными (постоянными), другие – меняются (переменные). Например, объем аудитории, банки – постоянны, а объем воздушного шарика – переменный.

В математическом анализе нас будет интересовать только численное выражение той или иной величины, а не ее природа, т.е. будем рассматривать абстрактные величины. Поэтому, постоянной величиной мы будем называть ту величину, которая принимает фиксированное, конкретное (пусть даже неизвестное) значение. Обозначать это будем: х – const. Чаще всего постоянные обозначают начальными буквами латинского алфавита: a , b , c , ... или греческими a, b, e, l, ... .

Переменной величиной считаем ту, которая может принимать произвольные числовые значения из некоторого множества чисел. Обозначают переменные чаще всего буквами конца латинского алфавита: х , у , z , t ,... . Множество, из которого переменная величина принимает значения, называют областью определения этой переменной и пишут: x ÎD.

Функция одной переменной

Наряду с понятием множества и элемента множества, к основным понятиям математики относят и понятие соответствия. Определенный вид соответствий носит название функции.

Пусть заданы множество Х с элементами х и множество У, состоящее из элементов у (множества Х и У – не пустые, элементы их могут быть любой природы).

Определение 1.1 Если каждому элементу х ÎХ по некоторому закону (правилу) f поставлен в соответствие единственный элемент у Î У, то говорят, что на множестве Х задана функция y = f (x ), х ÎХ или отображение f : Х → У множества Х в множество У.

При этом принята терминология:

х – независимое переменное, или аргумент,

Х – область определения функции, а каждый элемент х ÎХ – значение аргумента,

у – зависимое переменное, или функция от аргумента х ,

У – область значений функции, а каждый элемент у ÎУ такой, что
y
= f (x ) для некоторого х ÎХ, называется значением функции.

В зависимости от множеств Х и У, функции имеют специфические названия и обозначения:

если Х, У – подмножества множества действительных чисел R, то функция у = f (x ) называется действительной функцией действительного аргумента или функцией одной переменной;

если ХÌR, УÌС – комплексная функция действительного аргумента, обозначается z = f (x );

если ХÌС, У ÌС – комплексная функция комплексного аргумента, обозначается w = f (z );

если ХÌN, УÌR – функция натурального аргумента или последовательность у п = f (п );

если ХÌR 2 (т.е. множество точек (x , у ) плоскости), УÌR, z ÎУ – действительная функция двух переменных z = f (x , у );

если ХÌR п (п -мерное арифметическое пространство), УÌR – действительная функция п переменных и = f (x 1 ,х 2 , …, х п ). Эту и перечисленные выше функции называют числовыми функциями;

если ХÌ R, УÌ V 2 (множество геометрических векторов на плоскости) –векторная функция скалярного аргумента, `r (t )= x (t ) +y (t ) ;

если ХÌ R 2 , УÌ V 2 – векторная функция двух скалярных аргументов, `F (x , y ) = P(x , y ) + Q(x , y ) ;

В математическом анализе, в основном, изучаются числовые функции. Рассмотрим сначала действительную функцию одного переменного. Поскольку и аргументом, и функцией при этом является действительная числовая величина, то часто будем употреблять ее в женском роде: независимая переменная, зависимая переменная.

В этом случае определение 1.1 может быть перефразировано так:

Определение 1.2 Если каждому значению переменной х из числового множества ХÌR по некоторому закону f поставлено в соответствие определенное действительное число у , то говорят, что на множестве Х задана числовая функция у = f (x ). При этом х называют независимой переменной (аргументом), у зависимой переменной (функцией), Х – областью определения функции и обозначают Х = D(f ) .

Множество значений, которые принимает у , называется областью значений функции и обозначается Е(f ) . Буква f символизирует то правило, по которому устанавливается соответствие между х и у . Наряду с буквой f используются и другие буквы: y = g (x ), y = h (x ), y = u (x ) . Также функцию можно обозначить z = j(t ), x = f (z ) , s = S (p ) и т. п., т.е. и независимая переменная, и зависимая могут обозначаться любыми буквами латинского алфавита.

Две функции равны тогда и только тогда, когда они имеют одну область определения и при каждом значения аргумента принимают одно и то же значение.

Задать функцию – значит, указать правило, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции.

Основные способы задания функции:

1) Аналитический – с помощью одной или нескольких формул, например

y = sin3x + x 2 , ,

(последние две функции иногда называют кусочно-аналитическими или ступенчатыми функциями). Если функция задана аналитически (формулой), то под областью определения понимают множество значений аргумента х , для которых по заданной формуле можно вычислить соответствующее значение у (т.е. выполнимы все операции, указанные в формуле).

Если в формуле, описывающей функцию, зависимая переменная выражена через независимую переменную, то такая функция называется явно заданной . Приведенные выше функции заданы явно.

Если же равенство, описывающее функцию, не разрешено относительно зависимой переменной, то функция называется неявно заданной , например

х 2 + 3ху у 3 = 1 или ln(x +3y ) = y 2 .

Неявно заданная функция может быть представлена в форме

где t – параметр, принимающий значения из некоторого множества. Такую функцию называют параметрически заданной функцией . Например,

, t Î R определяет функцию у = (х –1) 2 ,

определяет функцию .

Параметрическое задание функции широко применяется в механике: если х = х (t ) и у = у (t ) законы изменения координат движущейся точки, то уравнения определяю траекторию движения.

2) Словесный . Например, «целая часть числа» – наибольшее целое, не превосходящее х . Эту функцию обозначают у = [x ].

3) Табличный . Например

х х 1 х 2 х 3 ...
у у 1 у 2 у 3 ...

Так задаются функции, обычно получаемые по результатам опыта, эксперимента, расчета.

4) Графический.

Определение 1.3. Графиком функции у = f (x ) называется геометрическое место точек координатной плоскости ХОУ с координатами (х , f (x )), где х ÎD(f ).

Изображение функциональной зависимости в виде линии (графика) и является графическим заданием функции . Например, показания осциллографа, электрокардиограмма и т.п. – это графическое представление зависимости между изучаемыми величинами.

Заметим, что для однозначной функции ее график имеет только одну точку пересечения с любой прямой х = а , а Î D(f ).

Свойства функций.

I. Функция у = f (x ), x ÎD, называется ограниченной на множестве D, если существуют действительные числа А, В такие, что " x ÎD выполняется условие A £ f (x ) £ B. График такой функции расположен в некоторой горизонтальной полосе между прямыми у = А и у = В (рис.1а). Если таких чисел А и В не существует, то функция называется неограниченной на множестве D.

Если " x ÎD Þ f (x ) £ B, то функция ограничена сверху (рис.1 б).

Если " x ÎD Þ f (x ) ³ А, то функция ограничена снизу (рис.1в).

Ограниченными в своей области определения являются функции у = sin x и y = cos x , т.к. для всех значений х выполняется

–1 £ sin x £ 1 и –1 £ cos x £ 1.

Функция ограничена сверху, т.к. для всех действительных значений х выполняется условие у £ 1. Примером ограниченной снизу функции служит показательная функция у = , т.к. > 0 для всех действительных значений х .

II. Функция у = f (x ), x ÎD, называется возрастающей , если для любых значений аргумента х 1 , х 2 ÎD таких, что х 1 < х 2 , выполняется условие f (x 1) < f (x 2) (т.е. большему значению аргумента соответствует большее значение функции, Рис.2а).

Функция у = f (x ), x ÎD, называется убывающей , если "х 1 ,х 2 ÎD таких, что х 1 < х 2 , выполняется условие (f (x 1) > f (x 2) (большему значению аргумента соответствует меньшее значение функции, рис.2б). Возрастающие и убывающие функции называются монотонными функциями. Если строгие неравенства заменить нестрогими, то соответственно функция будет называться неубывающей и невозрастающей.



III. Функция у = f (x ), x ÎD, называется четной , если

" х ÎD Þ (–х ÎD и f (–x ) = f (x )).

График четной функции симметричен относительно оси ОУ (рис.3а).

Функция у = f (x ), x ÎD, называется нечетной , если

" х ÎD Þ (–х ÎD и f (–x ) = f (x )).

График нечетной функции симметричен относительно начала координат (рис. 3б).

IV. Функция у = f (x ), x ÎD, называется периодической , если

$ Т > 0: "х ÎD Þ (х ± ТÎD и f (x ) = f (x ± Т)).

у
Число Т при этом называется периодом функции. На любых двух соседних отрезках оси ОХ длины Т график периодической функции имеет один и тот же вид (рис. 4).

Рассмотрим сначала понятие переменной величины, или просто переменной.

Переменная величина х определяется множеством тех значений, которые она может принять в рассматриваемом случае. Это множество X назовем областью изменения значений переменной x .

Главным предметом изучения в математике является, однако, не изменение одной переменной самой по себе, а зависимость между двумя или несколькими переменными при их совместном изменении. Во многих случаях переменные не могут принимать любую пару значений из своих областей изменения; если одной из них придано конкретное значение, то этим уже определяется и значение другой. Тогда первая из них называется независимой , а вторая – зависимой переменной.

Пусть даны две переменные x и y с областями изменения X и Y . Если при этом каждому элементу x X по определенному правилу f поставлен в соответствие единственный элемент y Y , то говорят, что на множестве X задана функция y = f (x ).

Ясно, что при этом переменная x является независимой переменной. Ее часто называют аргументом функции.

Переменная y является зависимой переменной и называется значением функции, или просто функцией .

Множество X называется областью определения функции, а множество Y - областью ее значений .

Существует ряд способов задания функции:

а) наиболее простой - аналитический способ, т. е. задание функции в виде формулы. Если область определения функции X при этом не указана, то под X подразумевается множество значений x , при которых формула имеет смысл;

б) графический способ. Этот способ особенно нагляден. Для функции одной переменной y = f (x ) используется координатная плоскость (xy ).

Совокупность точек y , соответствующих заданным значениям x , определяет график функции на плоскости (xy );

в) табличный способ. Он часто используется, когда независимая переменная x принимает лишь конечное число значений.


5.2. Основные свойства функций

Рассмотрим основные свойства функций, которые упрощают проведение их исследования:



Четность. Функция y = f (x ) называется четной , если для любого значения x , принадлежащего области определения функции X , значение (–x ) тоже принадлежит X и при этом выполняется

f (–x ) = f (x ).

График четной функции симметричен относительно оси ординат.

Функция y = f (x ) называется нечетной , если для любого x X следует (–x ) X и при этом

f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат.

Если функция y = f (x ) не является ни четной, ни нечетной, то ее часто называют функцией общего вида .

Монотонность. Функция y = f (x ) называется возрастающей на некотором интервале (a , b ), если для любых x 1 , x 2 (a , b ), таких,

что x 1 < x 2 , следует, что f (x 1) < f (x 2), и убывающей , если f (x 1) > f (x 2).

Возрастающую и убывающую на интервале (a,b ) функции называют монотонными на этом интервале, а сам интервал (a,b ) - интервалом монотонности этих функций.

В некоторых учебниках такие функции называют строго монотонными , а монотонными называют неубывающую и невозрастающую на рассматриваемом интервале функции (вместо строгих неравенств для функций пишутся нестрогие).

Ограниченность. Функция y = f (x ) называется ограниченной на интервале (a , b ), если существует такое число С > 0, что для любого x (a , b ) следует |f (x )| < C , и неограниченной в противном случае, т. е. если для любого числа C > 0 существует такой x (a , b ), что |f (x )| > C. На рис. 5.1 показан график функции, ограниченной на интервале (a , b ).

Аналогичное определение ограниченности можно дать для любого вида промежутка.

Периодичность. Функция y = f (x ) называется периодической , если существует такое число t , что для любого x X выполняется

f (x + t ) = f (x ).

Наименьшее из таких чисел t называется периодом функции и обозначается Т .

Характерным признаком периодичности функций является наличие в их составе тригонометрических функций.

5.3. Элементарные функции и их графики

К элементарным функциям относятся:

а) простейшие элементарные функции

1. Константа y = c , где с - постоянное для данной функции действительное число, одно и то же для всех значений x .


2. Степенная функция , где - любое постоянное действительное число, кроме нуля. Вид графиков функций при некоторых целых положительных ( = n ), целых отрицательных ( = –n ) и дробных ( = 1/n ) значениях представлен ниже.


4. Логарифмическая функция y = log a x (a > 0; a 1).


5. Тригонометрические функции : y = sin x , y = cos x , y = tg x , y = ctg x .


6. Обратные тригонометрические функции .

y = arcsin x y = arccos x


y = arctg x y = arcctg x


б) сложные функции

Кроме перечисленных простейших элементарных функций аргумента x к элементарным функциям также относятся функции, аргументами которых являются тоже элементарные функции, а также функции, полученные путем выполнения конечного числа арифметических действий над элементарными функциями. Например, функция

тоже является элементарной функцией.

Функции, аргументами которых являются не независимые переменные, а другие функции, называются сложными функциями или суперпозициями функций. Пусть даны две функции: y = sinx и z = log 2 y . Тогда сложная функция (суперпозиция функций) может иметь вид

z = log 2 (sin x ).

Также можно ввести понятиеобратной функции .Пусть y = f (x ) задана в области определения X , а Y - множество ее значений. Выберем какое-нибудь значение y = y 0 и по нему найдем x 0 так, чтобы y 0 было равно f (x 0).Подобных значений x 0 может оказаться и несколько.

Таким образом, каждому значению y из Y ставится в соответствие одно или несколько значений x . Если такое значение x только одно, то в области Y может быть определена функция x = g (y ), которая называется обратной для функции y = f (x ).

Найдем, например, обратную функцию для показательной функции y = a x . Из определения логарифма следует, что если задано значение y , то значение x , удовлетворяющее условию y = a x , находится по формуле x = log a y . То есть каждому y из Y можно поставить в соответствие одно определенное значение x = log a y .

Следовательно, функция x = log a y является обратной для функции y = a x на множествах X и Y . Так как принято у любой функции независимую переменную обозначать x , то в этом случае говорят, что y = f (x ) и y = g (x ) - обратные функции.

Графики функции y = f (x ) и обратной ей функции y = g (x ) симметричны относительно биссектрисы 1-го и 3-го координатных углов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: