Нейронная сеть глубокого обучения. Нейронные сети и глубокое обучение: будущее рядом. Книги по глубинному обучению

Дізнавалася про бізнес-тренди на масштабній конференції у Києві. Це була насичена інсайтами субота, від якої ми отримали нові знання і знайомства, натхнення та з користю проведений час. На конфі були 4 потоки доповідей для власників бізнесу, ТОП-менеджерів, маркетологів, sales, ейчарів та інших спеціалістів. Одним із спікерів був Міністр інфраструктури Володимир Омелян, який розповідав про розвиток галузі, відновлення доріг та аеропортів.

Доброго всем времени суток уважаемые коллеги iOS-ники, наверняка каждый из вас работал с сетью и занимался парсингом данных c JSON. Для этого процесса есть куча библиотек, всевозможных инструментов которые можно юзать. Некоторые из них сложные, а некоторые простые. Я и сам очень долго если чесно парсил JSON руками, не доверяя этот процес каким-то сторонним библиотекам и в этом были свои плюсы.

9 сентября 2014 года в ходе очередной презентации, компания Apple представила собственную систему мобильных платежей — Apple Pay.

С помощью платежной системы Apple Pay пользователи iPhone 6 и iPhone 6+, а также владельцы новейших версий Apple Watch могут совершать покупки онлайн, пользоваться дополнительными преимуществами apple pay для мобильных приложений и совершать платежи при помощи технологии NFC (Near Field Communication). Для авторизации платежей используются технологии Touch ID или Face ID.

Технологии не стоят на месте, и процессы разработки движутся вместе с ними. Если раньше компании работали по модели «Waterfall», то сейчас, например, все стремятся внедрить «Scrum». Эволюция происходит и в сфере предоставления услуг по разработке программного обеспечения. Раньше компании предоставляли клиентам качественную разработку в рамках бюджета, останавливаясь на этом, сейчас же они стремятся обеспечить максимальную пользу для клиента и его бизнеса, предоставляя свою экспертизу.

За последние несколько лет появилось столько хороших шрифтов, в том числе бесплатных, что мы решили написать продолжение нашей для дизайнеров.

Каждый дизайнер имеет набор любимых шрифтов для работы, с которыми ему привычно работать и которые отражают его графический стиль. Дизайнеры говорят «Хороших шрифтов много не бывает», но сейчас можно смело представить ситуацию когда этот набор состоит только из бесплатных шрифтов.

Как часто проджект менеджеры оказываются между молотом и наковальней, когда пытаются найти баланс между всеми требованиями и сроками заказчика и ментальным здоровьем всей команды? Сколько нюансов нужно учесть, чтобы по обе стороны ответственности был мир и порядок? Как понять хороший ты менеджер или тебе срочно стоит подтягиваться по всем фронтам? Как определить, в каких аспектах именно ты, как ПМ, отстаешь, а где ты молодец и умничка? Именно об этом была очередная конференция Code’n’Coffee.

Технология распознавания образов все активнее входит в наш обиход. Компании и учреждения используют ее для решения самых разных задач: от обеспечения безопасности до исследования удовлетворенности клиентов. Инвестиции в продукты, в основе которых — данная функция, обещают вырасти до 39 миллиардов долларов к 2021 году. Вот лишь несколько примеров, как распознавание образов используется в разных сферах.

» (Manning Publications).

Статья рассчитана на людей, у которых уже есть значительный опыт работы с глубинным обучением (например, тех, кто уже прочитал главы 1-8 этой книги). Предполагается наличие большого количества знаний.

Глубинное обучение: геометрический вид

Самая удивительная вещь в глубинном обучении - то, насколько оно простое. Десять лет назад никто не мог представить, каких потрясающих результатов мы достигнем в проблемах машинного восприятия, используя простые параметрические модели, обученные с градиентным спуском. Теперь выходит, что нужны всего лишь достаточно большие параметрические модели, обученные на достаточно большом количестве образцов. Как сказал однажды Фейнман о Вселенной: «Она не сложная, её просто много ».

В глубинном обучении всё является вектором, то есть точкой в геометрическом пространстве . Входные данные модели (это может быть текст, изображения и т. д.) и её цели сначала «векторизируются», то есть переводятся в некое первоначальное векторное пространство на входе и целевое векторное пространство на выходе. Каждый слой в модели глубинного обучения выполняет одно простое геометрическое преобразование данных, которые идут через него. Вместе, цепочка слоёв модели создаёт одно очень сложное геометрическое преобразование, разбитое на ряд простых. Эта сложная трансформация пытается преобразовать пространство входных данных в целевое пространство, для каждой точки. Параметры трансформации определяются весами слоёв, которые постоянно обновляются на основании того, насколько хорошо модель работает в данный момент. Ключевая характеристика геометрической трансформации - то, что она должна быть дифференцируема , то есть мы должны иметь возможность узнать её параметры через градиентный спуск. Интуитивно, это означает, что геометрический морфинг должен быть плавным и непрерывным - важное ограничение.

Весь процесс применения этой сложной геометрической трансформации на входных данных можно визуализировать в 3D, изобразив человека, который пытается развернуть бумажный мячик: смятый бумажный комочек - это многообразие входных данных, с которыми модель начинает работу. Каждое движение человека с бумажным мячиком похоже на простую геометрическую трансформацию, которую выполняет один слой. Полная последовательность жестов по разворачиванию - это сложная трансформация всей модели. Модели глубинного обучения - это математические машины по разворачиванию запутанного многообразия многомерных данных.

Вот в чём магия глубинного обучения: превратить значение в векторы, в геометрические пространства, а затем постепенно обучаться сложным геометрическим преобразованиям, которые преобразуют одно пространство в другое. Всё что нужно - это пространства достаточно большой размерности, чтобы передать весь спектр отношений, найденных в исходных данных.

Ограничения глубинного обучения

Набор задач, которые можно решить с помощью этой простой стратегии, практически бесконечен. И все же до сих пор многие из них вне досягаемости нынешних техник глубинного обучения - даже несмотря на наличие огромного количества вручную аннотированных данных. Скажем, для примера, что вы можете собрать набор данных из сотен тысяч - даже миллионов - описаний на английском языке функций программного обеспечения, написанных менеджерами продуктов, а также соответствующего исходного года, разработанного группами инженеров для соответствия этим требованиям. Даже с этими данными вы не можете обучить модель глубинного обучения просто прочитать описание продукта и сгенерировать соответствующую кодовую базу. Это просто один из многих примеров. В целом, всё что требует аргументации, рассуждений - как программирование или применение научного метода, долговременное планирование, манипуляции с данными в алгоритмическом стиле - находится за пределами возможностей моделей глубинного обучения, неважно сколько данных вы бросите в них. Даже обучение нейронной сети алгоритму сортировки - невероятно сложная задача.

Причина в том, что модель глубинного обучения - это «лишь» цепочка простых, непрерывных геометрических преобразований , которые преобразуют одно векторное пространство в другое. Всё, что она может, это преобразовать одно множество данных X в другое множество Y, при условии наличия возможной непрерывной трансформации из X в Y, которой можно обучиться, и доступности плотного набора образцов преобразования X:Y как данных для обучения. Так что хотя модель глубинного обучения можно считать разновидностью программы, но большинство программ нельзя выразить как модели глубинного обучения - для большинства задач либо не существует глубинной нейросети практически подходящего размера, которая решает задачу, либо если существует, она может быть необучаема , то есть соответствующее геометрическое преобразование может оказаться слишком сложным, или нет подходящих данных для её обучения.

Масштабирование существующих техник глубинного обучения - добавление большего количества слоёв и использование большего объёма данных для обучения - способно лишь поверхностно смягчить некоторые из этих проблем. Оно не решит более фундаментальную проблему, что модели глубинного обучения очень ограничены в том, что они могут представлять, и что большинство программ нельзя выразить в виде непрерывного геометрического морфинга многообразия данных.

Риск антропоморфизации моделей машинного обучения

Один из очень реальных рисков современного ИИ - неверная интерпретация работы моделей глубинного обучения и преувеличение их возможностей. Фундаментальная особенность человеческого разума - «модель психики человека», наша склонность проецировать цели, убеждения и знания на окружающие вещи. Рисунок улыбающейся рожицы на камне вдруг делает нас «счастливыми» - мысленно. В приложении к глубинному обучению это означает, например, что если мы можем более-менее успешно обучить модель генерировать текстовые описания картинок, то мы склонны думать, что модель «понимает» содержание изображений, также как и генерируемые описания. Нас затем сильно удивляет, когда из-за небольшого отклонения от набора изображений, представленных в данных для обучения, модель начинает генерировать абсолютно абсурдные описания.

В частности, наиболее ярко это проявляется в «состязательных примерах», то есть образцах входных данных сети глубинного обучения, специально подобранных, чтобы их неправильно классифицировали. Вы уже знаете, что можно сделать градиентное восхождение в пространстве входных данных для генерации образцов, которые максимизируют активацию, например, определённого фильтра свёрточной нейросети - это основа техники визуализации, которую мы рассматривали в главе 5 (примечание: книги «Глубинное обучение с Python »), также как алгоритма Deep Dream из главы 8. Похожим способом, через градиентное восхождение, можно слегка изменить изображение, чтобы максимизировать предсказание класса для заданного класса. Если взять фотографию панды и добавить градиент «гиббон», мы можем заставить нейросеть классифицировать эту панду как гиббона. Это свидетельствует как о хрупкости этих моделей, так и о глубоком различии между трансформацией со входа на выход, которой она руководствуется, и нашим собственным человеческим восприятием.

В общем, у моделей глубинного обучения нет понимания входных данных, по крайней мере, не в человеческом смысле. Наше собственное понимание изображений, звуков, языка, основано на нашем сенсомоторном опыте как людей - как материальных земных существ. У моделей машинного обучения нет доступа к такому опыту и поэтому они не могут «понять» наши входные данные каким-либо человекоподобным способом. Аннотируя для наших моделей большое количество примеров для обучения, мы заставляем их выучить геометрическое преобразование, которое приводит данные к человеческим концепциям для этого специфического набора примеров, но это преобразование является лишь упрощённым наброском оригинальной модели нашего разума, таким, какое разработано исходя из нашего опыта как телесных агентов - это как слабое отражение в зеркале.

Как практикующий специалист по машинному обучению, всегда помните об этом, и никогда не попадайте в ловушку веры в то, что нейросети понимают задачу, которую выполняют - они не понимают, по крайней мере не таким образом, какой имеет смысл для нас. Они были обучены другой, гораздо более узкой задаче, чем та, которой мы хотим их обучить: простому преобразованию входных образцов обучения в целевые образцы обучения, точка к точке. Покажите им что-нибудь, что отличается от данных обучения, и они сломаются самым абсурдным способом.

Локальное обобщение против предельного обобщения

Кажется, существуют фундаментальные отличия между прямым геометрическим морфингом со входа на выход, который делают модели глубинного обучения, и тем способом, как люди думают и обучаются. Дело не только в том, что люди обучаются сами от своего телесного опыта, а не через обработку набора учебных образцов. Кроме разницы в процессах обучения, есть фундаментальные отличия в природе лежащих в основе представлений.

Люди способны на гораздо большее, чем преобразование немедленного стимула в немедленный отклик, как нейросеть или, может быть, насекомое. Люди удерживают в сознании сложные, абстрактные модели текущей ситуации, самих себя, других людей, и могут использовать эти модели для предсказания различных возможных вариантов будущего, и выполнять долговременное планирование. Они способны на объединение в единое целое известных концепций, чтобы представить то, что они никогда не знали раньше - как рисование лошади в джинсах, например, или изображение того, что бы они сделали, если бы выиграли в лотерею. Способность мыслить гипотетически, расширять свою модель ментального пространства далеко за пределы того, что мы напрямую испытывали, то есть, способность делать абстракции и рассуждения , пожалуй, определяющая характеристика человеческого познания. Я называю это «предельным обобщением»: способность приспосабливаться к новым, никогда не испытанным ранее ситуациям, используя очень мало данных либо вовсе не используя никаких данных.

Это резко отличается от того, что делают сети глубинного обучения, что я бы назвал «локальным обобщением»: преобразование входных данных в выходные данные быстро прекращает иметь смысл, если новые входные данные хотя бы немного отличаются от того, с чем они встречались во время обучения. Рассмотрим, для примера, проблему обучения подходящим параметрам запуска ракеты, которая должна сесть на Луну. Если бы вы использовали нейросеть для этой задачи, обучая её с учителем или с подкреплением, вам бы понадобилось дать ей тысячи или миллионы траекторий полёта, то есть нужно выдать плотный набор примеров в пространстве входящих значений, чтобы обучиться надёжному преобразованию из пространства входящих значений в пространство исходящих значений. В отличие от них, люди могут использовать силу абстракции для создания физических моделей - ракетостроение - и вывести точное решение, которое доставит ракету на Луну всего за несколько попыток. Таким же образом, если вы разработали нейросеть для управления человеческим телом и хотите, чтобы она научилась безопасно проходить по городу, не будучи сбитой автомобилем, сеть должна умереть много тысяч раз в различных ситуациях, прежде чем сделает вывод, что автомобили опасны, и не выработает соответствующее поведение, чтобы их избегать. Если её перенести в новый город, то сети придётся заново учиться большей часть того, что она знала. С другой стороны, люди способны выучить безопасное поведение, не умерев ни разу - снова, благодаря силе абстрактного моделирования гипотетических ситуаций.

Итак, несмотря на наш прогресс в машинном восприятии, мы всё ещё очень далеки от ИИ человеческого уровня: наши модели могут выполнять только локальное обобщение , адаптируясь к новым ситуациям, которые должны быть очень близки к прошлым данным, в то время как человеческий разум способен на предельное обобщение , быстро приспосабливаясь к абсолютно новым ситуациям или планируя далеко в будущее.

Выводы

Вот что вы должны помнить: единственным реальным успехом глубинного обучения к настоящему моменту является способность транслировать пространство X в пространство Y, используя непрерывное геометрическое преобразование, при наличии большого количества данных, аннотированных человеком. Хорошее выполнение этой задачи представляет собой революционно важное достижение для целой индустрии, но до ИИ человеческого уровня по-прежнему очень далеко.

Чтобы снять некоторые из этих ограничений и начать конкурировать с человеческим мозгом, нам нужно отойти от прямого преобразования со входа в выход и перейти к рассуждениям и абстракциям . Возможно, подходящей основой для абстрактного моделирования различных ситуация и концепций могут быть компьютерные программы. Мы говорили раньше (примечание: в книге «Глубинное обучение с Python »), что модели машинного обучения можно определить как «обучаемые программы»; в данный момент мы можем обучать только узкое и специфическое подмножество всех возможных программ. Но что если бы мы могли обучать каждую программу, модульно и многократно? Посмотрим, как мы можем к этому придти.

Будущее глубинного обучения

Учитывая то, что мы знаем о работе сетей глубинного обучения, их ограничениях и нынешнем состоянии научных исследований, можем ли мы прогнозировать, что произойдёт в среднесрочной перспективе? Здесь несколько моих личных мыслей по этому поводу. Имейте в виду, что у меня нет хрустального шара для предсказаний, так что многое из того, что я ожидаю, может не воплотиться в реальность. Это абсолютные спекуляции. Я разделяю эти прогнозы не потому что ожидаю, что они полностью воплотятся в будущем, а потому что они интересны и применимы в настоящем.

На высоком уровне вот основные направления, которые я считаю перспективными:

  • Модели приблизятся к компьютерным программам общего предназначения, построенных поверх гораздо более богатых примитивов, чем наши нынешние дифференцируемые слои - так мы получим рассуждения и абстракции , отсутствие которых является фундаментальной слабостью нынешних моделей.
  • Появятся новые формы обучения, которые сделают это возможным - и позволят моделям отойти просто от дифференцируемых преобразований.
  • Модели будут требовать меньшего участия разработчика - не должно быть вашей работой постоянно подкручивать ручки.
  • Появится большее, систематическое повторное использование выученных признаков и архитектур; мета-обучаемые системы на основе повторно используемых и модульных подпрограмм.
Вдобавок, обратите внимание, что эти рассуждения не относятся конкретно к обучению с учителем, которое до сих пор остаётся основой машинного обучения - также они применимы к любой форме машинного обучения, включая обучение без учителя, обучение под собственным наблюдением и обучение с подкреплением. Фундаментально неважно, откуда пришли ваши метки или как выглядит ваш цикл обучения; эти разные ветви машинного обучения - просто разные грани одной конструкции.

Итак, вперёд.

Модели как программы

Как мы заметили раньше, необходимым трансформационным развитием, которое можно ожидать в области машинного обучения, является уход от моделей, выполняющих чисто распознавание шаблонов и способных только на локальное обобщение , к моделям, способным на абстракции и рассуждения , которые могут достичь предельного обобщения . Все нынешние программы ИИ с базовым уровнем рассуждений жёстко запрограммированы людьми-программистами: например, программы, которые полагаются на поисковые алгоритмы, манипуляции с графом, формальную логику. Так, в программе DeepMind AlphaGo бóльшая часть «интеллекта» на экране спроектирована и жёстко запрограммирована экспертами-программистами (например, поиск в дереве по методу Монте-Карло); обучение на новых данных происходит только в специализированных подмодулях - сети создания ценностей (value networks) и сети по вопросам политики (policy networks). Но в будущем такие системы ИИ могут быть полностью обучены без человеческого участия.

Как этого достичь? Возьмём хорошо известный тип сети: RNN. Что важно, у RNN немного меньше ограничений, чем у нейросетей прямого распространения. Это потому что RNN представляют собой немного больше, чем простые геометрические преобразования: это геометрические преобразования, которые осуществляются непрерывно в цикле for . Временной цикл for задаётся разработчиком: это встроенное допущение сети. Естественно, сети RNN всё ещё ограничены в том, что они могут представлять, в основном, потому что каждый их шаг по-прежнему является дифференцируемым геометрическим преобразованием и из-за способа, которым они передают информацию шаг за шагом через точки в непрерывном геометрическом пространстве (векторы состояния). Теперь представьте нейросети, которые бы «наращивались» примитивами программирования таким же способом, как циклы for - но не просто одним-единственным жёстко закодированным циклом for с прошитой геометрической памятью, а большим набором примитивов программирования, с которыми модель могла бы свободно обращаться для расширения своих возможностей обработки, таких как ветви if , операторы while , создание переменных, дисковое хранилище для долговременной памяти, операторы сортировки, продвинутые структуры данных вроде списков, графов, хеш-таблиц и многого другого. Пространство программ, которые такая сеть может представлять, будет гораздо шире, чем могут выразить существующие сети глубинного обучения, и некоторые из этих программ могут достичь превосходной силы обобщения.

Одним словом, мы уйдём от того, что у нас с одной стороны есть «жёстко закодированный алгоритмический интеллект» (написанное вручную ПО), а с другой стороны - «обученный геометрический интеллект» (глубинное обучение). Вместо этого мы получим смесь формальных алгоритмических модулей, которые обеспечивают возможности рассуждений и абстракции , и геометрические модули, которые обеспечивают возможности неформальной интуиции и распознавания шаблонов . Вся система целиком будет обучена с небольшим человеческим участием либо без него.

Родственная область ИИ, которая, по моему мнению, скоро может сильно продвинуться, это программный синтез , в частности, нейронный программный синтез. Программный синтез состоит в автоматической генерации простых программ, используя поисковый алгоритм (возможно, генетический поиск, как в генетическом программировании) для изучения большого пространства возможных программ. Поиск останавливается, когда найдена программа, соответствующая требуемым спецификациям, часто предоставляемым как набор пар вход-выход. Как видите, это сильно напоминает машинное обучение: «данные обучения» предоставляются как пары вход-выход, мы находим «программу», которая соответствует трансформации входных в выходные данные и способна к обобщениям для новых входных данных. Разница в том, что вместо значений параметров обучения в жёстко закодированной программе (нейронной сети) мы генерируем исходный код путём дискретного поискового процесса.

Я определённо ожидаю, что к этой области снова проснётся большой интерес в следующие несколько лет. В частности, я ожидаю взаимное проникновение смежных областей глубинного обучения и программного синтеза, где мы будем не просто генерировать программы на языках общего назначения, а где мы будем генерировать нейросети (потоки обработки геометрических данных), дополненные богатым набором алгоритмических примитивов, таких как циклы for - и многие другие. Это должно быть гораздо более удобно и полезно, чем прямая генерация исходного кода, и существенно расширит границы для тех проблем, которые можно решать с помощью машинного обучения - пространство программ, которые мы можем генерировать автомтически, получая соответствующие данные для обучения. Смесь символического ИИ и геометрического ИИ. Современные RNN можно рассматривать как исторического предка таких гибридных алгоритмо-геометрических моделей.


Рисунок: Обученная программа одновременно полагается на геометрические примитивы (распознавание шаблонов, интуиция) и алгоритмические примитивы (аргументация, поиск, память).

За пределами обратного распространения и дифференцируемых слоёв

Если модели машинного обучения станут больше похожи на программы, тогда они больше почти не будут дифференцируемы - определённо, эти программы по-прежнему будут использовать непрерывные геометрические слои как подпрограммы, которые останутся дифференцируемыми, но вся модель в целом не будет такой. В результате, использование обратного распространения для настройки значений весов в фиксированной, жёстко закодированной сети не может оставаться в будущем предпочтительным методом для обучения моделей - по крайней мере, нельзя ограничиваться только этим методом. Нам нужно выяснить, как наиболее эффективно обучать недифференцируемые системы. Нынешние подходы включают генетические алгоритмы, «эволюционные стратегии», определённые методы обучения с подкреплением, ADMM (метод переменных направлений множителей Лагранжа). Естественно, градиентный спуск больше никуда не денется - информация о градиенте всегда будет полезна для оптимизации дифференцируемых параметрических функций. Но наши модели определённо будут становится всё более амбициозными, чем просто дифференцируемые параметрические функции, и поэтому их автоматизированная разработка («обучение» в «машинном обучении») потребует большего, чем обратное распространение.

Кроме того, обратное распространение имеет рамки end-to-end, что подходит для обучения хороших сцепленных преобразований, но довольно неэффективно с вычислительной точки зрения, потому что не использует полностью модульность глубинных сетей. Чтобы повысить эффективность чего бы то ни было, есть один универсальный рецепт: ввести модульность и иерархию. Так что мы можем сделать само обратное распространение более эффективным, введя расцепленные модули обучения с определённым механизмом синхронизации между ними, организованном в иерархическом порядке. Эта стратегия частично отражена в недавней работе DeepMind по «синтетическим градиентам». Я ожидаю намного, намного больше работ в этом направлении в ближайшем будущем.

Можно представить будущее, где глобально недифференцируемые модели (но с наличием дифференцируемых частей) будут обучаться - расти - с использованием эффективного поискового процесса, который не будет применять градиенты, в то время как дифференцируемые части будут обучаться даже быстрее, используя градиенты с использованием некоей более эффективной версии обратного распространения

Автоматизированное машинное обучение

В будущем архитектуры модели будут создаваться обучением, а не писаться вручную инженерами. Полученные обучением модели автоматически работают вместе с более богатым набором примитивов и программоподобных моделей машинного обучения.

Сейчас бóльшую часть времени разработчик систем глубинного обучения бесконечно модифицирует данные скриптами Python, затем долго настраивает архитектуру и гиперпараметры сети глубинного обучения, чтобы получить работающую модель - или даже чтобы получить выдающуюся модель, если разработчик настолько амбициозен. Нечего и говорить, что это не самое лучшее положение вещей. Но ИИ и здесь может помочь. К сожалению, часть по обработке и подготовке данных трудно автоматизировать, поскольку она часто требует знания области, а также чёткого понимания на высоком уровне, чего разработчик хочет достичь. Однако настройка гиперпараметров - это простая поисковая процедура, и в данном случае мы уже знаем, чего хочет достичь разработчик: это определяется функцией потерь нейросети, которую нужно настроить. Сейчас уже стало обычной практикой устанавливать базовые системы AutoML, которые берут на себя большую часть подкрутки настроек модели. Я и сам установил такую, чтобы выиграть соревнования Kaggle.

На самом базовом уровне такая система будет просто настраивать количество слоёв в стеке, их порядок и количество элементов или фильтров в каждом слое. Это обычно делается с помощью библиотек вроде Hyperopt, которые мы обсуждали в главе 7 (примечание: книги «Глубинное обучение с Python »). Но можно пойти намного дальше и попробовать получить обучением соответствующую архитектуру с нуля, с минимальным набором ограничений. Это возможно с помощью обучения с подкреплением, например, или с помощью генетических алгоритмов.

Другим важным направлением развития AutoML является получение обучением архитектуры модели одновременно с весами модели. Обучая модель с нуля каждый раз мы пробуем немного разные архитектуры, что чрезвычайно неэффективно, поэтому действительно мощная система AutoML будет управлять развитием архитектур, в то время как свойства модели настраиваются через обратное распространение на данных для обучения, таким образом устраняя всю чрезмерность вычислений. Когда я пишу эти строки, подобные подходы уже начали применять.

Когда всё это начнёт происходить, разработчики систем машинного обучения не останутся без работы - они перейдут на более высокий уровень в цепочке создания ценностей. Они начнут прикладывать гораздо больше усилий к созданию сложных функций потерь, которые по-настоящему отражают деловые задачи, и будут глубоко разбираться в том, как их модели влияют на цифровые экосистемы, в которых они работают (например, клиенты, которые пользуются предсказаниями модели и генерируют данные для её обучения) - проблемы, которые сейчас могут позволить себе рассматривать только крупнейшие компании.

Пожизненное обучение и повторное использование модульных подпрограмм

Если модели становятся более сложными и построены на более богатых алгоритмических примитивах, тогда эта повышенная сложность потребует более интенсивного повторного их использования между задачами, а не обучения модели с нуля каждый раз, когда у нас появляется новая задача или новый набор данных. В конце концов, многие наборы данных не содержат достаточно информации для разработки с нуля новой сложной модели и станет просто необходимо использовать информацию от предыдущих наборов данных. Вы же не изучаете заново английский язык каждый раз, когда открываете новую книгу - это было бы невозможно. К тому же, обучение моделей с нуля на каждой новой задаче очень неэффективно из-за значительного совпадения между текущими задачами и теми, которые встречались раньше.

Вдобавок, в последние годы неоднократно звучало замечательное наблюдение, что обучение одной и той же модели делать несколько слабо связанных задач улучшает её результаты в каждой из этих задач . Например, обучение одной и той же нейросети переводить с английского на немецкий и с французского на итальянский приведёт к получению модели, которая будет лучше в каждой из этих языковых пар. Обучение модели классификации изображений одновременно с моделью сегментации изображений, с единой свёрточной базой, приведёт к получению модели, которая лучше в обеих задачах. И так далее. Это вполне интуитивно понятно: всегда есть какая-то информация, которая частично совпадает между этими двумя на первый взгляд разными задачами, и поэтому общая модель имеет доступ к большему количеству информации о каждой отдельной задаче, чем модель, которая обучалась только на этой конкретной задаче.

Что мы делаем на самом деле, когда повторно применяем модель на разных задачах, так это используем предобученные веса для моделей, которые выполняют общие функции, вроде извлечения визуальных признаков. Вы видели это на практике в главе 5. Я ожидаю, что в будущем будет повсеместно использоваться более общая версия этой техники: мы не только станем применять ранее усвоенные признаки (веса подмодели), но также архитектуры моделей и процедуры обучения. По мере того, как модели будут становиться более похожими на программы, мы начнём повторно использовать подпрограммы , как функции и классы в обычных языках программирования.

Подумайте, как выглядит сегодня процесс разработки программного обеспечения: как только инженер решает определённую проблему (HTTP-запросы в Python, например), он упаковывает её как абстрактную библиотеку для повторного использования. Инженеры, которым в будущем встретится похожая проблема, просто ищут существующие библиотеки, скачивают и используют их в своих собственных проектах. Таким же образом в будущем системы метаобучения смогут собирать новые программы, просеивая глобальную библиотеку высокоуровневых повторно используемых блоков. Если система начнёт разрабатывать похожие подпрограммы для нескольких разных задач, то выпустит «абстрактную» повторно используемую версию подпрограммы и сохранит её в глобальной библиотеке. Такой процесс откроет возможность для абстракции , необходимого компонента для достижения «предельного обобщения»: подпрограмма, которая окажется полезной для многих задач и областей, можно сказать, «абстрагирует» некий аспект принятия решений. Такое определение «абстракции» похоже не понятие абстракции в разработке программного обеспечения. Эти подпрограммы могут быть или геометрическими (модули глубинного обучения с предобученными представлениями), или алгоритмическими (ближе к библиотекам, с которыми работают современные программисты).

Рисунок: Метаобучаемая система, способная быстро разработать специфические для задачи модели с применением повторно используемых примитивов (алгоритмических и геометрических), за счёт этого достигая «предельного обобщения».

В итоге: долговременное видение

Вкратце, вот моё долговременное видение для машинного обучения:
  • Модели станут больше похожи на программы и получат возможности, которые простираются далеко за пределы непрерывных геометрических преобразований исходных данных, с чем мы работаем сейчас. Возможно, эти программы будут намного ближе к абстрактным ментальным моделям, которые люди поддерживают о своём окружении и о себе, и они будут способны на более сильное обобщение благодаря своей алгоритмической природе.
  • В частности, модели будут смешивать алгоритмические модули с формальными рассуждениями, поиском, способностями к абстракции - и геометрические модули с неформальной интуицией и распознаванием шаблонов. AlphaGo (система, потребовавшая интенсивного ручного программирования и разработки архитектуры) представляет собой ранний пример, как может выглядеть слияние символического и геометрического ИИ.
  • Они будут выращиваться автоматически (а не писаться вручную людьми-программистами), с использованием модульных частей из глобальной библиотеки повторно используемых подпрограмм - библиотеки, которая эволюционировала путём усвоения высокопроизводительных моделей из тысяч предыдущих задач и наборов данных. Как только метаобучаемая система определила общие шаблоны решения задач, они преобразуются в повторно используемые подпрограммы - во многом как функции и классы в современном программировании - и добавляются в глобальную библиотеку. Так достигается способность абстракции .
  • Глобальная библиотека и соответствующая система выращивания моделей будет способна достичь некоторой формы человекоподобного «предельного обобщения»: столкнувшись с новой задачей, новой ситуацией, система сможет собрать новую работающую модель для этой задачи, используя очень малое количество данных, благодаря: 1) богатым программоподобным примитивам, которые хорошо делают обобщения и 2) обширному опыту решения похожих задач. Таким же образом, как люди могут быстро изучить новую сложную видеоигру, потому что у них есть предыдущий опыт многих других игр и потому что модели на основе предыдущего опыта являются абстратктными и программоподобными, а не простым преобразованием стимула в действие.
  • По существу, эту непрерывно обучающуюся систему по выращиванию моделей можно интерпретировать как Сильный Искусственный Интеллект. Но не ждите наступления какого-то сингулярного робоапокалипсиса: он является чистой фантазией, которая родилась из большого списка глубоких недоразумений в понимании интеллекта и технологий. Впрочем, этой критике здесь не место.

Об искусственных нейронных сетях сегодня много говорят и пишут – как в контексте больших данных и машинного обучения, так и вне его. В этой статье мы напомним смысл этого понятия, еще раз очертим область его применения, а также расскажем о важном подходе, который ассоциируется с нейронными сетями – глубоком обучении, опишем его концепцию, а также преимущества и недостатки в конкретных случаях использования.

Что такое нейронная сеть?

Как известно, понятие нейронной сети (НС) пришло из биологии и представляет собой несколько упрощенную модель строения человеческого мозга. Но не будем углубляться в естественнонаучные дебри – проще всего представить нейрон (в том числе, искусственный) как некий черный ящик с множеством входных отверстий и одним выходным.

Математически, искусственный нейрон осуществляет преобразование вектора входных сигналов (воздействий) X в вектор выходных сигналов Y при помощи функции, называемой функцией активации. В рамках соединения (искусственной нейронной сети — ИНС) функционируют три вида нейронов: входные (принимающие информацию из внешнего мира – значения интересующих нас переменных), выходные (возвращающие искомые переменные – к примеру, прогнозы, или управляющие сигналы), а также промежуточные – нейроны, выполняющие некие внутренние («скрытые») функции. Классическая ИНС, таким образом, состоит из трех или более слоев нейронов, причем на втором и последующих слоях («скрытых» и выходном) каждый из элементов соединен со всеми элементами предыдущего слоя.

Важно помнить о понятии обратной связи, которое определяет вид структуры ИНС: прямой передачи сигнала (сигналы идут последовательно от входного слоя через скрытый и поступают в выходной слой) и рекуррентной структуры, когда сеть содержит связи, идущие назад, от более дальних к более ближним нейронам). Все эти понятия составляют необходимый минимум информации для перехода на следующий уровень понимания ИНС – обучения нейронной сети, классификации его методов и понимания принципов работы каждого из них.

Обучение нейронной сети

Не следует забывать, для чего вообще используются подобные категории – иначе есть риск увязнуть в отвлеченной математике. На самом деле, под искусственными нейронными сетями понимают класс методов для решения определенных практических задач, среди которых главными являются задачи распознавания образов, принятия решений, аппроксимации и сжатия данных, а также наиболее интересные для нас задачи кластерного анализа и прогнозирования.

Не уходя в другую крайность и не вдаваясь в подробности работы методов ИНС в каждом конкретном случае, позволим себе напомнить, что при любых обстоятельствах именно способность нейронной сети к обучению (с учителем или «самостоятельно») и является ключевым моментом использования ее для решения практических задач.

В общем случае, обучение ИНС заключается в следующем:

  1. входные нейроны принимают переменные («стимулы») из внешней среды;
  2. в соответствии с полученной информацией изменяются свободные параметры НС (работают промежуточные слои нейронов);
  3. в результате изменений в структуре НС сеть «реагирует» на информацию уже иным образом.

Таков общий алгоритм обучения нейронной сети (вспомним собаку Павлова – да-да, внутренний механизм образования условного рефлекса именно таков – и тут же забудем: все же наш контекст предполагает оперирование техническими понятиями и примерами).

Понятно, что универсального алгоритма обучения не существует и, скорее всего, существовать не может; концептуально подходы к обучению делятся на обучение с учителем и обучение без учителя. Первый алгоритм предполагает, что для каждого входного («обучающегося») вектора существует требуемое значение выходного («целевого») вектора – таким образом, два этих значения образуют обучающую пару, а вся совокупность таких пар – обучающее множество. В случае варианта обучения без учителя обучающее множество состоит лишь из входных векторов – и такая ситуация является более правдоподобной с точки зрения реальной жизни.

Глубокое обучение

Понятие глубокого обучения (deep learning ) относится к другой классификации и обозначает подход к обучению так называемых глубоких структур, к которым можно отнести многоуровневые нейронные сети. Простой пример из области распознавания образов: необходимо научить машину выделять все более абстрактные признаки в терминах других абстрактных признаков, то есть определить зависимость между выражением всего лица, глаз и рта и, в конечном итоге, скопления цветных пикселов математически. Таким образом, в глубокой нейронной сети за каждый уровень признаков отвечает свой слой; понятно, что для обучения такой «махины» необходим соответствующий опыт исследователей и уровень аппаратного обеспечения. Условия сложились в пользу глубокого обучения НС только к 2006 году – и спустя восемь лет можно говорить о революции, которую произвел этот подход в машинном обучении.

Итак, прежде всего, в контексте нашей статьи стоит заметить следующее: глубокое обучение в большинстве случае не контролируется человеком. То есть этот подход подразумевает обучение нейронной сети без учителя. Это и есть главное преимущество «глубокого» подхода: машинное обучение с учителем, особенно в случае глубоких структур, требует колоссальных временных – и трудовых – затрат. Глубокое же обучение – подход, моделирующий человеческое абстрактное мышление (или, по крайней мере, представляет собой попытку приблизиться к нему), а не использующий его.

Идея, как водится, прекрасная, но на пути подхода встают вполне естественные проблемы – прежде всего, коренящиеся в его претензии на универсальность. На самом деле, если на поприще распознавания образов подходы deep learning добились ощутимых успехов, то с той же обработкой естественного языка возникает пока гораздо больше вопросов, чем находится ответов. Очевидно, что в ближайшие n лет вряд ли удастся создать «искусственного Леонардо Да Винчи» или даже – хотя бы! — «искусственного homo sapiens ».

Тем не менее, перед исследователями искусственного интеллекта уже встает вопрос этики: опасения, высказываемые в каждом уважающем себя научно-фантастическом фильме, начиная с «Терминатора» и заканчивая «Трансформерами», уже не кажутся смешными (современные изощренные нейросети уже вполне могут считаться правдоподобной моделью работы мозга насекомого!), но пока явно излишни.

Идеальное техногенное будущее представляется нам как эра, когда человек сможет делегировать машине большинство своих полномочий – или хотя бы сможет позволить ей облегчить существенную часть своей интеллектуальной работы. Концепция глубокого обучения – один из шагов на пути к этой мечте. Путь предстоит долгий – но уже сейчас понятно, что нейронные сети и связанные с ними все развивающиеся подходы способны со временем воплотить в жизнь чаяния научных фантастов.

Рассказал, как устроены искусственные нейронные сети, чем они отличаются от традиционных компьютерных программ и почему этот тренд останется с нами надолго.

Что такое deep learning?

Впервые об успехах глубокого обучения (deep learning) стало слышно в 2012 году, а через три года уже все только о нем и говорят. Так же было с интернетом в эпоху надувания инвестиционного пузыря. А поскольку в нейронные сети делаются сейчас немаленькие вложения, то смело можно говорить о новом пузыре .

Интернет было легко демонстрировать: сначала быстрая (по сравнению с бумажной) электронная почта, потом красочные вебсайты, доступные на любом подключенном к Сети компьютере. В глубоком обучении все не так: внимание к нему есть, а продемонстрировать что-то конкретное нельзя. Действительно, что связывает программы распознавания речи и программы автоматического перевода, программы определения неисправностей нефтегазового оборудования и программы синтеза текста, описывающего фотоснимки?



Это разнообразие не случайно: если интернет – это просто вид связи, то глубокие нейронные сети (deep neural networks, DNN) – по сути, новый тип программ, столь же универсальный, как и традиционные компьютерные программы. Эта универсальность доказана теоретически: нейронная сеть в теории может бесконечно точно аппроксимировать любую функцию многих переменных – а еще проводить вычисления , эквивалентные вычислениям машины Тьюринга .

Сети, которые нужно учить

Передавать информацию по интернету можно очень однообразно, унифицированными пакетами, на этой идее он и построен. А вот генерировать информацию и потреблять ее можно по-разному. Компьютерные программы, которые этим занимаются, очень разные. Нейронные сети такие же, они обеспечивают такое же разнообразие обработки.

Описывать сегодня, что такое нейронные сети – это описывать в конце пятидесятых годов, что такое традиционные компьютерные программы (а язык Фортран был выпущен в свет в 1957 году) – если бы вы начали бы рассказывать, что компьютеры будут управлять зажиганием в каждом автомобиле, а также показывать порнофильмы на экранах телефонов, вас бы подняли на смех.

Если сейчас вам рассказать, что вы будете беседовать с нейронной компьютерной сетью в вашем планшете, и нейронная сеть будет управлять автомобилем без водителя, вы тоже не поверите – а зря.

Кстати, «порнокартинки» в социальных сетях уже обнаруживают не люди, а сами сети . А ведь этим в мире занимались 100 тыс. человек, которые отсматривали терабайты и терабайты фото и видео. Мир обработки данных с появлением глубокого обучения вдруг начал меняться, и стремительно.

В отличие от традиционных компьютерных программ, нейронные сети не нужно «писать», их нужно «учить». И их можно научить тому, что бесконечно трудно (если вообще возможно) воплотить традиционной программной инженерией. Например, нейронные сети уже научились распознавать аудио и видео на уровне людей – и даже лучше них. Или наоборот, создавать аудио и видео – если у вас есть воплощенное в наученной глубокой нейронной сети понимание изображений каких-то объектов, это же понимание можно использовать и для создания изображений этих объектов. Синтез голоса, текста и изображений еще не появился на рынке, но эксперименты уже показывают успехи, раньше в этой области недостижимые . Более того, нейронные сетки могут не только анализировать данные, но и выдавать команды. Так, они научились играть в игры Atari 2600, причем во многие даже лучше человека, и их не пришлось специально для этого программировать .

Как это стало возможным только сегодня? Почему таких результатов не достигли давно, еще до появления того же интернета? Ведь рассуждения о возможностях нейронных сетей ведутся с тех же 50-х годов прошлого века!

Во-первых, стало понятно, как научить глубокие нейронные сети – какая там работает математика. Глубокая нейронная сеть – значит, с глубиной больше двух слоев. Если слоев меньше, то речь идет о мелком (shallow) обучении. Если число слоев больше десяти, то говорят об очень глубоком обучении, но пока что такое встречается редко. Раньше нейронные сети пытались учить методом проб и ошибок (он же – метод «научного тыка»), и так получалось обучать только мелкие сети. Со временем появилось понимание математики многослойных нейронных сетей, их стало возможно проектировать, пришло понимание, как создавать новые виды сетей и обеспечить их обучаемость .

Во-вторых, работает нейронная сеть быстро, но обучается очень медленно, и для этого требуются огромные объемы данных – big data . И чем больше слоев в нейронной сети, тем больше у такой сети запросы к вычислительной мощности при обучении. По факту, еще совсем недавно нейронные сети можно было научить чему-либо только на суперкомпьютере.



Сегодня ситуация изменилась, так как к работе с нейронными сетями подключили видеокарты – и это ускорило их обучение в десяток раз. Но даже настолько ускоренное обучение часто означает многие часы и даже дни, а иногда и недели, расчетов. Единственное, что утешает, это то, что в случае традиционного программирования для решения таких же задач потребовались бы не то что недели, а годы работы программистов.

Но после того, как глубокая нейронная сеть обучена, ее работа обычно в сотни и тысячи раз быстрее, чем у традиционных алгоритмов. Программа занимает и в сотни раз меньше оперативной памяти при лучшем качестве результатов.

« Нейросетьмастера»

Необычные свойства этих сетей привело к тому, что практически все международные соревнования по анализу данных выигрывают глубокие нейронные сети. И если у вас стоит какая-то задача анализа данных, а этих данных очень и очень много, то большой шанс, что в таком случае глубокие нейронные сети тоже выиграют.

Профессия тех, кто занимается нейронными сетями, даже пока не имеет названия. Если на заре интернета появилось понятие «вебмастер» (и просуществовало целых пять или шесть лет), то аналогичной «нейросетьмастер»-профессии пока нет. В области big data такие специалисты называют себя «учеными данных» (data scientists), но все-таки их работа имеет ту же инженерную природу, что и работа программистов. Инженеры измеряют, анализируют, проектируют, строят и целевые системы, и инструменты для инженерии. Программная инженерия (software engineering) отличается от компьютерной науки (computer science). С нейронными сетями то же самое: названия профессии пока нет, но уже есть инженеры, которые вам помогут их создать, обучить и использовать . По счастью, за последний год появилась развитая инфраструктура для новой профессии: университетские учебные курсы, десятки тьюториалов, книги, соревновательные и тренировочные площадки, огромное количество свободных программ. Только в русскоязычном сообществе глубокого обучения ВКонтакте сегодня

Сегодня граф – один из самых приемлемых способов описать модели, созданные в системе машинного обучения. Эти вычислительные графики составлены из вершин-нейронов, соединенных ребрами-синапсами, которые описывают связи между вершинами.

В отличие скалярного центрального или векторного графического процессора, IPU – новый тип процессоров, спроектированный для машинного обучения, позволяет строить такие графы. Компьютер, который предназначен для управления графами – идеальная машина для вычислительных моделей графов, созданных в рамках машинного обучения.

Один из самых простых способов, чтобы описать процесс работы машинного интеллекта – это визуализировать его. Команда разработчиков компании Graphcore создала коллекцию таких изображений, отображаемых на IPU. В основу легло программное обеспечение Poplar, которое визуализирует работу искусственного интеллекта. Исследователи из этой компании также выяснили, почему глубокие сети требуют так много памяти, и какие пути решения проблемы существуют.

Poplar включает в себя графический компилятор, который был создан с нуля для перевода стандартных операций, используемых в рамках машинного обучения в высокооптимизированный код приложений для IPU. Он позволяет собрать эти графы воедино по тому же принципу, как собираются POPNN. Библиотека содержит набор различных типов вершин для обобщенных примитивов.

Графы – это парадигма, на которой основывается все программное обеспечение. В Poplar графы позволяют определить процесс вычисления, где вершины выполняют операции, а ребра описывают связь между ними. Например, если вы хотите сложить вместе два числа, вы можете определить вершину с двумя входами (числа, которые вы хотели бы сложить), некоторые вычисления (функция сложения двух чисел) и выход (результат).

Обычно операции с вершинами гораздо сложнее, чем в описанном выше примере. Зачастую они определяются небольшими программами, называемыми коделетами (кодовыми именами). Графическая абстракция привлекательна, поскольку не делает предположений о структуре вычислений и разбивает вычисления на компоненты, которые процессор IPU может использовать для работы.

Poplar применяет эту простую абстракцию для построения очень больших графов, которые представлены в виде изображения. Программная генерация графика означает, что мы можем адаптировать его к конкретным вычислениям, необходимым для обеспечения наиболее эффективного использования ресурсов IPU.

Компилятор переводит стандартные операции, используемые в машинных системах обучения, в высокооптимизированный код приложения для IPU. Компилятор графов создает промежуточное изображение вычислительного графа, которое разворачивается на одном или нескольких устройствах IPU. Компилятор может отображать этот вычислительный граф, поэтому приложение, написанное на уровне структуры нейронной сети, отображает изображение вычислительного графа, который выполняется на IPU.


Граф полного цикла обучения AlexNet в прямом и обратном направлении

Графический компилятор Poplar превратил описание AlexNet в вычислительный граф из 18,7 миллиона вершин и 115,8 миллиона ребер. Четко видимая кластеризация – результат прочной связи между процессами в каждом слое сети с более легкой связью между уровнями.

Другой пример – простая сеть с полной связью, прошедшая обучение на MNIST – простом наборе данных для компьютерного зрения, своего рода «Hello, world» в машинном обучении. Простая сеть для изучения этого набора данных помогает понять графы, которыми управляют приложения Poplar. Интегрируя библиотеки графов с такими средами, как TensorFlow, компания представляет один из простых путей для использования IPU в приложениях машинного обучения.

После того, как с помощью компилятора построился граф, его нужно выполнить. Это возможно с помощью движка Graph Engine. На примере ResNet-50 демонстрируется его работа.


Граф ResNet-50

Архитектура ResNet-50 позволяет создавать глубокие сети из повторяющихся разделов. Процессору остается только единожды определить эти разделы и повторно вызывать их. Например, кластер уровня conv4 выполняется шесть раз, но только один раз наносится на граф. Изображение также демонстрирует разнообразие форм сверточных слоев, поскольку каждый из них имеет граф, построенный в соответствии с естественной формой вычисления.

Движок создает и управляет исполнением модели машинного обучения, используя граф, созданный компилятором. После развертывания Graph Engine контролирует и реагирует на IPU или устройства, используемые приложениями.

Изображение ResNet-50 демонстрирует всю модель. На этом уровне сложно выделить связи между отдельными вершинами, поэтому стоит посмотреть на увеличенные изображения. Ниже приведены несколько примеров секций внутри слоев нейросети.

Почему глубоким сетям нужно так много памяти?

Большие объемы занимаемой памяти – одна из самых больших проблем глубинных нейронных сетей. Исследователи пытаются бороться с ограниченной пропускной способностью DRAM-устройств, которые должны быть использованы современными системами для хранения огромного количества весов и активаций в глубинной нейронной сети.

Архитектуры были разработаны с использованием процессорных микросхем, предназначенных для последовательной обработки и оптимизации DRAM для высокоплотной памяти. Интерфейс между двумя этими устройствами является узким местом, которое вводит ограничения пропускной способности и добавляет значительные накладные расходы в потреблении энергии.

Хотя мы еще не имеем полного представления о человеческом мозге и о том, как он работает, в целом понятно, что нет большого отдельного хранилища памяти. Считается, что функция долговременной и кратковременной памяти в человеческом мозге встроена в структуру нейронов+синапсов. Даже простые организмы вроде червей с нейронной структурой мозга, состоящей из чуть более 300 нейронов, в какой-то степени функцией памяти.

Построение памяти в обычных процессорах – это один из способов обойти проблему узких мест памяти, открыв огромную пропускную способность при гораздо меньшем энергопотреблении. Тем не менее, память на кристалле – дорогая штука, которая не рассчитана на действительно большие объемы памяти, которые подключены к центральным и графическим процессорам, в настоящее время используемым для подготовки и развертывания глубинных нейронных сетей.

Поэтому полезно посмотреть на то, как память сегодня используется в центральных процессорах и системах глубокого обучения на графических ускорителях, и спросить себя: почему для них необходимы такие большие устройства хранения памяти, когда головной мозг человека отлично работает без них?

Нейронным сетям нужна память для того, чтобы хранить входные данные, весовые параметры и функции активации, как вход распространяется через сеть. В обучении активация на входе должна сохраняться до тех пор, пока ее нельзя будет использовать, чтобы вычислить погрешности градиентов на выходе.

Например, 50-слойная сеть ResNet имеет около 26 миллионов весовых параметров и вычисляет 16 миллионов активаций в прямом направлении. Если вы используете 32-битное число с плавающей запятой для хранения каждого веса и активации, то для этого потребуется около 168Мб пространства. Используя более низкое значение точности для хранения этих весов и активаций, мы могли бы вдвое или даже вчетверо снизить это требование для хранения.

Серьезная проблема с памятью возникает из-за того, что графические процессоры полагаются на данные, представляемые в виде плотных векторов. Поэтому они могут использовать одиночный поток команд (SIMD) для достижения высокой плотности вычислений. Центральный процессор использует аналогичные векторные блоки для высокопроизводительных вычислений.

В графических процессорах ширина синапса составляет 1024 бит, так что они используют 32-битные данные с плавающей запятой, поэтому часто разбивают их на параллельно работающие mini-batch из 32 образцов для создания векторов данных по 1024 бит. Этот подход к организации векторного параллелизма увеличивает число активаций в 32 раза и потребность в локальном хранилище емкостью более 2 ГБ.

Графические процессоры и другие машины, предназначенные для матричной алгебры, также подвержены нагрузке на память со стороны весов или активаций нейронной сети. Графические процессоры не могут эффективно выполнять небольшие свертки, используемые в глубоких нейронных сетях. Поэтому преобразование, называемое «понижением», используется для преобразования этих сверток в матрично-матричные умножения (GEMM), с которыми графические ускорители могут эффективно справляться.

Дополнительная память также требуется для хранения входных данных, временных значений и инструкций программы. Измерение использования памяти при обучении ResNet-50 на высокопроизводительном графическом процессоре показало, что ей требуется более 7,5 ГБ локальной DRAM.

Возможно, кто-то решит, что более низкая точность вычислений может сократить необходимый объем памяти, но это не так. При переключении значений данных до половинной точности для весов и активаций вы заполните только половину векторной ширины SIMD, потратив половину имеющихся вычислительных ресурсов. Чтобы компенсировать это, когда вы переключаетесь с полной точности до половины точности на графическом процессоре, тогда придется удвоить размер mini-batch, чтобы вызвать достаточный параллелизм данных для использования всех доступных вычислений. Таким образом, переход на более низкую точность весов и активаций на графическом процессоре все еще требует более 7,5ГБ динамической памяти со свободным доступом.

С таким большим количеством данных, которые нужно хранить, уместить все это в графическом процессоре просто невозможно. На каждом слое сверточной нейронной сети необходимо сохранить состояние внешней DRAM, загрузить следующий слой сети и затем загрузить данные в систему. В результате, уже ограниченный пропускной способностью задержкой памяти интерфейс внешней памяти страдает от дополнительного бремени постоянной перезагрузки весов, а также сохранения и извлечения функций активации. Это значительно замедляет время обучения и значительно увеличивает потребление энергии.

Существует несколько путей решения этой проблемы. Во-первых, такие операции, как функции активации, могут выполняться “на местах”, позволяя перезаписывать входные данные непосредственно на выходе. Таким образом, существующую память можно будет использовать повторно. Во-вторых, возможность для повторного использования памяти можно получить, проанализировав зависимость данных между операциями в сети и распределением той же памяти для операций, которые не используют ее в этот момент.

Второй подход особенно эффективен, когда вся нейронная сеть может быть проанализированна на этапе компиляции, чтобы создать фиксированную выделенную память, так как издержки на управление памятью сокращаются почти до нуля. Выяснилось, что комбинация этих методов позволяет сократить использование памяти нейронной сетью в два-три раза.
Третий значительный подход был недавно обнаружен командой Baidu Deep Speech. Они применили различные методы экономии памяти, чтобы получить 16-кратное сокращение потребления памяти функциями активации, что позволило им обучать сети со 100 слоями. Ранее при том же объеме памяти они могли обучать сети с девятью слоями.

Объединение ресурсов памяти и обработки в одном устройстве обладает значительным потенциалом для повышения производительности и эффективности сверточных нейронных сетей, а также других форм машинного обучения. Можно сделать компромисс между памятью и вычислительными ресурсами, чтобы добиться баланса возможностей и производительности в системе.

Нейронные сети и модели знаний в других методах машинного обучения можно рассматривать как математические графы. В этих графах сосредоточено огромное количество параллелизма. Параллельный процессор, предназначенный для использования параллелизма в графах, не полагается на mini-batch и может значительно уменьшить объем требуемого локального хранилища.

Современные результаты исследований показали, что все эти методы могут значительно улучшить производительность нейронных сетей. Современные графические и центральные процессоры имеют очень ограниченную встроенную память, всего несколько мегабайт в совокупности. Новые архитектуры процессоров, специально разработанные для машинного обучения, обеспечивают баланс между памятью и вычислениями на чипе, обеспечивая существенное повышение производительности и эффективности по сравнению с современными центральными процессорами и графическими ускорителями.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: