Введение в OLAP и многомерные базы данных. Отображение в ROLAP. Группирование и разгруппирование элементов

Данных, как правило, разрежённый и долговременно хранимый. Может быть реализован на основе универсальных реляционных СУБД или специализированным программным обеспечением (см. также OLAP). В программных продуктах компании SAP используется термин «инфокуб».

Индексам массива соответствуют измерения (dimensions) или оси куба, а значениям элементов массива - меры (measures) куба.

w : (x ,y ,z ) → w xyz ,

где x , y , z - измерения, w - мера.

В отличие от обычного массива в языке программирования, доступ к элементам- OLAP-куба может осуществляться как по полному набору индексов-измерений, так и по их подмножеству, и тогда результатом будет не один элемент, а их множество.

W : (x ,y ) → W = {w z1 , w z2 , …, w zn }

Также известно описание OLAP-куба с использованием терминологии реляционной алгебры, как проекции отношений .

См. также


Wikimedia Foundation . 2010 .

  • Схема звезды
  • Наш дом - Россия (фракция)

Смотреть что такое "OLAP-куб" в других словарях:

    OLAP куб - … Википедия

    OLAP - (англ. online analytical processing, аналитическая обработка в реальном времени) технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по… … Википедия

    Куб (значения) - Куб многозначный термин: В математике В стереометрии куб шестигранный правильный многогранник В алгебре третья степень числа Фильм Серия фантастических фильмов: «Куб» «Куб 2: Гиперкуб» «Куб Ноль» Сленг и жаргон медицинское… … Википедия

    Куб - У этого термина существуют и другие значения, см. Куб (значения). Куб Тип Правильный многогранник Грань квадрат … Википедия

    Mondrian - OLAP Server Тип OLAP сервер Разработчик Pentaho Операционная система кроссплатформенное программное обеспечение Последняя версия 3.4.1 (2012 05 07) Лицензия свободное программное обеспечение … Википедия - Информационно аналитическая система автоматизированная система позволяющая экспертам быстро анализировать большие объемы данных, как правило является одним из элементов ситуационных центров. Так же, иногда в состав ИАС включают систему сбора… … Википедия

В цикле статей «Введение в базы данных», публиковавшемся в последнее время (см. КомпьютерПресс №3’2000 - 3’2001), мы обсуждали различные технологии и программные средства, применяемые при создании информационных систем - настольные и серверные СУБД, средства проектирования данных, средства разработки приложений, а также Business Intelligence - средства анализа и обработки данных масштаба предприятия, которые в настоящее время становятся все более популярными в мире, в том числе и в нашей стране. Отметим, однако, что вопросы применения средств Business Intelligence и технологии, используемые при создании приложений такого класса, в отечественной литературе пока еще освещены недостаточно. В новом цикле статей мы попробуем восполнить этот пробел и рассказать о том, что представляют собой технологии, лежащие в основе подобных приложений. В качестве примеров реализации мы будем использовать в основном OLAP-технологии фирмы Microsoft (главным образом Analysis Services в Microsoft SQL Server 2000), но надеемся, что основная часть материала будет полезна и пользователям других средств.

Первая статья в данном цикле посвящена основам OLAP (On-Line Analytical Processing) - технологии многомерного анализа данных. В ней мы рассмотрим концепции хранилищ данных и OLAP, требования к хранилищам данных и OLAP-средствам, логическую организацию OLAP-данных, а также основные термины и понятия, применяемые при обсуждении многомерного анализа.

Что такое хранилище данных

Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т.п. Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются - системы поддержки принятия решений.

Принять любое управленческое решение невозможно не обладая необходимой для этого информацией, обычно количественной. Для этого необходимо создание хранилищ данных (Data warehouses), то есть процесс сбора, отсеивания и предварительной обработки данных с целью предоставления результирующей информации пользователям для статистического анализа (а нередко и создания аналитических отчетов).

Ральф Кимбалл (Ralph Kimball), один из авторов концепции хранилищ данных, описывал хранилище данных как «место, где люди могут получить доступ к своим данным» (см., например, Ralph Kimball, «The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses», John Wiley & Sons, 1996 и «The Data Webhouse Toolkit: Building the Web-Enabled Data Warehouse», John Wiley & Sons, 2000). Он же сформулировал и основные требования к хранилищам данных:

  • поддержка высокой скорости получения данных из хранилища;
  • поддержка внутренней непротиворечивости данных;
  • возможность получения и сравнения так называемых срезов данных (slice and dice);
  • наличие удобных утилит просмотра данных в хранилище;
  • полнота и достоверность хранимых данных;
  • поддержка качественного процесса пополнения данных.

Удовлетворять всем перечисленным требованиям в рамках одного и того же продукта зачастую не удается. Поэтому для реализации хранилищ данных обычно используется несколько продуктов, одни их которых представляют собой собственно средства хранения данных, другие - средства их извлечения и просмотра, третьи - средства их пополнения и т.д.

Типичное хранилище данных, как правило, отличается от обычной реляционной базы данных. Во-первых, обычные базы данных предназначены для того, чтобы помочь пользователям выполнять повседневную работу, тогда как хранилища данных предназначены для принятия решений. Например, продажа товара и выписка счета производятся с использованием базы данных, предназначенной для обработки транзакций, а анализ динамики продаж за несколько лет, позволяющий спланировать работу с поставщиками, - с помощью хранилища данных.

Во-вторых, обычные базы данных подвержены постоянным изменениям в процессе работы пользователей, а хранилище данных относительно стабильно: данные в нем обычно обновляются согласно расписанию (например, еженедельно, ежедневно или ежечасно - в зависимости от потребностей). В идеале процесс пополнения представляет собой просто добавление новых данных за определенный период времени без изменения прежней информации, уже находящейся в хранилище.

И в-третьих, обычные базы данных чаще всего являются источником данных, попадающих в хранилище. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Что такое OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные . Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных (см. E.F. Codd, S.B. Codd, and C.T.Salley, Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, 1993). В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information - быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

  • предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это - ключевое требование OLAP);
  • возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Но прежде чем говорить о различных реализациях этой функциональности, давайте рассмотрим, что же представляют собой кубы OLAP с логической точки зрения.

Многомерные кубы

В данном разделе мы более подробно рассмотрим концепцию OLAP и многомерных кубов. В качестве примера реляционной базы данных, который мы будем использовать для иллюстрации принципов OLAP, воспользуемся базой данных Northwind, входящей в комплекты поставки Microsoft SQL Server или Microsoft Access и представляющей собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, компаниях, осуществляющих доставку, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании. Подробное описание базы данных Northwind можно найти в справочных системах Microsoft SQL Server или Microsoft Access - здесь за недостатком места мы его не приводим.

Для рассмотрения концепции OLAP воспользуемся представлением Invoices и таблицами Products и Categories из базы данных Northwind, создав запрос, в результате которого получим подробные сведения о всех заказанных товарах и выписанных счетах:

SELECT dbo.Invoices.Country, dbo.Invoices.City, dbo.Invoices.CustomerName, dbo.Invoices.Salesperson, dbo.Invoices.OrderDate, dbo.Categories.CategoryName, dbo.Invoices.ProductName, dbo.Invoices.ShipperName, dbo.Invoices.ExtendedPrice FROM dbo.Products INNER JOIN dbo.Categories ON dbo.Products.CategoryID = dbo.Categories.CategoryID INNER JOIN dbo.Invoices ON dbo.Products.ProductID = dbo.Invoices.ProductID

В Access 2000 аналогичный запрос имеет вид:

SELECT Invoices.Country, Invoices.City, Invoices.Customers.CompanyName AS CustomerName, Invoices.Salesperson, Invoices.OrderDate, Categories.CategoryName, Invoices.ProductName, Invoices.Shippers.CompanyName AS ShipperName, Invoices.ExtendedPrice FROM Categories INNER JOIN (Invoices INNER JOIN Products ON Invoices.ProductID = Products.ProductID) ON Categories.CategoryID = Products.CategoryID;

Этот запрос обращается к представлению Invoices, содержащему сведения обо всех выписанных счетах, а также к таблицам Categories и Products, содержащим сведения о категориях продуктов, которые заказывались, и о самих продуктах соответственно. В результате этого запроса мы получим набор данных о заказах, включающий категорию и наименование заказанного товара, дату размещения заказа, имя сотрудника, выписавшего счет, город, страну и название компании-заказчика, а также наименование компании, отвечающей за доставку.

Для удобства сохраним этот запрос в виде представления, назвав его Invoices1. Результат обращения к этому представлению приведен на рис. 1 .

Какие агрегатные данные мы можем получить на основе этого представления? Обычно это ответы на вопросы типа:

  • Какова суммарная стоимость заказов, сделанных клиентами из Франции?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции и доставленных компанией Speedy Express?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции в 1997 году и доставленных компанией Speedy Express?

Переведем эти вопросы в запросы на языке SQL (табл. 1).

Результатом любого из перечисленных выше запросов является число. Если в первом из запросов заменить параметр ‘France’ на ‘Austria’ или на название иной страны, можно снова выполнить этот запрос и получить другое число. Выполнив эту процедуру со всеми странами, мы получим следующий набор данных (ниже показан фрагмент):

Country SUM (ExtendedPrice)
Argentina 7327.3
Austria 110788.4
Belgium 28491.65
Brazil 97407.74
Canada 46190.1
Denmark 28392.32
Finland 15296.35
France 69185.48
Germany 209373.6

Полученный набор агрегатных значений (в данном случае - сумм) может быть интерпретирован как одномерный набор данных. Этот же набор данных можно получить и в результате запроса с предложением GROUP BY следующего вида:

SELECT Country, SUM (ExtendedPrice) FROM invoices1 GROUP BY Country

Теперь обратимся ко второму из приведенных выше запросов, который содержит два условия в предложении WHERE. Если выполнять этот запрос, подставляя в него все возможные значения параметров Country и ShipperName, мы получим двухмерный набор данных следующего вида (ниже показан фрагмент):

ShipperName
Country Federal Shipping Speedy Express United Package
Argentina 1 210.30 1 816.20 5 092.60
Austria 40 870.77 41 004.13 46 128.93
Belgium 11 393.30 4 717.56 17 713.99
Brazil 16 514.56 35 398.14 55 013.08
Canada 19 598.78 5 440.42 25 157.08
Denmark 18 295.30 6 573.97 7 791.74
Finland 4 889.84 5 966.21 7 954.00
France 28 737.23 21 140.18 31 480.90
Germany 53 474.88 94 847.12 81 962.58

Такой набор данных называется сводной таблицей (pivot table) или кросс-таблицей (cross table, crosstab). Создавать подобные таблицы позволяют многие электронные таблицы и настольные СУБД - от Paradox для DOS до Microsoft Excel 2000. Вот так, например, выглядит подобный запрос в Microsoft Access 2000:

TRANSFORM Sum(Invoices1.ExtendedPrice) AS SumOfExtendedPrice SELECT Invoices1.Country FROM Invoices1 GROUP BY Invoices1.Country PIVOT Invoices1.ShipperName;

Агрегатные данные для подобной сводной таблицы можно получить и с помощью обычного запроса GROUP BY:

SELECT Country,ShipperName, SUM (ExtendedPrice) FROM invoices1 GROUP BY COUNTRY,ShipperName Отметим, однако, что результатом этого запроса будет не сама сводная таблица, а лишь набор агрегатных данных для ее построения (ниже показан фрагмент):

Country ShipperName SUM (ExtendedPrice)
Argentina Federal Shipping 845.5
Austria Federal Shipping 35696.78
Belgium Federal Shipping 8747.3
Brazil Federal Shipping 13998.26

Третий из рассмотренных выше запросов имеет уже три параметра в условии WHERE. Варьируя их, мы получим трехмерный набор данных (рис. 2).

Ячейки куба, показанного на рис. 2 , содержат агрегатные данные, соответствующие находящимся на осях куба значениям параметров запроса в предложении WHERE.

Можно получить набор двухмерных таблиц с помощью сечения куба плоскостями, параллельными его граням (для их обозначения используют термины cross-sections и slices).

Очевидно, что данные, содержащиеся в ячейках куба, можно получить и с помощью соответствующего запроса с предложением GROUP BY. Кроме того, некоторые электронные таблицы (в частности, Microsoft Excel 2000) также позволяют построить трехмерный набор данных и просматривать различные сечения куба, параллельные его грани, изображенной на листе рабочей книги (workbook).

Если в предложении WHERE содержится четыре или более параметров, результирующий набор значений (также называемый OLAP-кубом) может быть 4-мерным, 5-мерным и т.д.

Рассмотрев, что представляют собой многомерные OLAP-кубы, перейдем к некоторым ключевым терминам и понятиям, используемым при многомерном анализе данных.

Некоторые термины и понятия

Наряду с суммами в ячейках OLAP-куба могут содержаться результаты выполнения иных агрегатных функций языка SQL, таких как MIN, MAX, AVG, COUNT, а в некоторых случаях - и других (дисперсии, среднеквадратичного отклонения и т.д.). Для описания значений данных в ячейках используется термин summary (в общем случае в одном кубе их может быть несколько), для обозначения исходных данных, на основе которых они вычисляются, - термин measure, а для обозначения параметров запросов - термин dimension (переводимый на русский язык обычно как «измерение», когда речь идет об OLAP-кубах, и как «размерность», когда речь идет о хранилищах данных). Значения, откладываемые на осях, называются членами измерений (members).

Говоря об измерениях, следует упомянуть о том, что значения, наносимые на оси, могут иметь различные уровни детализации. Например, нас может интересовать суммарная стоимость заказов, сделанных клиентами в разных странах, либо суммарная стоимость заказов, сделанных иногородними клиентами или даже отдельными клиентами. Естественно, результирующий набор агрегатных данных во втором и третьем случаях будет более детальным, чем в первом. Заметим, что возможность получения агрегатных данных с различной степенью детализации соответствует одному из требований, предъявляемых к хранилищам данных, - требованию доступности различных срезов данных для сравнения и анализа.

Поскольку в рассмотренном примере в общем случае в каждой стране может быть несколько городов, а в городе - несколько клиентов, можно говорить об иерархиях значений в измерениях. В этом случае на первом уровне иерархии располагаются страны, на втором - города, а на третьем - клиенты (рис. 3).

Отметим, что иерархии могут быть сбалансированными (balanced), как, например, иерархия, представленная на рис. 3 , а также иерархии, основанные на данных типа «дата-время», и несбалансированными (unbalanced). Типичный пример несбалансированной иерархии - иерархия типа «начальник-подчиненный» (ее можно построить, например, используя значения поля Salesperson исходного набора данных из рассмотренного выше примера), представлен на рис. 4 .

Иногда для таких иерархий используется термин Parent-child hierarchy.

Существуют также иерархии, занимающие промежуточное положение между сбалансированными и несбалансированными (они обозначаются термином ragged - «неровный»). Обычно они содержат такие члены, логические «родители» которых находятся не на непосредственно вышестоящем уровне (например, в географической иерархии есть уровни Country, City и State, но при этом в наборе данных имеются страны, не имеющие штатов или регионов между уровнями Country и City; рис. 5).

Отметим, что несбалансированные и «неровные» иерархии поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии, а в Microsoft OLAP Services 7.0 - только сбалансированные. Различным в разных OLAP-средствах может быть и число уровней иерархии, и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений.

Заключение

В данной статье мы ознакомились с основами OLAP. Мы узнали следующее:

  • Назначение хранилищ данных - предоставление пользователям информации для статистического анализа и принятия управленческих решений.
  • Хранилища данных должны обеспечивать высокую скорость получения данных, возможность получения и сравнения так называемых срезов данных, а также непротиворечивость, полноту и достоверность данных.
  • OLAP (On-Line Analytical Processing) является ключевым компонентом построения и применения хранилищ данных. Эта технология основана на построении многомерных наборов данных - OLAP-кубов, оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные.
  • Приложения с OLAP-функциональностью должны предоставлять пользователю результаты анализа за приемлемое время, осуществлять логический и статистический анализ, поддерживать многопользовательский доступ к данным, осуществлять многомерное концептуальное представление данных и иметь возможность обращаться к любой нужной информации.

Кроме того, мы рассмотрели основные принципы логической организации OLAP-кубов, а также узнали основные термины и понятия, применяемые при многомерном анализе. И наконец, мы выяснили, что представляют собой различные типы иерархий в измерениях OLAP-кубов.

В следующей статье данного цикла мы рассмотрим типичную структуру хранилищ данных, поговорим о том, что представляет собой клиентский и серверный OLAP, а также остановимся на некоторых технических аспектах многомерного хранения данных.

КомпьютерПресс 4"2001

В предыдущей статье данного цикла (см. № 2’2005) мы рассказали об основных новшествах аналитических служб SQL Server 2005. Сегодня мы подробнее рассмотрим средства создания OLAP-решений, входящие в этот продукт.

Коротко об основах OLAP

режде чем начать разговор о средствах создания OLAP-решений, напомним, что OLAP (On-Line Analytical Processing) — это технология комплексного многомерного анализа данных, концепция которой была описана в 1993 году Э.Ф.Коддом, знаменитым автором реляционной модели данных. В настоящее время поддержка OLAP реализована во многих СУБД и иных инструментах.

OLAP-кубы

Что представляют собой OLAP-данные? В качестве ответа на этот вопрос рассмотрим простейший пример. Предположим, в корпоративной базе данных некоего предприятия имеется набор таблиц, содержащих сведения о продажах товаров или услуг, и на их основе создано представление Invoices с полями Country (страна), City (город), CustomerName (название компании-клиента), Salesperson (менеджер по продажам), OrderDate (дата размещения заказа), CategoryName (категория товара), ProductName (наименование товара), ShipperName (компания-перевозчик), ExtendedPrice (оплата за товар), при этом последнее из перечисленных полей, собственно, и является объектом анализа.

Выбор данных из такого представления можно осуществить с помощью следующего запроса:

SELECT Country, City, CustomerName, Salesperson,

OrderDate, CategoryName, ProductName, ShipperName, ExtendedPrice

FROM Invoices

Предположим, нас интересует, какова суммарная стоимость заказов, сделанных клиентами из разных стран. Для получения ответа на этот вопрос необходимо сделать следующий запрос:

SELECT Country, SUM (ExtendedPrice) FROM Invoices

GROUP BY Country

Результатом этого запроса будет одномерный набор агрегатных данных (в данном случае — сумм):

Country SUM (ExtendedPrice)
Argentina 7327.3
Austria 110788.4
Belgium 28491.65
Brazil 97407.74
Canada 46190.1
Denmark 28392.32
Finland 15296.35
France 69185.48
209373.6
...

Если же мы хотим узнать, какова суммарная стоимость заказов, сделанных клиентами из разных стран и доставленных различными службами доставки, мы должны выполнить запрос, содержащий два параметра в предложении GROUP BY:

SELECT Country, ShipperName, SUM (ExtendedPrice) FROM Invoices

GROUP BY COUNTRY, ShipperName

Исходя из результатов этого запроса можно создать таблицу следующего вида:

Такой набор данных называется сводной таблицей (pivot table).

SELECT Country, ShipperName, SalesPerson SUM (ExtendedPrice) FROM Invoices

GROUP BY COUNTRY, ShipperName, Year

На основании результатов этого запроса можно построить трехмерный куб (рис. 1).

Добавляя дополнительные параметры для анализа, можно создать куб с теоретически любым числом измерений, при этом наряду с суммами в ячейках OLAP-куба могут содержаться результаты вычисления иных агрегатных функций (например, средние, максимальные, минимальные значения, количество записей исходного представления, соответствующее данному набору параметров). Поля, на основании которых вычисляются результаты, называются мерами куба.

Иерархии в измерениях

Предположим, нас интересует не только суммарная стоимость заказов, сделанных клиентами в разных странах, но и суммарная стоимость заказов, сделанных клиентами в разных городах одной страны. В этом случае можно воспользоваться тем, что значения, наносимые на оси, имеют различные уровни детализации — это описывается в рамках концепции иерархии изменений. Скажем, на первом уровне иерархии располагаются страны, на втором — города. Отметим, что начиная с SQL Server 2000 аналитические службы поддерживают так называемые несбалансированные иерархии, содержащие, например, такие члены, «дети» которых содержатся не на соседних уровнях иерархии или отсутствуют для некоторых членов изменения. Типичный пример подобной иерархии — учет того факта, что в разных странах могут существовать, либо отсутствовать такие административно-территориальные единицы, как штат или область, размещающиеся в географической иерархии между странами и городами (рис. 2).

Отметим, что в последнее время принято выделять типичные иерархии, например содержащие географические или временные данные, а также поддерживать существование нескольких иерархий в одном измерении (в частности, для календарного и финансового года).

Создание OLAP-кубов в SQL Server 2005

SQL Server 2005 кубы создаются с помощью SQL Server Business Intelligence Development Studio. Этот инструмент представляет собой специальную версию Visual Studio 2005, предназначенную для решения данного класса задач (а при наличии уже установленной среды разработки список шаблонов проектов пополняется проектами, предназначенными для создания решений на основе SQL Sever и его аналитических служб). В частности, для создания решений на основе аналитических служб предназначен шаблон Analysis Services Project (рис. 3).

Для создания OLAP-куба в первую очередь следует решить, на основе каких данных его формировать. Наиболее часто OLAP-кубы строятся на основе реляционных хранилищ данных со схемами «звезда» или «снежинка» (о них мы рассказывали в предыдущей части статьи). В комплекте поставки SQL имеется пример такого хранилища — база данных AdventureWorksDW, для использования которой в качестве источника следует найти в Solution Explorer папку Data Sources, выбрать пункт контекстного меню New Data Source и последовательно ответить на вопросы соответствующего мастера (рис. 4).

Затем рекомендуется создать Data Source View — представление, на основе которого будет создаваться куб. Для этого необходимо выбрать соответствующий пункт контекстного меню папки Data Source Views и последовательно ответить на вопросы мастера. Результатом указанных действий станет схема данных, с помощью которых будет построено представление источников данных, при этом в полученной схеме вместо исходных можно указать «дружественные» имена таблиц (рис. 5).

Описанный таким образом куб можно перенести на сервер аналитических служб, выбрав из контекстного меню проекта опцию Deploy, и осуществить просмотр его данных (рис. 7).

При создании кубов в настоящее время используются многие особенности новой версии SQL Server, такие, например, как представление источников данных. Описание исходных данных для построения куба, равно как и описание структуры куба, теперь производится с помощью знакомого многим разработчикам инструмента Visual Studio, что является немалым достоинством новой версии этого продукта — изучение разработчиками аналитических решений нового инструментария в этом случае сведено к минимуму.

Отметим, что в созданном кубе можно менять состав мер, удалять и добавлять атрибуты измерений и добавлять вычисляемые атрибуты членов измерений на основе имеющихся атрибутов (рис. 8).

Рис. 8. Добавление вычисляемого атрибута

Кроме того, в кубах SQL Server 2005 можно осуществлять автоматическую группировку или сортировку членов измерения по значению атрибута, определять связи между атрибутами, реализовывать связи «многие ко многим», определять ключевые показатели бизнеса, а также решать многие другие задачи (подробности о том, как выполняются все эти действия, можно найти в разделе SQL Server Analysis Services Tutorial справочной системы данного продукта).

В последующих частях данной публикации мы продолжим знакомство с аналитическими службами SQL Server 2005 и выясним, что нового появилось в области поддержки Data Mining.

Информационные системы серьезного предприятия, как правило, содержат приложения, предназначенные для комплексного анализа данных, их динамики, тенденций и т.п. Соответственно, основными потребителями результатов анализа становится топ-менеджмент. Такой анализ, в конечном итоге, призван содействовать принятию решений. А чтобы принять любое управленческое решение необходимо обладать необходимой для этого информацией, обычно количественной. Для этого необходимо эти данные собрать из всех информационных систем предприятия, привести к общему формату и уже потом анализировать. Для этого создают хранилища данных (Data Warehouses).

Что такое хранилище данных?

Обычно - место сбора всей информации, представляющей аналитическую ценность. Требования для таких хранилищ соответствуют классическому определению OLAP, будут объяснены ниже.

Иногда Хранилище имеет еще одну цель – интеграция всех данных предприятия, для поддержания целостности и актуальности информации в рамках всех информационных систем. Т.о. хранилище накапливает не только аналитическую, а почти всю информацию, и может ее выдавать в виде справочников обратно остальным системам.

Типичное хранилище данных, как правило, отличается от обычной реляционной базы данных. Во-первых, обычные базы данных предназначены для того, чтобы помочь пользователям выполнять повседневную работу, тогда как хранилища данных предназначены для принятия решений. Например, продажа товара и выписка счета производятся с использованием базы данных, предназначенной для обработки транзакций, а анализ динамики продаж за несколько лет, позволяющий спланировать работу с поставщиками, - с помощью хранилища данных.

Во-вторых, обычные базы данных подвержены постоянным изменениям в процессе работы пользователей, а хранилище данных относительно стабильно: данные в нем обычно обновляются согласно расписанию (например, еженедельно, ежедневно или ежечасно - в зависимости от потребностей). В идеале процесс пополнения представляет собой просто добавление новых данных за определенный период времени без изменения прежней информации, уже находящейся в хранилище.

И, в-третьих, обычные базы данных чаще всего являются источником данных, попадающих в хранилище. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Как строят хранилище?

ETL – базовое понятие: Три этапа:
  • Извлечение – извлечение данных из внешних источников в понятном формате;
  • Преобразование – преобразование структуры исходных данных в структуры, удобные для построения аналитической системы;
Добавим еще один этап – очистка данных (Cleaning ) – процесс отсеивания несущественных или исправления ошибочных данных на основании статистических или экспертных методов. Чтобы не формировать потом отчеты типа «Продажи за 20011 год».

Вернемся к анализу.

Что такое анализ и для чего он нужен?

Анализ – исследование данных с целью принятия решений. Аналитические системы так и называют - системы поддержки принятия решений (СППР ).

Здесь стоит указать на отличие работы с СППР от простого набора регламентированных и нерегламентированных отчетов. Анализ в СППР практически всегда интерактивен и итеративен. Т.е. аналитик копается в данных, составляя и корректируя аналитические запросы, и получает отчеты, структура которых заранее может быть неизвестна. Более подробно к этому мы вернемся ниже, когда будем обсуждать язык запросов MDX .

OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде (таблицы, диаграммы и т.п.). Традиционный подход сегментирования исходных данных использует выделение из исходных данных одного или нескольких многомерных наборов данных (нередко называемый гиперкубом или метакубом), оси которых содержат атрибуты, а ячейки – агрегируемые количественные данные. (Причем храниться такие данные могут и в реляционных таблицах, но в данном случае мы говорим о логической организации данных, а не о физической реализации их хранения.) Вдоль каждой оси атрибуты могут быть организованы в виде иерархий, представляющих различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации традиционных хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом , известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information - быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

  • предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это - ключевое требование OLAP);
  • возможность обращаться к любой нужной информации независимо от ее объема и места хранения.
Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Т.е. OLAP - это не технология, а идеология .

Прежде чем говорить о различных реализациях OLAP, давайте подробнее рассмотрим, что же представляют собой кубы с логической точки зрения.

Многомерные понятия

Мы будем использовать для иллюстрации принципов OLAP базу данных Northwind, входящую в комплекты поставки Microsoft SQL Server и представляющую собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании.

Куб

Возьмем для примера таблицу Invoices1, которая содержит заказы фирмы. Поля в данной таблице будут следующие:
  • Дата Заказа
  • Страна
  • Город
  • Название заказчика
  • Компания-доставщик
  • Название товара
  • Количество товара
  • Сумма заказа
Какие агрегатные данные мы можем получить на основе этого представления? Обычно это ответы на вопросы типа:
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны?
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны и доставленных определенной компанией?
  • Какова суммарная стоимость заказов, сделанных клиентами из определенной страны в заданном году и доставленных определенной компанией?
Все эти данные можно получить из этой таблицы вполне очевидными SQL-запросами с группировкой.

Результатом этого запроса всегда будет столбец чисел и список атрибутов его описывающих (например, страна) – это одномерный набор данных или, говоря математическим языком, – вектор.

Представим себе, что нам надо получить информацию по суммарной стоимости заказов из всех стран и их распределение по компаниям доставщиков – мы получим уже таблицу (матрицу) из чисел, где в заголовках колонок будут перечислены доставщики, в заголовках строк – страны, а в ячейках будет сумма заказов. Это – двумерный массив данных. Такой набор данных называется сводной таблицей (pivot table ) или кросс-таблицей.

Если же нам захочется получить те же данные, но еще в разрезе годов, тогда появится еще одно изменение, т.е. набор данных станет трехмерным (условным тензором 3-го порядка или 3-х мерным «кубом»).

Очевидно, что максимальное количество измерений – это количество всех атрибутов (Дата, Страна, Заказчик и т.д.), описывающих наши агрегируемые данные (сумму заказов, количество товаров и т.п).

Так мы приходим к понятию многомерности и его воплощению – многомерному кубу . Такая таблица будет у нас называться «таблицей фактов ». Измерения или Оси куба (dimensions ) – это атрибуты, координаты которых – выражаются индивидуальными значениями этих атрибутов, присутствующих в таблице фактов. Т.е. например, если информация о заказах велась в системе с 2003 по 2010 год, то эта ось годов будет состоять из 8 соответствующих точек. Если заказы приходят из трех стран, то ось стран будет содержать 3 точки и т.д. Независимо от того, сколько стран заложено в справочнике Стран. Точки на оси называются ее «членами» (Members ).

Сами агрегируемые данные в данном случае буду назваться «мерами» (Measure ). Чтобы избежать путаницы с «измерениями», последние предпочтительней называть «осями». Набор мер образует еще одну ось «Меры» (Measures ). В ней столько членов (точек), сколько мер (агрегируемых столбцов) в таблице фактов.

Члены измерений или осей могут быть объединены одной или несколькими иерархиями (hierarchy ). Что такое иерархия, поясним на примере: города из заказов могут быть объединены в районы, районы в области, области страны, страны в континенты или другие образования. Т.е. налицо иерархическая структура – континент-страна-область-район-город – 5 уровней (Level ). Для района данные агрегируются по всем городам, которые в него входят. Для области по всем районам, которые содержат все города и т.п. Зачем нужно несколько иерархий? Например, по оси с датой заказа мы можем хотеть группировать точки (т.е. дни) по иерархии Год-Месяц-День или по Год-Неделя-День : в обоих случаях по три уровня. Очевидно, что Неделя и Месяц по-разному группируют дни. Бывают также иерархии, количество уровней в которых не детерминировано и зависит от данных. Например, папки на компьютерном диске.

Агрегация данных может происходить с использованием нескольких стандартных функций: сумма, минимум, максимум, среднее, количество.

MDX

Перейдем к языку запросов в многомерных данных.
Язык SQL изначально был спроектирован не для программистов, а для аналитиков (и поэтому имеет синтаксис, напоминающий естественный язык). Но он со временем все больше усложнялся и теперь мало кто из аналитиков хорошо умеет им пользоваться, если умеет вообще. Он стал инструментом программистов. Язык запросов MDX, разработанный по слухам нашим бывшим соотечественником Мойшей (или Мошей) Посуманским (Mosha Pasumansky) в дебрях корпорации Майкрософт, тоже изначально должен был ориентирован на аналитиков, но его концепции и синтаксис (который отдаленно напоминает SQL, причем совершенно зря, т.к. это только путает), еще сложнее чем SQL. Тем не менее его основы все же понять несложно.

Мы рассмотрим его подробно потому что это единственный язык, который получил статус стандартного в рамках общего стандарта протокола XMLA , а во вторых потому что существует его open-source реализация в виде проекта Mondrian от компании Pentaho . Другие системы OLAP-анализа (например, Oracle OLAP Option) обычно используют свои расширения синтаксиса языка SQL, впрочем, декларируют поддержку и MDX.

Работа с аналитическими массивами данных подразумевает только их чтение и не подразумевает запись. Т.о. в языке MDX нет предложений для изменения данных, а есть только одно предложение выборки - select.

В OLAP из многомерных кубов можно делать срезы – т.е. когда данные фильтруются по одной или нескольким осям, или проекции – когда по одному или нескольким осям куб «схлопывается», агрегируя данные. Например, наш первый пример с суммой заказов из стран – есть проекция куба на ось Страны. MDX запрос для этого случая будет выглядеть следующим образом:

Select ...Children on rows from
Что здесь что?

Select – ключевое слово и в синтаксис входит исключительно для красоты.
– это название оси. Все имена собственные в MDX пишутся в квадратных скобках.
– это название иерархии. В нашем случае – это иерархия Страна-Город
– это название члена оси на первом уровне иерархии (т.е. страны) All – это мета-член, объединяющий все члены оси. Такой мета-член есть в каждой оси. Например в оси годов есть «Все года» и т.п.
Children – это функция члена. У каждого члена есть несколько доступных функций. Таких как Parent. Level, Hierarchy, возвращающие соответственно предка, уровень в иерархии и саму иерархию, к которой относится в данном случае член. Children – возвращает набор членов-потомков данного члена. Т.е. в нашем случае – страны.
on rows – Указывает как расположить эти данные в итоговой таблице. В данном случае – в заголовке строк. Возможные значении здесь: on columns, on pages, on paragraphs и т.п. Возможно так же указание просто по индексам, начиная с 0.
from – это указание куба, из которого производится выборка.

Что если нам не нужны все страны, а нужно только пара конкретных? Для этого можно в запросе указать явно те страны которые нам нужны, а не выбирать все функцией Children.

Select { ..., ... } on rows from
Фигурные скобки в данном случае – обявление набора (Set ). Набор – это список, перечисление членов из одной оси .

Теперь напишем запрос для нашего второго примера – вывод в разрезе доставщика:

Select ...Children on rows .Members on columns from
Здесь добавилось:
– ось;
.Members – функция оси, которая возвращает все члены на ней. Такая же функция есть и у иерархии и у уровня. Т.к. в данной оси иерархия одна, то ее указание можно опустить, т.к. уровень и иерархии тоже один, то можно выводить все члены одним списком.

Думаю, уже очевидно, как можно продолжить это на наш третий пример с детализацией по годам. Но давайте лучше не детализировать по годам, а фильтровать – т.е. строить срез. Для этого напишем следующий запрос:

Select ..Children on rows .Members on columns from where (.)
А где же тут фильтрация?

where – ключевое слово
– это один член иерархии . Полное имя с учетом всех терминов было бы таким: .. , но т.к. имя этого члена в рамках оси уникально, то все промежуточные уточнения имени можно опустить.

Почему член даты в скобках? Круглые скобки – это кортеж (tuple ). Кортеж – это один или несколько координат по различным осям. Например для фильтрации сразу по двум осям в круглых скобках мы перечислим два члена из разных измерений через запятую. Т. е. кортеж определяет «срез» куба (или «фильтрацию», если такая терминология ближе).

Кортеж используется не только для фильтрации. Кортежи могут быть и в заголовках строк/колонок/страниц и т.п.

Это нужно, например, для того чтобы вывести в двумерную таблицу результат трехмерного запроса.

Select crossjoin(...Children, ..Children) on rows .Members on columns from where (.)
Crossjoin – это функция. Она возвращает набор (set) кортежей (да, набор может содержать кортежи!), полученный в результате декартового произведения двух наборов. Т.е. результирующий набор будет содержать все возможные сочетания Стран и Годов. Заголовки строк, таким образом, будут содержать пару значений: Страна-Год .

Вопрос, а где же указание какие числовые характеристики надо выводить? В данном случае используется мера по умолчанию, заданная для этого куба, т.е. Сумма заказа. Если мы хотим выводить другую меру, то мы вспоминаем, что меры – это члены измерения Measures . И действуем точно так же как и с остальными осями. Т.е. фильтрации запроса по одной из мер будет выводить именно эту меру в ячейках.

Вопрос: чем отличается фильтрация в where от фильтрации путем указания членов осей в on rows. Ответ: практически ничем. Просто в where указывается срез для тех осей, которые не участвуют в формировании заголовков. Т.е. одна и та же ось не может одновременно присутствовать и в on rows , и в where .

Вычисляемые члены

Для более сложных запросов можно объявлять вычисляемые члены. Члены как осей атрибутов, так и оси мер. Т.е. Можно объявить, например, новую меру, которая будет отображать вклад каждой страны в общую сумму заказов:

With member . as ‘.CurrentMember / ..’, FORMAT_STRING=‘0.00%’ select ...Children on rows from where .
Вычисление происходит в контексте ячейки, у которой известные все ее атрибуты-координаты. Соответствующие координаты (члены) могут быть получены функцией CurrentMember у каждой из осей куба. Здесь надо понимать, что выражение .CurrentMember / .. ’ не делит один член на другой, а делит соответствующие агрегированный данные срезов куба! Т.е. срез по текущей территории разделится на срез по всем территориям, т.е. суммарное значение всех заказов. FORMAT_STRING – задает формат вывода значений, т.е. %.

Другой пример вычисляемого члена, но уже по оси годов:

With member . as ‘. - .’
Очевидно, что в отчете будет не единица, а разность соответствующих срезов, т.е. разность суммы заказов в эти два года.

Отображение в ROLAP

Системы OLAP так или иначе базируются на какой-нибудь системе хранения и организации данных. Когда речь идет о РСУБД, то говорят о ROLAP (MOLAP и HOLAP оставим для самостоятельного изучения). ROLAP – OLAP на реляционной БД, т.е. описанная в виде обычных двумерных таблиц. Системы ROLAP преобразуют MDX запросы в SQL. Основная вычислительная проблема для БД – быстрая агрегация. Чтобы быстрее агрегировать, данные в БД как правило сильно денормализованы, т.е. хранятся не очень эффективно с точки зрения занимаемого места на диске и контроля целостности БД. Плюс дополнительно содержат вспомогательные таблицы, хранящие частично агрегированные данные. Поэтому для OLAP обычно создается отдельная схема БД, которая лишь частично повторяет структуру исходных транзакционных БД в части справочников.

Навигация

Многие системы OLAP предлагают инструментарий интерактивной навигации по уже сформированному запросу (и соответственно выбранным данным). При этом используется так называемое «сверление» или «бурение» (drill). Более адекватным переводом на русский было бы слово «углубление». Но это дело вкуса., в некоторых средах закрепилось слово «дриллинг».

Drill – это детализация отчета с помощью уменьшения степени агрегации данных, совмещенное с фильтрацией по какой-нибудь другой оси (или нескольким осям). Сверление бывает нескольких видов:

  • drill-down – фильтрация по одной из исходных осей отчета с выводом детальной информации по потомкам в рамках иерархии выбранного фильтрующего члена. Например, если имеется отчет по распределению заказов в разрезе Стран и Годов, то при щелчке на 2007-м году выведется отчет в разрезе тех же Стран и месяцев 2007 года.
  • drill-aside – фильтрация под одной или нескольким выбранным осям и снятие агрегации по одной или нескольким другим осям. Например, если имеется отчет по распределению заказов в разрезе Стран и Годов, то при щелчке на 2007-м году выведется другой отчет в разрезе, например, Стран и Поставщиков с фильтрацией по 2007 году.
  • drill-trough – снятие агрегации по всем осям и одновременная фильтрация по ним же – позволяет увидеть исходные данные из таблицы фактов, из которых получено значение в отчете. Т.е. при щелчке по значению ячейки выводится отчет со всеми заказами, которые дали эту сумму. Эдакое мгновенное бурение в самые «недра» куба.
На этом все. Теперь, если вы решили посвятить себя Business Intelligence и OLAP самое время приступать к чтению серьезной литературы.

Теги: Добавить метки

OLAP - это не отдельно взятый программный продукт, не язык программирования и даже не конкретная технология. Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным. Выясним, зачем аналитикам надо как-то специально облегчать доступ к данным.

Дело в том, что аналитики - это особые потребители корпоративной информации. Задача аналитика - находить закономерности в больших массивах данных . Поэтому аналитик не будет обращать внимания на отдельно взятый факт, что в четверг четвертого числа контрагенту Чернову была продана партия черных чернил - ему нужна информация о сотнях и тысячах подобных событий. Одиночные факты в базе данных могут заинтересовать, к примеру, бухгалтера или начальника отдела продаж, в компетенции которого находится сделка. Аналитику одной записи мало - ему, к примеру, могут понадобиться все сделки данного филиала или представительства за месяц, год. Заодно аналитик отбрасывает ненужные ему подробности вроде ИНН покупателя, его точного адреса и номера телефона, индекса контракта и тому подобного. В то же время данные, которые требуются аналитику для работы, обязательно содержат числовые значения - это обусловлено самой сущностью его деятельности.

Итак, аналитику нужно много данных, эти данные являются выборочными, а также носят характер "набор атрибутов - число ". Последнее означает, что аналитик работает с таблицами следующего типа:

Здесь "Страна ", "Товар ", "Год " являются атрибутами или измерениями , а "Объем продаж " - тем самым числовым значением или мерой . Задачей аналитика, повторимся, является выявление стойких взаимосвязей между атрибутами и числовыми параметрами . Посмотрев на таблицу, можно заметить, что ее легко можно перевести в три измерения: по одной из осей отложим страны, по другой - товары, по третьей - годы. А значениями в этом трехмерном массиве у нас будут соответствующие объемы продаж.

Трехмерное представление таблицы. Серым сегментом показано, что для Аргентины в 1988 году данных нет

Вот именно такой трехмерный массив в терминах OLAP и называется кубом. На самом деле, с точки зрения строгой математики кубом такой массив будет далеко не всегда: у настоящего куба количество элементов во всех измерениях должно быть одинаковым, а у кубов OLAP такого ограничения нет. Тем не менее, несмотря на эти детали, термин "кубы OLAP" ввиду своей краткости и образности стал общепринятым. Куб OLAP совсем не обязательно должен быть трехмерным. Он может быть и двух-, и многомерным - в зависимости от решаемой задачи. Особо матерым аналитикам может понадобиться порядка 20 измерений - и серьезные OLAP-продукты именно на такое количество и рассчитаны. Более простые настольные приложения поддерживают где-то 6 измерений.

Измерения OLAP-кубов состоят из так называемых меток или членов (members). Например, измерение "Страна" состоит из меток "Аргентина", "Бразилия", "Венесуэла" и так далее.

Должны быть заполнены далеко не все элементы куба: если нет информации о продажах резиновых изделий в Аргентине в 1988 году, значение в соответствующей ячейке просто не будет определено. Совершенно необязательно также, чтобы приложение OLAP хранило данные непременно в многомерной структуре - главное, чтобы для пользователя эти данные выглядели именно так. Кстати именно специальным способам компактного хранения многомерных данных, "вакуум" (незаполненные элементы) в кубах не приводят к бесполезной трате памяти.

Однако куб сам по себе для анализа не пригоден. Если еще можно адекватно представить или изобразить трехмерный куб, то с шести - или девятнадцатимерным дело обстоит значительно хуже. Поэтому перед употреблением из многомерного куба извлекают обычные двумерные таблицы . Эта операция называется "разрезанием" куба. Термин этот, опять же, образный. Аналитик как бы берет и "разрезает" измерения куба по интересующим его меткам. Этим способом аналитик получает двумерный срез куба и с ним работает. Примерно так же лесорубы считают годовые кольца на спиле.

Соответственно, "неразрезанными", как правило, остаются только два измерения - по числу измерений таблицы. Бывает, "неразрезанным" остается только измерение - если куб содержит несколько видов числовых значений, они могут откладываться по одному из измерений таблицы.

Если еще внимательнее всмотреться в таблицу, которую мы изобразили первой, можно заметить, что находящиеся в ней данные, скорее всего, не являются первичными, а получены в результате суммирования по более мелким элементам. Например, год делится на кварталы, кварталы на месяцы, месяцы на недели, недели на дни. Страна состоит из регионов, а регионы - из населенных пунктов. Наконец в самих городах можно выделить районы и конкретные торговые точки. Товары можно объединять в товарные группы и так далее. В терминах OLAP такие многоуровневые объединения совершенно логично называется иерархиями . Средства OLAP дают возможность в любой момент перейти на нужный уровень иерархии. Причем, как правило, для одних и тех же элементов поддерживается несколько видов иерархий: например день-неделя-месяц или день-декада-квартал. Исходные данные берутся из нижних уровней иерархий, а затем суммируются для получения значений более высоких уровней. Для того, чтобы ускорить процесс перехода, просуммированные значения для разных уровней хранятся в кубе. Таким образом, то, что со стороны пользователя выглядит одним кубом, грубо говоря, состоит из множества более примитивных кубов.

Пример иерархии

В этом заключается один из существенных моментов, которые привели к появлению OLAP - производительности и эффективности. Представим себе, что происходит, когда аналитику необходимо получить информацию, а средства OLAP на предприятии отсутствуют. Аналитик самостоятельно (что маловероятно) или с помощью программиста делает соответствующий SQL-запрос и получает интересующие данные в виде отчета или экспортирует их в электронную таблицу. Проблем при этом возникает великое множество. Во-первых, аналитик вынужден заниматься не своей работой (SQL-программированием) либо ждать, когда за него задачу выполнят программисты - все это отрицательно сказывается на производительности труда, повышаются штурмовщина, инфарктно-инсультный уровень и так далее. Во-вторых, один-единственный отчет или таблица, как правило, не спасает гигантов мысли и отцов русского анализа - и всю процедуру придется повторять снова и снова. В-третьих, как мы уже выяснили, аналитики по мелочам не спрашивают - им нужно все и сразу. Это означает (хотя техника и идет вперед семимильными шагами), что сервер корпоративной реляционной СУБД, к которому обращается аналитик, может задуматься глубоко и надолго, заблокировав остальные транзакции.

Концепция OLAP появилась именно для разрешения подобных проблем. Кубы OLAP представляют собой, по сути, мета-отчеты. Разрезая мета-отчеты (кубы, то есть) по измерениям, аналитик получает, фактически, интересующие его "обычные" двумерные отчеты (это не обязательно отчеты в обычном понимании этого термина - речь идет о структурах данных с такими же функциями). Преимущества кубов очевидны - данные необходимо запросить из реляционной СУБД всего один раз - при построении куба. Поскольку аналитики, как правило, не работают с информацией, которая дополняется и меняется "на лету", сформированный куб является актуальным в течение достаточно продолжительного времени. Благодаря этому, не только исключаются перебои в работе сервера реляционной СУБД (нет запросов с тысячами и миллионами строк ответов), но и резко повышается скорость доступа к данным для самого аналитика. Кроме того, как уже отмечалось, производительность повышается и за счет подсчета промежуточных сумм иерархий и других агрегированных значений в момент построения куба. То есть, если изначально наши данные содержали информацию о дневной выручке по конкретному товару в отдельно взятом магазине, то при формировании куба OLAP-приложение считает итоговые суммы для разных уровней иерархий (недель и месяцев, городов и стран).

Конечно, за повышение таким способом производительности надо платить. Иногда говорят, что структура данных просто "взрывается" - куб OLAP может занимать в десятки и даже сотни раз больше места, чем исходные данные.

Ответить на вопросы:

    Что такое куб OLAP?

    Что такое метки конкретного измерения? Привести примеры.

    Могут ли меры в кубе OLAP, содержать нечисловые значения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: