Где используется двигатель постоянного тока. Он является важным элементом в различных продуктах. Электродвигатели постоянного тока разделяют по характеру возбуждения

Состоит из вращающихся нагнетательных элементов, помещенных на статически закрепленную станину. Подобные устройства широко востребованы в технических областях, где требуется повышение диапазона регулировки скоростей, поддержание стабильного вращения привода.

Конструкция

Конструктивно электродвигатель постоянного тока состоит из ротора (якоря), индуктора, коллектора и щеток. Давайте рассмотрим, что представляет собой каждый элемент системы:

  1. Ротор состоит из множества катушек, что покрыты проводящей ток обмоткой. Некоторые электродвигатели постоянного тока 12 вольт содержат до 10 и более катушек.
  2. Индуктор - неподвижная часть агрегата. Состоит из магнитных полюсов и станины.
  3. Коллектор - функциональный элемент двигателя в виде цилиндра, размещенного на валу. Содержит изоляцию в виде медных пластин, а также выступы, которые находятся в скользящем контакте с щетками двигателя.
  4. Щетки - неподвижно закрепленные контакты. Предназначены для подводки электрического тока к ротору. Чаще всего электродвигатель постоянного тока оснащается графитовыми и медно-графитовыми щетками. Вращение вала приводит к замыканию и размыканию контактов между щетками и ротором, что вызывает искрение.

Работа электродвигателя постоянного тока

Механизмы данной категории содержат специальную обмотку возбуждения на индукторной части, куда поступает постоянный ток, что в последующем преобразуется в магнитное поле.

Обмотка ротора поддается воздействию потока электроэнергии. Со стороны магнитного поля на данный конструктивный элемент оказывает влияние сила Ампера. В результате образуется крутящий момент, что проворачивает роторную часть на 90 о. Продолжается вращение рабочих валов двигателя за счет образования эффекта коммутации на щеточно-коллекторном узле.

При поступлении электрического тока на ротор, который находится под воздействием магнитного поля индуктора, электродвигатели постоянного тока (12 вольт) создают момент силы, что приводит к выработке энергии в процессе вращения валов. Механическая энергия передается от ротора к прочим элементам системы посредством ременной передачи.

Типы

В настоящее время выделяют несколько категорий электродвигателей постоянного тока:

  • С независимым возбуждением - питание обмотки происходит от независимого источника энергии.
  • С последовательным возбуждением - обмотка якоря включена последовательно с обмоткой возбуждения.
  • С параллельным возбуждением - обмотка ротора включена в электрическую цепь параллельно источнику питания.
  • Со смешанным возбуждением - двигатель содержит несколько обмоток: последовательную и параллельную.

Управление электродвигателем постоянного тока

Пуск двигателя осуществляется за счет работы специальных реостатов, которые создают активное сопротивление, включаемое в цепь ротора. Для обеспечения плавного запуска механизма реостат обладает ступенчатой структурой.

Для старта реостата задействуется все его сопротивление. По мере роста скорости вращения возникает противодействие, что накладывает ограничение на рост силы пусковых токов. Постепенно ступень за ступенью увеличивается подводимое к ротору напряжение.

Электродвигатель постоянного тока позволяет регулировать скорость вращения рабочих валов, что осуществляется следующим образом:

  1. Показатель скорости ниже номинальной корректируется изменением напряжения на роторе агрегата. При этом крутящий момент остается стабильным.
  2. Темп работы выше номинального регулируется током, который возникает на обмотке возбуждения. Значение крутящего момента снижается при поддержании постоянной мощности.
  3. Управление роторным элементом осуществляется при помощи специализированных тиристорных преобразователей, которые представляют собой приводы постоянного тока.

Преимущества и недостатки

Сравнивая электродвигатели постоянного тока с агрегатами, функционирующими на переменном токе, стоит отметить их повышенную производительность и увеличенный коэффициент полезного действия.

Оборудование данной категории отлично справляется с отрицательным воздействием факторов окружающей среды. Способствует этому наличие полностью закрытого корпуса. Конструкция электродвигателей постоянного тока предусматривает наличие уплотнений, что исключают проникновение влаги в систему.

Защита в виде надежных изоляционных материалов дает возможность задействовать максимальный ресурс агрегатов. Допускается применение подобного оборудования при температурных условиях в пределах от -50 до +50 о С и относительной влажности воздуха порядка 98 %. Запуск механизма возможен после периода длительного простоя.

Среди недостатков электрических двигателей постоянного тока на первое место выходит достаточно быстрый износ щеточных узлов, что требует соответствующих расходов на обслуживание. Сюда же относится крайне ограниченный срок службы коллектора.


В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 "мёртвые точки"), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный - двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный - двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин - индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Электродвигатель постоянного тока (ДПТ) представляют собой механизм, преобразующий поступающую на него электрическую энергию в механическое вращение. Работа агрегата базируется на явлении электромагнитной индукции — на проводник, помещенный в магнитное поле, действует сила Ампера: F = B*I*L, где L — длина проводника, I — ток, протекающий по проводнику, B — индукция магнитного поля. Данная сила обуславливает возникновение крутящего момента, который может быть использован для неких практических целей.

Электродвигатели постоянного тока обладают следующими преимуществами:

  • Простота и надежность конструкции.
  • Практически линейные регулировочные и механические характеристики, благодаря чему обеспечивается удобство эксплуатации.
  • Большая величина пускового момента.
  • Компактные размеры (особенно сильно выражено у двигателей на постоянных магнитах).
  • Возможность использования одного и того же механизма как в режиме двигателя, так и генератора.
  • КПД при полной нагрузке, как правило, выше на 1-2 % чем у асинхронных и синхронных машин, а при неполной нагрузке преимущество может возрастать до 15 %.

Основным недостатком данных устройств является высокая цена их изготовления. Также стоит отметить необходимость регулярного обслуживания коллекторно-щеточного узла и определенное ограничение срока эксплуатации, вызванные его износом, однако на современных моделях эти недостатки практически полностью нивелированы.

Стоит отметить, что механическая характеристика, а значит, и все эксплуатационные показатели во многом зависят от схемы подключения обмотки возбуждения. Всего их четыре:

Рисунок 1. Асинхронные электродвигатели серии АИРЕ с рабочим конденсатором Способы возбуждения: а — независимое, б — параллельное, в — последовательное, г — смешанное.

Области применения ДПТ

Несмотря на то, что подавляющее большинство электрических сетей обеспечивают переменное напряжение, электродвигатели постоянного тока используются весьма и весьма широко. Собственно говоря, все промышленные приводы, где требуется точная регулировка частоты вращения, реализованы именно на базе ДПТ. Кроме того, электрические машины на постоянных магнитах благодаря своей эффективности и большой плотности мощности широко используются в оборонительной отрасли.

Впрочем, не стоит думать, что вы не сталкивались вживую с данными механизмами. Отсутствие жестких ограничений по размерам приводит к тому, что мы зачастую их не замечаем. Например, в автомобилестроении используются только электродвигатели постоянного тока, причем, несмотря на различие в мощности, на всем грузовом транспорте и спецтехнике они запитаны от 24 вольт, в то время как на легковых автомобилях их рабочее напряжение составляет 12 вольт. Получая энергию от аккумуляторной батареи или генератора, они отвечают за позиционирование сидений, управление зеркалами, поднятие и опускание стекол, а также поддержание в салоне заданной температуры.

Впрочем, электродвигатели постоянного тока могут и сами приводить в движение транспортные средства, и это далеко не только игрушечные автомобили-аттракционы с 12-вольтным аккумулятором. Для того чтобы ощутить, насколько мощными могут быть эти устройства, достаточно оказаться вблизи проходящей мимо пригородной электрички, а мягкость и точность регулировки оборотов наглядно демонстрирует плавный разгон троллейбусов.

Данные электродвигатели широко применяются как в электрическом транспорте (метро, троллейбус, трамвай, пригородные электрические железные дороги, электровозы), так и в подъемных устройствах (электрические подъемные краны).

Если Вас интересуют подробности, то принцип действия двигателя постоянного тока подробно описан на множестве сайтов и даже с формулами. Мы решили поговорить не только об этом, но и о некоторых особенностях, которые не так широко известны.

Несколько слов о машинах постоянного тока

Был получен раньше переменного, и с момента появления начались эксперименты для чего этого зверя можно использовать. Довольно быстро была установлена связь между током, магнитным полем и вращением. Началось с того, что Фарадей ставил магнит в обмотку с проводами и обнаружил появление тока. После чего он обнаружил, что если сначала сунуть магнит внутрь катушки, а потом подать ток, то магнит выпихнет наружу. Или напротив втянет внутрь. Это и есть принцип работы машины постоянного тока – использование взаимодействия магнитного поля и электричества . А теперь обратим внимание на то, что если мы будет «совать» магнит, то получим электричество, а если подадим электричество – «выпихнем» магнит. То есть машины постоянного тока, устройство и принцип действия которых мы рассматриваем, являются именно машинами. То есть двигатель одновременно является и генератором, проще говоря, это машины обратимого преобразования механической энергии в электрическую энергию (ток). Магнит имеет два полюса, электричество плюс и минус. Взаимодействие магнита и тока в этом случае подчиняется сложным законам, но если нас интересует вращение, (а поступательно возвратные движения в технике нужны редко), то мы можем получить только одно направление – по часовой стрелке относительно полярности магнитов и направления тока. То самое всем знакомое «правило буравчика», или «правило левой руки». Мы запросто можем изменить полярность тока обмотки, поменяв два провода местами, но мы не сможем изменить полюса у магнита и просто сожжем двигатель. Для справки, можно посмотреть и на правило «правой руки». Есть и такое в электротехнике, оно тоже относится к машинам постоянного тока, но в части генерации энергии.

Само вращение вала происходит следующим образом. Внутри магнитного поля расположен ротор с валом, на котором катушка. Она при подаче тока индуцирует магнитное поле. Магниты разными полюсами притягиваются, а одинаковыми отталкиваются. Внешние магниты «отталкивают» заработавшие электромагниты ротора, заставляя их всё время «отталкиваться» пока есть ток, что и приводит к вращению вала.

Это – принцип действия двигателя постоянного тока, всё остальное детали и технические подробности.

Особенности устройства двигателя постоянного тока

Конечно, в теории принцип работы машины постоянного тока ясен, но пытливый читатель немедленно спросит – а как начнёт вращаться ротор, если он внутри двухполюсного магнита? Такой вопрос неизбежен и для ответа не него придётся внимательнее рассмотреть устройство двигателя постоянного тока. Кстати некоторые знания будут полезны и для понимания работы двигателей переменного тока.

Начнём с перечня трудностей, с которыми столкнулись первые создатели ДПТ.

  1. Наличие двух мёртвых точек , из которых самостоятельный пуск невозможен. (Те самые два полюса магнитов).
  2. Слишком слабое магнитное отталкивание при слабом токе. Или сильное сопротивление вращения, не позволяющее пуск.
  3. Остановка ротора после одного оборота. Не вращение, а качания туда-сюда, ведь пройдя половину окружности «магнит» ротора не отталкивался, а притягивался, то есть не разгонял вращение, а тормозил его.

Оставались материалы и немного мелочей, вроде реализации принципа обратимой электрической машины.

Первыми победили «мёртвые точки», применив не два, а три и больше магнитов. Три зубца на роторе исключают мёртвые точки, один всегда в магнитном поле и пуск двигателя стал возможен из любого положения ротора.

Преодолеть проблему разгона-торможения смогли, применив принцип работы машины постоянного тока – простоту переключения между плюсом и минусом при сохранении тока . Иначе говоря, первую половину оборота после пуска ротор начинает с полярностью тока: на верхней точке плюс, на нижней минус. Как только верхняя точка занимает нижнее положение, полярность точек меняется на минус – плюс, и «отталкивание - разгон» продолжается до окончания оборота, после чего цикл повторяется, а торможение исключено. Такой механизм назвали коллектор . Те самые щётки электродвигателя, которые обеспечивают передачу тока с неподвижного контакта на вращающийся вал. Да ещё и какую передачу! Со сменой знака на роторе 2 раза за один оборот. Посчитайте, сколько приходится трудиться коллектору, если у двигателя 2000 оборотов в минуту.

Коллектор - самая сложная деталь, если рассматривать устройство двигателя постоянного тока, поскольку позволяет обратное преобразование вращения в ток. Основной расходный элемент – щетки. Купив новый прибор с электродвигателем, убедитесь, что есть запасные. Не поленитесь, пока прибор новый, купите ещё пару комплектов.

Сложность коллектора позволяет визуально определить его состояние и правильность работы по искрению. Совсем плохо, когда искры (а коллектор не что иное, как контактный переключатель) образуют кольцо – «круговой огонь». Это значит, что двигатель долго не протянет. Пока борьба с искрением идёт с переменным успехом, совсем победить его не получается, но продлить сроки службы ДПТ удалось.

Если Вам показалось, что мы забыли про слабые токи при пуске, рассмотрев сразу третью проблему, то Вы ошибаетесь. Проблема пуска оказалась настолько сложной, что её мы рассмотрим отдельно.

Пусковые токи двигателей постоянного тока

Итак, принцип действия двигателя постоянного тока понятен, самозапуск мы обеспечили, ликвидировали секторальное торможение на обратных магнитных полюсах, осталось его включить. Но вот беда. Ротор всё равно не вращается, хотя всё исправно. Дело в том, что пока мы наш двигатель дорабатывали, ротор стал тяжелее, на нём маховики и всё такое, и тока просто недостаточно, чтобы магниты смогли «провернуть» ротор. «Какого чёрта каналья!» (с) воскликнет пытливый экспериментатор и просто увеличит ток. И знаете, двигатель и правда закрутится. При нескольких если :

  • Если не сгорят обмотки (провода в катушке);
  • Если бросок тока выдержит ;
  • Если на коллекторе при таком пуске не произойдёт приваривания секторов переключения и т.д.

Поэтому простое повышение пускового тока быстро было признано неправильным решением. Кстати, мы пока не упомянули главное преимущество ДПТ перед двигателями переменного тока - это прямая передача момента вращения, с момента пуска . Проще говоря, с момента начала вращения вал ДПТ может «проворачивать» что угодно, преодолевая значительное сопротивление, что не под силу движкам переменных токов.

Это преимущество и стало ахиллесовой пятой ДПТ. Сам принцип работы машины постоянного тока вроде не позволял произвольно менять пусковой ток с одной стороны. С другой стороны, попытки дать большой ток для старта и снизить его после пуска, потребовали автоматики. Первоначально использовали пускачи и стартёры, особенно для ДПТ большой мощности, но это была тупиковая ветка развития. Отказ от плавной регулировки пускового тока позволил и тут найти разумный компромисс. Фактически сейчас это выглядит как пуск двигателя вроде разгона автомобиля. Мы начинаем движение на 1-й передаче, потом включаем 2-ю, 3.-ю и вот уже мчимся по шоссе на 4-й скорости. Только в данном случае «передачи», то есть токи, переключает автомат стартёр . Вся эта электротехника решает одновременно две задачи – плавный пуск ДПТ без перегрузок и сохранение в целости и сохранности энергосети (источника питания двигателя). Как и принцип действия двигателя постоянного тока, эта автоматика построена на основе прямого преобразования. Плавно ток поднимается до пускового значения, как баланс входного тока и токов на обмотках до начала вращения. После начала вращения сила тока резко снижается и снова нарастает «подгоняя вращение вала», и так ещё 2-3 раза.

Таким образом, пуск перестал быть «плавным», но стал безопасным для всех. Самое главное, что удалось сохранить при такой схеме, а сегодня она наиболее распространена, главное преимущество – крутящий момент . При этом устройство надёжного двигателя постоянного тока стало проще, мощности возросли, а пусковые токи, хотя и остаются головной болью этого класса двигателей, перестали быть критичными для механизмов.

Сферы применения двигателей постоянного тока

ДПТ, как и машины постоянного тока, устройство и принцип действия которых мы рассматривали, применяются там, где нецелесообразно использовать постоянное подключение к сетям (хороший пример – стартёр автомобиля, который и есть ДПТ), где такое подключение невозможно (например, игрушки с моторчиками для детей), или где даже такого подключения недостаточно. Например, ЖД транспорт, который вроде и подключен к сетям переменного тока, но необходимые крутящие моменты таковы, что использовать можно только двигатели постоянного тока, принципы, действия которых не изменились. И на самом деле в последнее время сфера применения не сокращается, а только увеличивается. Чем больше ёмкость аккумулятора, тем дольше будет работать такой двигатель автономно. Чем меньше габариты, тем больше будет выигрыш по мощности.

Экономичность – это дело будущего, пока особенно экономить нечего и вопрос не ставился, переменные движки будут попроще. Но вытеснить ДПТ не смогут. Такие вот они – ДПТ, или машины постоянного тока, устройство и принцип действия которых мы изучали в 6-8 классе, но давно про это забыли.

После предыдущего поста о мотор-редукторе мне пришло несколько вопросов по регулированию двигателя постоянного тока. Так что пора написать очередной пост:)

Двигатель постоянного тока (ДПТ) это один из самых привычных и понятных электродвигателей, он изучается даже в школе, на физике. Он используется практически везде, где нужен малогабаритный моторчик, а также не спешит сдавать своих позиций и там, где мощность измеряется десятками киловатт. О нем и поговорим.

Конструктив и базовый принцип
Не буду тут особо распинаться, покажу картинку из википедии и укажу ряд основных узлов. Все остальное вы и так знаете и трогали своими руками.

1. Статор состоит из источника магнитного поля. Далеко не всегда это постоянный магнит, более того, постоянный магнит это скорей исключение, чем правило. Обычно все же это обмотка возбуждения. По крайней мере на всем, что больше кулака по размерам.

2. Якорь состоит из обмотки якоря и коллекторного узла.

Работает все очень и очень просто. Обмотка якоря отталкивается от магнитного поля статора силой Ампера и совершает пол оборота, стремясь вывести эту силу на ноль и таки вывела бы если бы не коллектор, который ловко всех обламывает переключает полярность катушки и сила вновь становится максимальной. И так по кругу. Т.е. коллектор служит механическим инвертором напряжения в якоре. Запомните этот момент, он нам еще пригодится:)

Обычно в мелких моторчиках всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол

Происходящие в двигателе процессы
Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

Немного формул
Не буду грузить никого выводами, их найдете сами если захотите. Чтобы было поменьше матана рекомендую найти учебник по электроприводу для средних учебных заведений и годом выпуска подревней. От 50х-60х годов самое то:) Там и картинки винтажные и расписано для вчерашнего выпускника сельской семилетки. Много букв и никакого грузилова, все четко и по делу.

Самая главная формула коллекторного двигателя постоянного тока:

U = Е + I я *R я

  • U — напряжение подаваемое на якорь
  • R я — сопротивление якорной цепи. Обычно за этот символ считают только сопротивление обмотки, хотя можно снаружи навесить резистор какой и он к ней приплюсуется. Тогда пишут как (R я +R д)
  • I я — ток в якорной цепи. Тот самый который замеряется амперметром при попытке измерять потребление движка:)
  • Е — это противоэдс или ЭДС генератора, в генераторном режиме. Она зависит от конструкции двигателя, оборотов и описывается вот такой вот простой формулой

Е = С е * Ф * n

  • C e — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет:)
  • Ф — поток возбуждения. Т.е. сила магнитного поля статора. В мелких моторчиках, где оно задается постоянным магнитом это тоже константа. Но бывает под возбуждение выведена отдельная обмотка и тогда мы можем ее менять.
  • n — обороты якоря.

Ну и зависимость момента от тока и потока:

М = С м * I я * Ф

С м — конструктивная констатнта.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента. Это может быть важно, например, чтобы не сломать привод, когда двигло может развить такое усилие, что легко поломает то, что оно там вращает. Особенно с редуктором.

Ну и из этого же следует, что момент у машины постоянного тока зависит только от способности источника снабжать его током. Так что идеальный нерушимый сверхпроводящий движок вам на раз лом в узел завяжет, пусть даже он сам с ноготок будет. Только энергию подавай.

А теперь смешаем все это в кучу и получим зависимость оборотов от момента — механическую характеристику двигателя.


Если ее построить, то будет нечто следующее:


n 0 — это обороты идеального холостого хода сферического двигателя в вакууме. Т.е. когда наш движок ну ваще халявит, момент равен нулю. Ток потребления тоже, естественно, ноль. Т.к. противоэдс равна напряжению. Чисто теоретический вариант. А вторая точка строится уже с каким-либо моментом на валу. Получается прямая зависимость оборотов от момента. А наклон характеристики определяется сопротивлением якорной цепи. Если никаких добавочных резисторов там нет, то это зовут естественной характеристикой.

Обороты идеального холостого хода зависят от напряжения и потока. Больше ни от чего. А если поток константа (постоянный магнит), то только от напряжения. Снижая напряжение вся наша характеристика параллельно смещается вниз. Уменьшили напряжение в два раза — скорость упала в два раза.

Если есть возможность менять поток возбуждения, то можно поднимать скорость выше номинальной. Тут зависимость обратная. Ослабляем поток — двигатель разгоняется, но либо падает момент, либо ему надо жрать больше тока.

Иной двигатель со снятием возбуждения может и в разнос пойти. Помнится сдавал я затянувшийся курсач по электроприводу, уже хрен знает спустя сколько времени после сессии. Вломы мне его делать было, ага:) Ну и сидел в лаборатории, ждал препода. А там какие то балбесы, на курс ниже, лабу делали. Крутили движок вхолостую, а возбуждение к стенду приверчено было на соплях и слетело с клеммы. Движок в разнос пошел. У нас в лаборатории ЭПА ЮУРГУ все серьезно было, машины стояли нешуточные, по десятку киловатт и под сотню другую кг каждый. Все на суровом напряжении в 380 вольт.
В общем, когда эта дура взревела как монстр и стала рваться с креплений, я только и успел крикнуть, что все нахер от машины, вырубай к черту. Не успели, двигло сорвало с креплений, обмотка повылетала с пазов и движку пришел кирдык. Ладно никого не покалечило.
Впрочем, лабы привода это то еще развлечение было. У нас там и горело и взрывалось. Там я приобрел замечательные навыки чинить что угодно, чем угодно в сжатые сроки. В среднем, каждый успел по разу убить стенд наглухо, а лаба часто начиналась с починки паяльника, которым чинили осциллограф с помощью которого реанимировали убитый стенд.

Добавляя резисторы в якорную цепь мы можем увеличить наклон, т.е. чем больше грузим тем больше падает скорость.


Метод плох тем, что резисторы в цепи якоря должны быть расчитаны на ток двигателя, т.е. быть мощными и будут греться зря. Ну и момент резко падает, что плохо.

Есть еще двигатели не независимого, а последовательного возбуждения. Это когда обмотка статора включена последовательно якорю. Не каждый двигатель так можно включить, обмотка возбуждения должна выдерживать ток якоря. Но у них возникает одно интересное свойство. При пуске возникает большой пусковой ток и этот пусковой ток является же током возбуждения, обеспечивая огромный пусковой момент. Механическая характеристика напоминает гиперболу с максимумом в районе нулевых оборотов.

А дальше, по мере разгона, момент падает, а обороты наоборот растут. И если нагрузку убрать с вала, то движок сразу же уходит в разнос. Такие движки ставят на тягловый привод в основном. По крайней мере ставили раньше, до развития силовой электроники. С места эта хрень рвет так, что все стритсракеры нервно закуривают.

Режимы работы двигателя постоянного тока
Направление вращения движка зависит от направления тока якоря или направления потока возбуждения. Так что если взять коллекторный двигатель и подключить обмотку возбуждения параллельно якорю, то он будет прекрасно вращаться и на переменном токе (универсальные двигатели, их в кухонную технику часто ставят). Т.к. ток будет одновременно меняться и в якоре и в возбуждении. Момент правда будет пульсирующим, но это мелочи. А для реверса там надо будет поменять полярность включения якоря или возбуждения.

Если нарисовать механическую характеристику в четырех квадрантах, то у нас будет нечто похожее на это:


Вот, например, характеристика 1 на I участке у нас машина работает как двигатель. Нагрузка растет и в определенный момент двигатель останавливается и начинает вращаться в обратную сторону, т.е. нагрузка обращает его вспять. Это тормозной режим, противовключение. Режим очень тяжелый, двигло греется просто зверски, но для торможения очень эффективный. Если же момент на валу сменит направление и пойдет вращать навстречу движку, то мотор сразу же выйдет на генерацию (IV участок).

Характеристика 2 это то же самое, только с обратной полярностью питающего напряжения двигателя.

А характеристика 3 это динамическое торможение. Оно же реостатное. Т.е. когда мы берем и просто коротим наш двигатель на резистор или сам на себя. Можете сами проверить, возьмите любой моторчик и покрутите его, а потом закоротите ему якорь и покрутите снова. На валу будет ощутимое усилие, тем больше, чем качественнее движок.

Кстати, драйвера двигателей вроде L293 или L297 имеют возможность включить реостатное торможение, подачей обоих ключей вверх или вниз. При этом якорь коротится через драйвер на шину земли или питания.

Бесколлекторные двигатели постоянного тока
Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка говна во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: