Сравнение интегрированной графики. Встроенная графика Intel HD Graphics

Все крупные производители видеокарт традиционно имеют две линейки - мобильную и десктопную. В последнее время Nvidia стала ставить несколько заниженные по частоте десктопные видеокарты в ноутбуки, но в основном линейки различаются, и сильно(нельзя просто так взять и выкинуть букву M из названия).
Оценить производительность всех видеокарт у меня нет возможности, поэтому я буду брать только современные и самые популярные - в большинстве ноутбуков стоят всего 15-20 моделей видеокарт, которые можно рассмотреть детально. Еще одно дополнение - все сравниваемые видеокарты будут сравниваться для удобства с десктопными видеокартами от Nvidia.

  • Видеокарты от Intel.
    Да на них можно поиграть. Да, с трудом и в нетребовательные игры, но можно. И тут есть несколько моментов: во-первых игры (за редким исключением) под видеокарты от Intel не оптимизируют, а значит даже если по тестам интеловская встройка мощнее минимальной необходимой для игры видеокарты (про рекомендованные мы даже не заикаемся) то это далеко не значит, что игра пойдет с комфортной производительностью. Но может быть и обратная ситуация - встройка может банально не отрисовывать некоторые объекты, что увеличит fps. Короче говоря игры на таких видеокартах - рандом, и брать их специально для игр не стоит (если только во всех ваших играх в системных требованиях не указано что видеокарты от Intel поддерживаются). Во-вторых такие видеокарты используют под видеопамять часть ОЗУ, поэтому чем она быстрее - тем больше FPS, и если же Вы все же решились взять ноутбук только со встройкой - первым апгрейдом (если он возможен конечно) желательно поставить две плашки ОЗУ с максимальной частотой.
    Современная линейка HD Graphics представлена 3мя видеокартами - HD Graphics 515, 520 и 530. Физически они все одинаковы (имеют по 24 вычислительных блока), максимальные частоты колеблются около 1 Ггц. Различия лишь в теплопакетах процессоров, в которые они ставятся - чем больше теплопакет тем выше будет частота видеокарты, поэтому HD 515, ставящаяся в 4 ваттные процессоры, будет работать ощутимо хуже чем HD 530, ставящаяся в процессоры с TDP от 35 ватт. Приблизительная производительность такова:
    Intel HD Graphics 515 = Nvidia GeFroce GT 210 (да-да, она еще активно продается);
    Intel HD Graphics 520 = Nvidia GeForce GT 720;
    Intel HD Graphics 530 = Nvidia GeForce GT 630.
    В общем производительность как у офисных заглушек.
    Линейка Iris Graphics выглядит бодрее - они может использовать 64-128 МБ быстрого L4 кэша, имеет 48 (а не 24) вычислительных блока и ставится в процессоры с теплопакетами 15 ватт (Iris 540), 28 ватт(Iris 550) и 45 ватт(Iris Pro 580). Проблемы все те же, но производительность сильно выше:
    Intel Iris 540 = Nvidia GeForce GT 640;
    Intel Iris 550 = Nvidia GeForce GT 740(вот уже и добрались до уровня "играбельно все в 800х600 на низких");
    Intel Iris Pro 580 = Nvidia GeForce GTX 650.
    Тут уже веселее - на GTX 650 пусть в HD, но в современные хиты поиграть можно.
  • Видеокарты от AMD.
    Достаточно редкие в ноутбуках (особенно дорогих) гости, хотя видеокарт AMD наделали много и разных. По сути от десктопных AMD отличаются лишь производительностью и тепловыделением, поддержка стандартов не урезана. Так же линейка M4xx является по сути полным переменованием линейки M3xx (которая в свою очередь - полное переименование M2xx), поэтому производительность между одинаковыми видеокартами этих линеек различается не более чем на 5-10%. Увы - в ноутбуках они зачастую не могут конкурировать с Nvidia по цене-производительности.
    AMD Radeon R5 M320 = Nvidia GeForce GT 710 (как эта видеокарта вообще на свет появилась? Она же даже слабее HD 520...)
    AMD Radeon R5 M430 = Nvidia GeForce GT 720 (юмор в том что такая видеокарта зачастую ставится в ноутбук с процессором от Intel и ровной такой же по производительности HD 520 - то есть по сути является лишней);
    AMD Radeon R7 M440 = Nvidia GeForce GT 730;
    AMD Radeon R7 M460 = Nvidia GeForce GTS 450;
    AMD Radeon R6 M340DX = Nvidia GeForce GT 640 (сумрачный гений от AMD придумал сделать и так не особо хорошо работающий Crossfire на двух разных по производительности видеокартах - встроенной в процессор R6 Carrizo и дискретной R5 M330. В итоге работает сия связка очень так себе);
    AMD Radeon R7 M370 = Nvidia GeForce GTX 550 Ti;

    AMD Radeon R9 M370X = Nvidia GeForce GTX 650;
    AMD Radeon R9 M375 = Nvidia GeForce GTX 460;
    AMD Radeon R9 M380 = Nvidia GeForce GTX 465 (найти можно пожалуй только в iMac 5K, самая простая модель);
    AMD Radeon Pro 450 = Nvidia GeForce GTX 560 Ti (видеокарта из младшей версии нового 15" макбука);
    AMD Radeon Pro 455 = Nvidia GeForce GTX 750 (видеокарта из средней версии нового 15" макбука);
    AMD Radeon Pro 460 = Nvidia GeForce GTX 750 Ti (видеокарта из топовой версии нового 15" макбука);
    AMD Radeon R9 M390 = Nvidia GeForce GTX 750 Ti (iMac 5K, средняя модель);
    AMD RX 460M = Nvidia GeForce GTX 760;
    AMD Radeon R9 M395 = Nvidia GeForce GTX 590 (iMac 5K, топовая модель);
    AMD RX 480M = Nvidia GeForce GTX 680;
    AMD Radeon R9 M395X = Nvidia GeForce GTX 680(iMac 5K, можно выбрать при заказе на сайте Apple).
    В общем появление первых трех видеокарт в ноутбуках я могу объяснить только тем что AMD заплатила производителям(ибо производительность данных видеокарт недалеко ушла от и так встроенных в процессоры видеокарт от Intel), добрая половина ставится только в макбуки/аймаки, а RX есть только в новых Alienware. Так что у AMD в мобильном сегменте все достаточно грустно.
  • Видеокарты от Nvidia.
    В общем-то балом правят именно они, ибо в высокопроизводительном сегменте они практически единственные, а в среднем и низком предлагают большую производительность при той же цене, что и AMD. Аналогично с последними никакие стандарты не урезаны. Видеокарты линейки GT 8xx и 9xx по сути одно и тоже вплоть до 870M/970M (да, Nvidia тоже ударилась в переименование).
    Nvidia GeForce GT 920M/920MX = Nvidia GeForce GT 730 (то же, что и с AMD - видеокарта бессмыслена ибо недалеко ушла от интеловских встроек);
    Nvidia GeForce GT 930M/930MX = Nvidia GeForce GTS 450;
    Nvidia GeForce GT 940M/940MX = Nvidia GeForce GTX 550 Ti;
    Nvidia GeForce GTX 950M = Nvidia GeForce GTX 560 Ti;
    Nvidia GeForce GTX 960M = Nvidia GeForce GTX 750 Ti (вот тут совпадение на 100% ибо видеокарты по сути полностью одинаковые);
    Nvidia GeForce GTX 965M = Nvidia GeForce GTX 950;
    Nvidia GeForce GTX 970M = Nvidia GeForce GTX 960;
    Nvidia GeForce GTX 980M = Nvidia GeForce GTX 770.
    Все видеокарты, являющиеся десктопными, но установленные в ноутбук - GTX 980/1050/1050 Ti/1060/1070/1080 по производительности слабее референсных десктопных аналогов на 0-10%.

Как мы тестировали

В рамках тестирования мы поставили перед собой цель сравнить производительность новых встроенных в процессоры Ivy Bridge графических ускорителей Intel HD Graphics 4000 и Intel HD Graphics 2500 со скоростью работы предшествующих и конкурирующих интегрированных GPU и видеокарт младшего ценового диапазона. Данное сравнение проводилось на примере настольных систем, хотя полученные результаты нетрудно распространить и на мобильные системы.

Актуальных процессоров для настольных компьютеров с интегрированной графикой, которые имеет смысл сравнивать с Ivy Bridge, на данный момент на рынке присутствует два: AMD Vision серий A8/A6 и интеловский же Sandy Bridge. Именно с ними мы и сопоставили систему, в основе которой лежали процессоры Core i5 третьего поколения, оснащённые графическими ядрами Intel HD Graphics 2500 и Intel HD Graphics 4000. Кроме того, в тестах приняли участие и дешёвые дискретные видеокарты AMD шеститысячной серии Radeon HD 6450 и Radeon HD 6570.

К сожалению, выполняя сравнение встроенных видеоядер, мы не можем обеспечить полное равенство прочих характеристик систем. Разные ядра являются принадлежностью разных процессоров, различающихся не только по тактовой частоте, но и по микроархитектуре. Поэтому нам пришлось ограничиться подбором близких, но не идентичных конфигураций. В случае LGA1155-платформ мы выбирали исключительно процессоры серии Core i5, а для сравнения с ними использовались старшие процессоры AMD Vision семейства Llano. Дискретные же видеокарты испытывались в составе системы с процессором Ivy Bridge.

В результате в тестах задействовались следующие аппаратные и программные компоненты:

Процессоры:

  • Intel Core i5-3570K (Ivy Bridge, 4 ядра, 3.4-3,8 ГГц, 6 Мбайт L3, HD Graphics 4000);
  • Intel Core i5-3550 (Ivy Bridge, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, HD Graphics 2500);
  • Intel Core i5-2500K (Sandy Bridge, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, HD Graphics 3000);
  • Intel Core i5-2400 (Sandy Bridge, 4 ядра, 3,1-3,4 ГГц, 6 Мбайт L3, HD Graphics 2000);
  • AMD A8-3870K (Llano, 4 ядра, 3,0 ГГц, 4 Мбайта L2, Radeon HD 6550D);
  • AMD A6-3650 (Llano, 4 ядра, 2,6 ГГц, 4 Мбайта L2, Radeon HD 6530D).

Материнские платы:

  • ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express);
  • Gigabyte GA-A75-UD4H (Socket FM1, AMD A75).

Видеокарты:

  • AMD Radeon HD 6570 1 Гбайт GDDR5 128-бит;
  • AMD Radeon HD 6450 512 Мбайт GDDR5 64-бита.

Память: 2x4 Гбайт, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX).

Дисковая подсистема: Crucial m4 256 Гбайт (CT256M4SSD2).

Блок питания: Tagan TG880-U33II (880 W).

Операционная система: Microsoft Windows 7 SP1 Ultimate x64.

Драйверы:

  • AMD Catalyst 12.4 Driver;
  • AMD Chipset Driver 12.4;
  • Intel Chipset Driver 9.3.0.1019;
  • Intel Graphics Media Accelerator Driver 15.28.0.64.2729;
  • Intel Rapid Storage Technology 10.8.0.1003.

Основной акцент в настоящем тестировании был вполне закономерно сделан на игровые применения встроенной процессорной графики. Поэтому основная масса использованных нами бенчмарков — это игры или специализированные геймерские тесты. Причём к настоящему времени мощности интегрированных видеоакселераторов выросли настолько, что позволили нам провести исследование производительности не только в низком разрешении 1366x768, но и в ставшем де-факто стандартом для настольных систем Full HD-разрешении 1980x1080. Правда, в последнем случае мы ограничивались выбором низких настроек качества.

⇡ 3D-производительность

Предваряя результаты тестирования производительности, необходимо пару слов сказать и о совместимости графических ускорителей HD Graphics 4000/2500 с различными играми. Ранее достаточно типичной была ситуация, когда некоторые игры с интеловской графикой работали некорректно или не работали вообще. Однако прогресс очевиден: медленно, но верно ситуация меняется к лучшему. С каждой новой версией ускорителя и драйвера список полностью совместимых игровых приложений расширяется, и в случае с HD Graphics 4000/2500 встретить какие-то критические проблемы уже достаточно трудно. Впрочем, если вы всё равно относитесь к возможностям интеловских графических ядер скептически, то на сайте Intel имеется обширный список ( , ) проверенных на совместимость с HD Graphics новых и популярных игр, с которыми гарантированно нет никаких проблем и в которых наблюдается приемлемый уровень производительности.

⇡ 3DMark Vantage

Результаты тестов семейства 3DMark — очень популярная метрика для оценки средневзвешенной игровой производительности видеокарт. Поэтому к 3DMark мы обратились в первую очередь. Выбор же версии Vantage обусловлен тем, что она использует DirectX десятой версии, поддерживаемой всеми принимающими участие в испытаниях видеоускорителями.

Первые же диаграммы весьма выпукло показывают тот огромный скачок в производительности, который сделали графические ядра семейства HD Graphics. HD Graphics 4000 демонстрирует более чем двукратное преимущество перед HD Graphics 3000. Не ударяет лицом в грязь и младшая версия новой интеловской графики. HD Graphics 2500 обгоняет HD Graphics 2000 почти вдвое даже несмотря на то, что оба эти ускорителя располагают одинаковым количеством исполнительных устройств.

⇡ 3DMark 11

Более свежая версия 3DMark ориентирована на измерение DirectX 11-производительности. Поэтому из этого испытания выбывают интегрированные графические ускорители процессоров Core второго поколения.

Графическое ядро процессоров Ivy Bridge первым из интеловских ускорителей смогло пройти испытание в 3DMark 11, причём никаких нареканий к качеству изображения при работе этого DirectX 11-теста мы не заметили. Производительность HD Graphics 4000 также вполне на уровне. Оно обгоняет дискретную видеокарту начального уровня Radeon HD 6450 и встроенный в процессор AMD A6-3650 ускоритель Radeon HD 6530D, уступая лишь старшему варианту интегрированного ядра процессоров AMD Llano и видеокарте Radeon HD 6570, стоимость которой составляет порядка $60-70. Младшая же модификация современной интеловской графики, HD Graphics 2500, оказывается на последнем месте. Очевидно, что постигшее её безжалостное урезание количества исполнительных устройств существенно сказывается на игровом быстродействии.

⇡ Batman Arkham City

Открывает группу реальных игровых тестов сравнительно новая игра Batman Arkham City, построенная на движке Unreal Engine 3.

Как видно по результатам, производительность интегрированной интеловской графики выросла настолько, что она позволяет играть в достаточно современные игры при полноценном Full HD-разрешении. И хотя о хорошем качестве изображения и о полностью комфортном количестве кадров в секунду речи пока не идёт, это всё равно сильный рывок вперёд, прекрасно иллюстрируемый 55-процентным преимуществом HD Graphics 4000 перед HD Graphics 3000. В целом же HD Graphics 4000 настигает интегрируемое в AMD A6-3650 ядро Radeon HD 6530D и дискретную видеокарту Radeon HD 6450, немного отставая от AMD A8-3850K с его GPU Radeon HD 6550D. Правда, младший вариант интегрированного ядра Ivy Bridge, HD Graphics 2500, столь же существенными достижениями в быстродействии похвастать не может. Хотя его результат превышает показатели HD Graphics 2000 на 40-45 процентов, графика четырёхъядерных процессоров Llano, как и 40-долларовых видеокарт, работает заметно быстрее.

⇡ Battlefield 3

Популярнейший шутер от первого лица на встроенной в процессоры Ivy Bridge графике ворочается недостаточно быстро. Кроме того, в процессе тестирования мы столкнулись с некоторыми проблемами с отображением игрового меню. Тем не менее общая оценка производительности решений HD Graphics нового поколения не меняется. Четырёхтысячный ускоритель несколько быстрее графики AMD A6-3650 и видеокарты Radeon HD 6450, однако уступает старшей модификации видеоядра процессоров Llano и с треском проигрывает дискретной видеокарте Radeon HD 6570.

⇡ Civilization V

Популярная пошаговая стратегия благоволит к графическим решениям с архитектурой AMD, именно они занимают здесь первые места. Результаты же интеловской графики не слишком хороши, даже HD Graphics 4000 существенно отстаёт и от внутреннего Radeon HD 6530D, и от внешнего Radeon HD 6450.

⇡ Crysis 2

Crysis 2 можно смело отнести к числу наиболее «тяжёлых» для видеоускорителей компьютерных игр. И это, как видим, сказывается на соотношении результатов. Даже с учётом того, что при тестировании мы не включали режим DirectX 11, Intel HD Graphics 4000 в процессоре Core i5-3750K выступила плохо и проиграла как процессорной графике A6-3650, так и дискретной видеокарте Radeon HD 6450. Справедливости ради следует заметить, что преимущество Ivy Bridge перед Sandy Bridge остаётся более чем существенным, причём оно наблюдается как на примере старших версий акселераторов, так и с младшими. Иными словами, сила нового графического ядра базируется на увеличении числа исполнительных устройств лишь отчасти. Даже без этого HD Graphics 2500 примерно на 30 процентов превосходит HD Graphics 2000.

⇡ Dirt 3

В Dirt 3 ситуация типичная. HD Graphics 4000 быстрее старшей версии графического ядра из процессоров Sandy Bridge примерно на 80 процентов, а HD Graphics 2500 опережает встроенный видеоускоритель HD Graphics 2000 на 40 процентов. Результатом такого прогресса становится то, что по скорости система на базе Core i5-3750K без внешней видеокарты оказывается посредине между интегрированными системами с процессорами AMD A8-3870K и AMD A6-3650. Дискретные же видеокарты могут бороться с новой и быстрой версией HD Graphics, но только начиная с Radeon HD 6570: более медленные же бюджетные решения интеловскому четырёхтысячному ускорителю проигрывают.

⇡ Far Cry 2

Смотрите: в популярном шутере четырёхлетней давности производительность современной встроенной графики разработки Intel уже вполне достаточна для комфортной игры. Правда, пока с невысоким качеством изображения. Тем не менее по диаграмме хорошо видно, насколько резво растёт скорость интегрированных решений Intel со сменой поколений процессоров. Если предположить, что с появлением процессоров Haswell взятый темп сохранится, то можно ожидать, что в следующем году станут ненужными уже и дискретные видеокарты уровня Radeon HD 6570.

⇡ Mafia II

В Mafia II встроенная в процессоры AMD графика выглядит сильнее, чем даже HD Graphics 4000. Причём касается это как Radeon HD 6550D, так и более медленного варианта интегрированного ускорителя из APU класса Vision, Radeon HD 6530D. Так что в очередной раз мы вынуждены констатировать, что AMD Llano имеет более продвинутое видеоядро, нежели Ivy Bridge. А выходящие в скором времени новые процессоры семейства Vision с дизайном Trinity, ясное дело, смогут ещё сильнее отодвинуть HD Graphics от лидирующих позиций. Тем не менее отрицать происходящее семимильными шагами совершенствование интеловской графики невозможно. Даже младшая версия встроенного в Ivy Bridge акселератора, HD Graphics 2500, выглядит на фоне предшественников весьма впечатляюще. Располагая всего лишь шестью исполнительными устройствами, она почти дотягивает по быстродействию до HD Graphics 3000 из Sandy Bridge, число исполнительных устройств в котором — двенадцать.

⇡ War Thunder: World of Planes

War Thunder — это новый многопользовательский боевой авиационный симулятор, выход которого ожидается в недалёком будущем. Но даже в этой новейшей игре интегрированные графические ядра, если не «выкручивать» настройки качества, предлагают вполне приемлемое быстродействие. Конечно, дискретные видеокарты среднего ценового диапазона позволят получать большее удовольствие от процесса игры, но и современную интеловскую графику непригодной для новых игр назвать невозможно. В особенности это касается четырёхтысячной версии HD Graphics, которая в очередной раз уверенно превзошла хоть и бюджетную, но вполне актуальную дискретную видеокарту Radeon HD 6450. Младшая же графика из Ivy Bridge смотрится значительно хуже, её производительность примерно вдвое ниже, и в результате она существенно уступает в скорости не только дискретным графическим ускорителям, но и интегрированным видеоакселераторам, встраиваемым в четырёхъядерные Socket FM1-процессоры компании AMD.

⇡ Cinebench R11.5

Все игры, в которых мы провели тестирование, относятся к приложениям, использующим программный интерфейс DirectX. Однако нам хотелось посмотреть и на то, как справятся новые интеловские ускорители с работой в OpenGL. Поэтому к чисто игровым тестам мы добавили и небольшое исследование производительности при работе в профессиональном графическом пакете Cinema 4D.

Как показывают результаты, никаких принципиальных отличий в относительной производительности HD Graphics не наблюдается и в OpenGL-приложениях. Правда, HD Graphics 4000 всё-таки отстаёт от любых вариантов интегрированных и дискретных ускорителей AMD, что, впрочем, вполне закономерно и объясняется лучшей оптимизацией их драйвера.

⇡ Производительность при работе с видео

В работу с видео в случае графических ядер HD Graphics вкладывается два понятия. С одной стороны — это воспроизведение (декодирование) видеоконтента высокого разрешения, а с другой — его транскодирование (то есть декодирование с последующим кодированием) посредством технологии Quick Sync.

Что касается декодирования, то тут характеристики нового поколения графических ядер ничем не отличаются от того, что было раньше. HD Graphics 4000/2500 поддерживает полностью аппаратное декодирование видео в форматах AVC/H.264, VC-1 и MPEG-2 через интерфейс DXVA (DirectX Video Acceleration). Это означает, что при проигрывании видео с использованием совместимых с DXVA программных плееров загрузка вычислительных ресурсов процессора и его энергопотребление остаются минимальными, а работу по декодированию контента выполняет специализированный блок, являющийся частью графического ядра.

Впрочем, ровно то же самое было обещано и в процессорах Sandy Bridge, однако на практике в ряде случаев (при использовании определённых плееров и при проигрывании определённых форматов) мы сталкивались с неприятными артефактами. Понятно, что связано это было не с какими-то аппаратными изъянами встроенного в графическое ядро декодера, а скорее с программными недоработками, но конечному пользователю от этого не легче. К настоящему же моменту, похоже, все детские болезни уже ушли, и современные версии плееров справляются с проигрыванием видео в системах с HD Graphics нового поколения без каких-либо нареканий на качество изображения. По крайней мере, на нашем тестовом наборе видеороликов всевозможных форматов мы так и не смогли заметить какие-либо дефекты изображения ни в свободно распространяемых Media Player Classic Home Cinema 1.6.2.4902 или VLC media player 2.0.1, ни в коммерческом Cyberlink PowerDVD 12 build 1618.

Ожидаемо низкой при воспроизведении видеоконтента оказывается и загрузка процессора, ведь основная работа ложится не на вычислительные ядра, а на имеющийся в недрах графического ядра видеодвижок. Например, проигрывание Full HD-видео со включёнными субтитрами грузит Core i5-3550 с акселератором HD Graphics 2500, на котором мы проводили проверку, не более чем на 10 %. Более того, процессор остаётся при этом в энергосберегающем состоянии, то есть работает на сниженной до 1,6 ГГц частоте.

Надо сказать, что производительности аппаратного декодера при этом без проблем хватает и на одновременное проигрывание сразу нескольких Full HD-видеопотоков, и на воспроизведение «тяжёлых» 1080p-роликов, закодированных с битрейтом порядка 100 Мбит/с. Впрочем, «поставить на колени» декодер всё-таки возможно. Например, при проигрывании H.264 видеоролика, закодированного в разрешении 3840x2160 с битрейтом порядка 275 Мбит/с, нам удалось наблюдать выпадения кадров и подтормаживания несмотря на то, что Intel обещает поддержку аппаратного декодирования видео и в больших форматах. Впрочем, указанное QFHD-разрешение используется в данный момент очень и очень редко.

Проверили мы и работу второй версии технологии Quick Sync, реализованной в процессорах Ivy Bridge. Поскольку в новых графических ядрах Intel обещает увеличение скорости транскодирования, в первую очередь наше внимание было сосредоточено на тестировании производительности. Во время практических испытаний мы померили время выполнения перекодирования одного 40-минутного эпизода популярного сериала, закодированного в формате 1080p H.264 с битрейтом 10 Мбит/с для просмотра на Apple iPad2 (H.264, 1280x720, 4Mbps). Для тестов использовались две утилиты, поддерживающие технологию Quick Sync: Arcsoft Media Converter 7.5.15.108 и Cyberlink Media Espresso 6.5.2830.

Рост скорости транскодирования не заметить невозможно. Процессор Ivy Bridge, снабжённый графическим ядром HD Graphics 4000, справляется с тестовой задачей почти на 75 процентов быстрее, чем процессор прошлого поколения с ядром HD Graphics 3000. Однако ошеломляющее увеличение производительности произошло, похоже, только у старшей версии интеловского графического ядра. По крайней мере, при сравнении скорости перекодирования у графических ядер HD Graphics 2500 и HD Graphics 2000 столь же разительного разрыва не наблюдается. Quick Sync в младшей версии графики Ivy Bridge работает существенно медленнее, чем в старшей, в результате чего процессоры с HD Graphics 2500 и HD Graphics 2000 выдают при транскодировании видео быстродействие, различающееся примерно на 10 процентов. Впрочем, горевать по этому поводу не нужно. Даже самая медленная версия Quick Sync работает настолько быстро, что оставляет далеко позади не только софтверное декодирование, но и все варианты Radeon HD, которые ускоряют кодирование видео своими программируемыми шейдерами.

Отдельно хочется затронуть вопрос качества перекодирования видео. Ранее бытовало мнение, что технология Quick Sync дает существенно худший результат, нежели аккуратное программное перекодирование. Intel не отрицала данный факт, подчёркивая, что Quick Sync — это средство для быстрого получения результата, а отнюдь не для профессионального мастеринга. Однако в новой версии технологии, если верить разработчикам, качество было улучшено за счёт изменений в медиасэмплере. Удалось ли при этом достичь уровня качества программного декодирования? Давайте посмотрим на скриншоты, на которых представлен результат перекодирования исходного Full HD-видео для просмотра на Apple iPad 2.

Программное перекодирование, кодек x264:

Перекодирование с использованием технологии Quick Sync, HD Graphics 3000:

Перекодирование с использованием технологии Quick Sync 2.0, HD Graphics 4000:

Честно говоря, никаких кардинальных качественных улучшений не видно. Более того, кажется, что первая версия Quick Sync даёт даже лучший результат — изображение менее размыто и мелкие детали просматриваются отчетливее. С другой стороны, излишняя чёткость картинки на HD Graphics 3000 добавляет шумы, что тоже — нежелательный эффект. Так или иначе, за достижением идеала мы вновь вынуждены советовать обращаться к программному перекодированию, которое способно предложить более качественное преобразование видеоконтента как минимум за счёт более гибких настроек. Однако в том случае, если видео планируется воспроизводить на каком-либо мобильном устройстве с небольшим экраном, использовать Quick Sync как первой, так и второй версии вполне разумно.

⇡ Выводы

Темп, взятый компанией Intel в совершенствовании собственных интегрированных графических ядер, впечатляет. Казалось бы, ещё недавно мы восхищались тем, что графика Sandy Bridge внезапно стала способна к соперничеству с видеокартами начального уровня, как в новом поколении процессорного дизайна Ivy Bridge её производительность и функциональность совершила очередной качественный скачок. Особенно поразительным этот прогресс выглядит на фоне того, что микроархитектура Ivy Bridge представляется производителем не в качестве принципиально новой разработки, а как перевод старого дизайна на новые технологические рельсы, сопровождаемый незначительными доработками. Но тем не менее с выходом Ivy Bridge новая версия интегрированных графических ядер HD Graphics получила не только более высокое быстродействие, но и поддержку DirectX 11, и улучшенную технологию Quick Sync, и способность к выполнению вычислений общего назначения.

Впрочем, на самом деле вариантов нового графического ядра — два, и они существенно отличаются друг от друга. Старшая модификация, HD Graphics 4000, — это как раз именно то, что вызывает у нас весь восторг. Её 3D-производительность по сравнению с оной в HD Graphics 3000 выросла в среднем примерно на 70 процентов, а это значит, что скорость HD Graphics 4000 находится где-то между производительностью современных дискретных видеоускорителей Radeon HD 6450 и Radeon HD 6570. Конечно, для интегрированной графики это — не рекорд, встроенные в старшие процессоры семейства AMD Llano видеоакселераторы работают всё-таки побыстрее, но уже Radeon HD 6530D из процессоров семейства AMD A6 оказывается поверженным. А если к этому добавить технологию Quick Sync, которая стала работать на 75 процентов быстрее, чем раньше, то получается, что ускоритель HD Graphics 4000 не имеет аналогов и вполне может стать желанным вариантом как для мобильных компьютеров, так и для не сугубо геймерских десктопов.

Вторая модификация нового интеловского графического ядра, HD Graphics 2500, ощутимо хуже. Хотя она также приобрела поддержку DirectX 11, на самом деле это — скорее формальное улучшение. Её производительность почти всегда ниже скорости HD Graphics 3000, и ни о каком соперничестве с дискретными ускорителями речь уже не идёт. Строго говоря, HD Graphics 2500 выглядит решением, в котором полноценная 3D-функциональность оставлена просто для галочки, на самом же деле её никто всерьёз не рассматривает. То есть HD Graphics 2500 — это хороший вариант для медиаплееров и HTPC, так как никакие функции по кодированию и декодированию видео в нём не обрезаны, но не 3D-ускоритель начального уровня в современном понимании этого термина. Хотя, конечно, многие игры прошлых поколений могут вполне сносно работать и на HD Graphics 2500.

Судя по тому, как Intel распорядилась размещением графических ядер HD Graphics 4000/2500 в процессорах своего модельного ряда, собственное мнение компании о них очень близко к нашему. Старшая, четырёхтысячная версия ориентирована главным образом на ноутбуки, где использование дискретной графики наносит серьёзный удар по мобильности, а нужда в интегрированных и производительных решениях очень высока. В десктопных же процессорах HD Graphics 4000 можно получить лишь в составе редких специальных предложений либо как часть дорогих CPU, помещать в которые урезанные версии чего-либо как-то «не комильфо». Поэтому большинство процессоров Ivy Bridge для настольных систем комплектуется графическим ядром HD Graphics 2500, пока что не оказывающим серьёзного давления на рынок дискретных видеокарт снизу.

Тем не менее Intel явно даёт понять, что развитие встроенных графических решений, как и у конкурента, — один из важнейших приоритетов компании. И если сейчас процессоры со встроенной графикой могут оказать существенное влияние лишь на рынок мобильных решений, то в недалёком будущем интегрированные графические ядра могут замахнуться и на место дискретных десктопных видеоускорителей. Впрочем, как оно будет на самом деле — покажет время.

Встроенный графический адаптер начального уровня Intel HD Graphics 2500дебютировал вместе с третьим поколением процессоров на основе микроархитектуры Core под кодовым названием Ivi Bridge. Наиболее часто он был интегрирован в настольные чипы серий Celeron, Pentium, i3 и даже i5. Именно об этом графическом решении и пойдет речь в нашем обзоре.

Причина появления рассматриваемого акселератора

Intel HD Graphics 2500, как и любой другой адаптер данного производителя, является интегрированным решением. Первоначально такие продукты подходили лишь для решения самых простых и наиболее нетребовательных задач. К их числу можно отнести различные офисные пакеты, медиаконтент и браузеры. Также на таком аппаратном обеспечении допускается запуск наиболее простых игрушек, к числу которых можно отнести пошаговые стратегии или логические приложения. Задумка менеджеров «Интел» в этом случае сводится к тому, что в большинстве вариантов для работы офисного компьютера достаточно возможностей видеоадаптера, встроенного в центральный процессор. Поэтому дополнительно приобретать дискретный ускоритель начального уровня в этом случае нет особого смысла. Как результат, последний класс устройств постепенно вытесняется интегрированными видеокартами. Но компании «Интел» и АМД на этом не остановились. Их встроенные акселераторы уже на равных сейчас конкурируют даже с ускорителями среднего класса. Ключевой фактор, который привел к появлению рассматриваемого графического решения — это снижение стоимости конечной вычислительной системы и повышение степени ее интеграции и функциональности. Именно эту задачу и решила компания «Интел» с помощью интеграции видеоадаптера на кристалл ЦПУ.

Назначение ускорителя

Как было отмечено ранее, основной сферой применения Intel HD Graphics 2500 являются офисные компьютеры, нацеленные на решение наиболее простых задач. В этом случае возможностей такого начального ускорителя вполне достаточно. Без особых проблем на таком «железе» пойдет "Офис", воспроизведение мультимедийных файлов, простые игры и интернет-серфинг. Но даже требовательные игрушки на таком аппаратном обеспечении могут вполне комфортно функционировать. Опять-таки, в последнем случае качество и детализация изображения должны быть снижены до уровня 1366Х768 или даже 800Х600. Поэтому рассматриваемый адаптер можно использовать в двух случаях:

    Офисные ПК с минимальными требованиями к быстродействию и производительности.

    Игровые системы начального уровня, на которых возможен запуск большей части современных игрушек, но с очень скромными параметрами изображения.

Характеристики чипа

По технологическому процессу с допусками 22 нм изготавливался видеоадаптер Intel HD Graphics 2500. Характеристикиего указывают на то, что диапазон его рабочих частот ограничен значениями 350-1150 МГц. В первом случае видеокарта работает в режиме простоя или минимальных нагрузок. Если запускается какое-то ресурсоемкое приложение, то частота автоматически повышается. Кодовое название данного интегрированного видеоконтроллера — GT1. В его состав входит 1,4 миллиона транзисторных компонентов, а площадь подложки составляет 160 мм 2 . Блоков растеризации в этом ускорителе всего 2, а графических процессоров — 6.

Подсистема памяти

Весьма скромными параметрами видеобуфера может похвастаться Intel HD Graphics 2500. Памятьдля хранения видеоинформации выделяется из состава системного ОЗУ. То есть тип оперативной памяти в этой ситуации идентичен той, которая установлена в ПК. Как правило, это DDR3 с частотами 800 или 1066 МГц. Можно устанавливать в ПК и более скоростные микросхемы, но работать они будут на максимально допустимой в данном случае частоте — 1066 МГц. Разрядность шины ОЗУ — 64 бита, а количество адресуемого ОЗУ ограничено 1,7 Гб. Последнее значение задается в БИОС и может быть принудительно уменьшено, при необходимости.

Пропускная способность данного видеобуфера заявлена производителем на уровне 29,9 Гбит/сек и по этому показателю данный ускоритель обходит множество дискретных акселераторов экономкласса. Хоть у них и отдельный видеобуфер, но частота микросхем памяти ниже, а разрядность шины — идентичная. Как результат, пропускная способность у них ниже, и это приводит к тому, что в тестах они в тестах проигрывают герою этой статьи. Дополнительно необходимо отметить компоновку данного решения. Кроме самого ускорителя и процессора, на этой же самой подложке находится северный мост чипсета со встроенным контроллером ОЗУ. Еще один важный момент — это наличие прямого доступа к 3-му уровню кеша у рассматриваемого адаптера. Поэтому даже в случае более высокой пропускной способности дискретная видеокарта вполне может в плане производительности проигрывать такому интегрированному решению по той причине, что взаимодействие GPU и CPU в этой ситуации оптимизировано и они расположены рядом, между ними нет каких-либо дополнительных компонентов. Вот и возникает вопрос целесообразности покупки дискретных продуктов экономкласса в такой ситуации, когда в наличии есть достаточная видеокарта, и ее приобретать отдельно нет нужды.

Синтетические тесты

Весьма неплохие результаты для встроенного решения показывает видеокарта Intel HD Graphics 2500в синтетически тестах. В качестве оппонентов ее наиболее правильно выбрать модели предыдущего поколения с индексами 2000 и 3000, а также Radeon HD моделей 6450 и 6570. В тесте 3DMark Vantage были набраны такие баллы:

    HD 6570 - 6049.

    HD 6450 - 2302.

    HD 2500 - 1579.

    HD 3000 - 1393.

    HD 2000 - 812.

Победа в этом тесте HD 6570 каких-либо вопросов не вызывает. Отдельный видеобуфер, высокие частоты и повышенная разрядность шины ОЗУ до 128 бит - это те факторы, которые позволяют ему без особых вопросов обойти любого конкурента в данном случае. На втором месте расположилась еще одна дискретная видеокарта HD 6450 от АМД. На третьем месте находится HD 2500, которая обходит предыдущего «флагмана» «Интел» - HD 3000. Ну и совсем скромный результат показывает HD 2000. В свою очередь, в тестовом пакете 3DMark 11 результаты получились в условных баллах такие:

    HD 6570 - 2247 .

    HD 6450 - 1046 .

    HD 2500 - 819 .

    HD 3000 - 0 .

    HD 2000 - 0 .

Расстановка сил в этом случае не изменилась. Единственное, что необходимо отметить, — это то, что адаптеры «Интел» предыдущего поколения не прошли тест в силу аппаратных ограничений.

Игровые приложения

Теперь проверим производительность в реальных приложениях Intel HD Graphics 2500. Тест в играхначнем с Batman Arkham City. Оппоненты у героя этого обзора те же самые, что при синтетических тестах абзацем ранее. В этой игре при разрешении 1366х768 и низком качестве изображения получаются такие результаты по количеству fps:

    HD 6570 - 91 .

    HD 6450 - 48 .

    HD 3000 - 33 .

    HD 2500 - 28 .

    HD 2000 - 20 .

Комфортный уровень играбельности обеспечивают в этом случае первые три видеокарты. А вот HD 2500 лишь чуть-чуть до этого не дотягивает. Возможно дальнейшее понижение разрешения до 1280х800 или же до 1024х768 позволит ему преодолеть минимальный порог в 30 fps. В Battlefield 3 ситуация значительно ухудшается и силы распределяются следующим образом в fps при тестировании в аналогичном режиме:

    HD 6570 - 38 .

    HD 6450 - 17 .

    HD 3000 - 11 .

    HD 2500 - 10 .

    HD 2000 - 7 .

Лишь только HD 6570 позволит поиграть в этом случае. Остальные адаптеры до минимально допустимых 30 fps уж точно не дотянут. В Dirt 3, в свою очередь, получаются такие результаты:

    HD 6570 - 62 .

    HD 6450 - 31 .

    HD 2500 - 29 .

    HD 3000 - 23 .

    HD 2000 - 20 .

Опять на границе играбельности герой этой статьи. Чуть похуже сделать картинку и игра пойдет во вполне комфортном режиме. В Far Cry 2 был получен такой FPS:

    HD 6570 - 83 .

    HD 6450 - 42 .

    HD 2500 - 31 .

    HD 3000 - 31 .

    HD 2000 - 21 .

Впервые HD 2500 превышает минимально допустимый порог. Расстановка сил не изменилась.

В какие игры можно с таким адаптером поиграть?

Теперь постараемся дать ответ для Intel HD Graphics 2500: «Какие игры потянет эта видеокарта?» В этот список попадает Far Cry 2 с 31 fps, низким качеством картинки и разрешением 1366х768. Также возможен запуск Dirt 3 и протестированная ранее версия Batman. Только в этом случае разрешение снизится до 1024х768. А вот Battlefield на таком «железе» уж точно не пойдет.

Выводы

Достаточно неплохие результаты для интегрированного ускорителя показал . Конечно, до полноценного игрового адаптера ему еще далеко. Но видно то, что «Интел» и в этом направлении усиленно работает. Не за горами то время, когда акселераторы этого производителя будут и с такими задачами справляться.

Эволюция графики Intel | Intel вступает в гонку GPU

В мире GPU в плане производительности и внимания к своей продукции центральное место занимают AMD и Nvidia. Хотя эти компании прославились своими технологиями, ни одна из них, по сути, не являются крупнейшим поставщиком графических процессоров. Этот титул принадлежит Intel. Корпорация пыталась конкурировать с AMD и Nvidia по производительности и порой даже выпускала полноценные видеокарты. Но ее сильная сторона – в интеграции графических технологий в свои чипсеты и процессоры. Таким образом, GPU Intel сейчас присутствуют в большинстве современных компьютеров. Но из-за ограничений интегрированных решений графические модули компании, как правило, предлагают производительность начального уровня. Самые последние разработки оказались заметно более впечатляющими. Некоторые решения даже опережают дискретные видеокарты начального уровня от AMD и Nvidia. Intel HD Graphics возможно и отстает от других GPU, но нужно признать, что дни GMA 950 и его предшественников закончились.

Эволюция графики Intel | Первый специализированный GPU Intel: i740 (1998 год)

В 1998 году Intel выпустила свою первую графическую карту – i740 под кодовым названием "Auburn". Она работала на тактовой частоте 220 МГц и использовала относительно небольшое количество видеопамяти VRAM 2 - 8 Мбайт. Сопоставимые видеокарты того времени, как правило, оснащались видеопамятью объемом 8 - 32 Мбайт. Кроме того карта поддерживала DirectX 5.0 и OpenGL 1.1. Чтобы обойти недостачу встроенной памяти, Intel планировала воспользоваться функцией, встроенной в интерфейс AGP, позволяющей карте использовать оперативную память компьютера. Таким образом, i740 использовала интегрированную память как кадровый буфер, а все текстуры хранила в оперативной памяти платформы. Учитывая, что компании не приходилось переплачивать за дорогую память, она могла продавать i740 дешевле конкурентов. К сожалению этот GPU столкнулся с рядом трудностей. Доступ к оперативной памяти осуществлялся не так быстро, как к интегрированной видеопамяти, и это негативно сказывалось на производительности. Кроме того такое решение снижало производительность центрального процессора, так как для работы ему оставалось меньше пропускной способности и объема ОЗУ. Сырые драйверы еще сильнее навредили производительности карты, и качество изображения было под вопросом из-за медленного цифро-аналогового преобразователя. В конечном счете i740 оказалось полностью провальной. Intel пыталась исправить ситуацию, убеждая производителей материнских плат добавлять карту в комплект с платформами на базе 440BX, но это тоже не привело к успеху.

Эволюция графики Intel | Графический чип i752 и чипсеты серии 81x (1999 год)

После провала с i740 Intel разработала и небольшое время продавала вторую видеокарту под названием i752 "Portola". Однако она была выпущена в очень ограниченных количествах. Примерно в то же время Intel начала интегрировать свое графическое ядро в такие чипсеты, как i810 ("Whitney") и i815 ("Solano"). GPU встраивались в северный мост, став первыми интегрированными графическими процессорами Intel. Их производительность зависела от двух факторов: скорость оперативной памяти, которая часто была связана с системной шиной FSB, и в свою очередь зависела от процессора, и скорость самого CPU. На тот момент Intel использовала конфигурации FSB 66, 100 или 133 МГц наряду с асинхронной SDRAM, обеспечивающей системе максимальную пропускную способность 533, 800 или 1066 Мбайт/с соответственно. Хотя пропускная способность делилась с процессором, iGPU никогда не получал доступ ко всему каналу. Производители материнских плат могли размещать на своих платформах дополнительно 4 Мбайта выделенной видеопамяти, подключенной непосредственно к графическому процессору через AGP x4, предоставляя дополнительные 1066 Мбайт/с.

Производительность этих iGPU была низкой. Кроме того, из-за интегрированной графики в чипсете i810 отсутствовал интерфейс AGP, тем самым ограничивая модернизацию медленных видеокарт на базе PCI. Чипсет i815 имел порт AGP наряду с iGPU, но установка дискретной видеокарты отключала iGPU. В результате эти графические решения были ориентированы на пользователей бюджетных ПК начального уровня.

Эволюция графики Intel | Intel Extreme Graphics (2001 год)

В 2001 году Intel запустила новое семейство Extreme Graphics, которое было тесно связано с предыдущим поколением, включая два пиксельных конвейера и ограниченное аппаратное ускорение MPEG-2. Программная поддержка API была почти идентичной чипсету i815, хотя поддержка OpenGL была расширена до версии API 1.3.

Производительность iGPU Intel Extreme Graphics в значительной степени зависела от чипсета, памяти и центрального процессора. Первая реализация появились в семействе чипсетов Intel i830 (Almador), разработанных для Pentium III-M. Они по-прежнему использовали устаревающую память SDRAM, которая ограничивала максимальную пропускную способность до 1066 Мбайт/с, как и в ранних GPU. Тактовая частота на чипсетах Almador снизилась с 230 МГц (i815) до 166 МГц для экономии энергии и снижения тепловыделения.

Настольная версия был представлена позже в 2002 году в чипсетах i845 Brookdale , предназначенных для процессоров Pentium 4. Они также работали при более низкой тактовой частоте, чем i815 (200 МГц), но могли использовать память SDRAM или DDR. Благодаря более быстрым центральным процессорам iGPU в чипсете i845 в паре с SDRAM работал быстрее моделей i815, несмотря на более низкие частоты. Версии, использующие ОЗУ DDR, еще сильнее подтолкнули уровень производительности. Интегрированные решения не могли обогнать GeForce 2 Ultra Nvidia, которой на тот момент было уже больше года, но они неплохо подходили для легких игр.

Эволюция графики Intel | Intel Extreme Graphics 2 (2003 год)

Intel повторно использовала графический чип с двумя пиксельными конвейерами в семействе Extreme Graphics 2, выпущенном в 2003 году. Компания вновь представила две версии GPU. Первой появилась мобильная версия в чипсетах i852 и i855, предназначенных для Pentium M. Эти версии чипа работали на частотах 133 и 266 МГц, в зависимости от выбора ОЕМ. Второй вариант чипа использовался в чипсетах i865 Springdale для Pentium 4. Процессор с тактовой частотой 266 МГц кооперировался с более быстрой памятью DDR, которая могла работать при частоте до 400 МГц, обеспечивая ему более высокую пропускную способность, чем для предыдущих iGPU.

Хотя производительность по сравнению со старой линейкой Intel Extreme Graphics заметно увеличилась, графические требования игр также расширились. В результате эти графические чипы (англ.) были способны обеспечить приемлемую частоту кадров только в старых играх.

Эволюция графики Intel | GMA 900 (2004 год)

В 2004 году Intel завершила выпуск линейки Extreme Graphics, отправив на пенсию ядро с двумя пиксельными конвейерами, которое использовалось во всех предыдущих графических процессорах Intel. Следующие несколько лет Intel будет продавать свою графику под именем Graphics Media Accelerator (или GMA). Первым из этой серии был GPU GMA 900, интегрированный в набор микросхем семейства i915 (Grantsdale/Alviso). Он поддерживал DirectX 9.0 и обладал четырьмя пиксельными конвейерами, но ему не хватало вершинных шейдеров, и эти вычисления делались силами центрального процессора. Частота GPU могла быть 333 МГц или 133 МГц для маломощных систем. GPU работал как с DDR, так и с DDR2. Но независимо от конфигурации, производительность была относительно низкой.

Некоторые производители изготавливали специальные карты расширения в дополнение к GMA 900, чтобы добавить выход DVI.

Эволюция графики Intel | GMA 950: Pentium 4 и Atom (2005 год)

Графический процессор GMA 950 интегрировался в чипсеты Intel i945 (Lakeport и Calistoga) и может похвастаться относительно долгим жизненным циклом. Эти чипсеты работали с процессорами Pentium 4, Core Duo, Core 2 Duo и Atom. Однако архитектура была почти идентичной GMA 900 и наследовала многие ее недостатки, включая отсутствие вершинных шейдеров. Ядро получило незначительные программные улучшения совместимости и поддержку DirectX 9.0c. Это было важным обновлением для графического чипа, поскольку оно добавляло поддержку Aero в Windows Vista. Благодаря повышению частоты (400 МГц) и поддержке более быстрых процессоров и памяти немного увеличилась производительность. Мобильные версии GPU могли также работать при тактовой частоте 166 МГц для экономии энергии и снижения тепловыделения.

Эволюция графики Intel | GMA 3000, 3100 и 3150 (2006 год)

В 2006 году Intel вновь изменила наименование своей графики, начав с GMA 3000. Это был значительный шаг вперед по сравнению со старым GMA 950 в плане производительности и технологичности. Предыдущее поколение было ограничено четырьмя пиксельными конвейерами без вершинных шейдеров. Между тем, новый GMA 3000 включал восемь многоцелевых исполнительных блоков EU, способных выполнять несколько задач, включая вершинные вычисления и обработку пикселей. Intel повысила тактовую частоту до 667 МГц, заметно прибавив GMA 3000 скорости по сравнению с GMA 950.

После премьеры GMA 3000 Intel добавила в семейство еще два графических чипа: GMA 3100 и 3150. Несмотря на то, что они появились после GMA 3000, оба GPU фактически были больше похожи на GMA 950. Они имели только по четыре пиксельных конвейера и полагались на центральный процессор для обработки вершин. Повторное использование GMA 950 после ребрендинга в GMA 3100 и 3150 позволило Intel предложить несколько продуктов. До этого Intel сосредотачивала усилия только на одном GPU в своей линейке.

Эволюция графики Intel | GMA X3000 (2006 год)

После GMA 3000 Intel снова изменила наименование, представив четвертое поколение графических процессоров. Однако GMA X3000 был почти идентичен GMA 3000 и включал лишь незначительные изменения. Основное их различие заключалось в объеме используемой памяти – GMA 3000 мог использовать только 256 Мбайт системной памяти для графики, а GMA X3000 увеличил этот показатель до 384 Мбайт. Intel также расширила поддержку видеокодеков в GMA X3000, чтобы включить полное ускорение MPEG-2 и ограниченное ускорение VC-1.

Примерно в то же время Intel представила GMA X3100 и GMA X3500. По сути это были модернизированные чипы GMA X3000, получившие поддержку Pixel Shader 4.0, позволяющую работать с новыми API-интерфейсами, например DirectX 10. Тактовая частота GMA X3100 была ниже, чем у других версий, поскольку он был предназначен для мобильных платформ.

Эволюция графики Intel | Последний GMA (2008 год)

После X3000 Intel разработала только одну серию чипсетов с интегрированной графикой. Семейство Intel GMA 4500 состояло из четырех моделей, все они использовали одинаковую архитектуру с 10-ю исполнительными блоками. Для настольных чипсетов было выпущено три версии GPU. Самым медленным из них был GMA 4500 c частотой 533 МГц. Два других: GMA X4500 и X4500HD, работали на тактовой частоте 800 МГц. Главное отличие X4500HD от X4500 заключалось в использовании полного аппаратного ускорения VC-1 и AVC.

Мобильная версия графического чипа называлась GMA X4500MHD и работала на частоте 400 МГц или 533 МГц. По аналогии с X4500HD, X4500MHD поддерживал полное аппаратное ускорение VC-1 и AVC.

Эволюция графики Intel | Larrabee (2009 год)

В 2009 году Intel сделал еще одну попытку выйти на рынок видеокарт, представив Larrabee . Понимая, что ее основным преимуществом является глубочайшее понимание архитектуры x86, Intel хотела создать GPU на базе шины ISA. Вместо проектирования с нуля разработка Larrabee отталкивалась от первого процессора Pentium, который Intel решила модифицировать для того, чтобы создать скалярный блок внутри GPU. Старая процессорная архитектура была значительно переделана, обзавелась новыми алгоритмами и технологией Hyper-Threading для увеличения производительности. Несмотря на то, что технология Hyper-Threading в Larrabee была похожа на ту, которая использовать в обычных процессорах Intel, Larrabee была способна выполнять задачи в четыре потока на ядро вместо двух.

Для обработки вершин Intel создала необычно большой 512-битный блок вычислений с плавающей запятой, состоящий из 16 отдельных элементов, способных работать как единый компонент или самостоятельные единицы. Это FPU теоретически имел более чем в 10 раз больше пропускной способности, чем аналогичные чипы Nvidia того времени.

В конечном счете инициатива Larrabee была отменена, хотя Intel продолжает развивать эту технологию.

Эволюция графики Intel | Первое поколение Intel HD Graphics (2010 год)

Intel представила линейку HD Graphics в 2010 году, чтобы восстановить позиции, которые потеряла семейство GMA. Графическое ядро HD Graphics в первом поколении процессоров Core i3, i5 и i7 было похоже на GMA 4500, за исключением двух дополнительных исполнительных блоков. Тактовая частота осталась примерно на том же уровне и стартовала с 166 МГц в маломощных мобильных системах и останавливалась на отметке 900 МГц в более дорогих CPU для настольных ПК. Хотя 32-нанометровый процессор и 45-нанометровый GMCH были не полностью интегрированы на одном кремниевом кристалле, оба компонента находились в корпусе процессора. Это позволило снизить задержки между контроллером памяти внутри GMCH и ЦП. Поддержка API со времен GMA существенно не изменилась, хотя общая производительность увеличилась более чем на 50 процентов.

Эволюция графики Intel | Sandy Bridge: второе поколение Intel HD Graphics (2011 год)

В Sandy Bridge Intel HD Graphics сделала еще один шаг вперед в плане производительности. Вместо двух отдельных кристаллов под крышкой Intel объединила процессоры на одном кристалле, еще больше сократив задержку между компонентами. Кроме того Intel расширила функциональность графического чипа, добавив технологию Quick Sync для ускорения перекодирования и более эффективный видеодекодер. Поддержка API расширилась только до DirectX 10.1 и OpenGL 3.1, но значительно увеличилась тактовая частота – теперь она варьировалась в пределах 350 - 1350 МГц.

Благодаря более широкому набору функций Intel решила сегментировать линейку чипов. Младшие модели получили метку HD (базировались на ядре GT1 с шестью EU и ограниченным видеодекодером), решения среднего уровня носили название HD 2000 (тот же GT1 с шестью EU, но полнофункциональный блок кодирования/декодирования), а чипы верхнего уровня назывались HD 3000 (ядро GT2 с 12 EU плюс все преимущества Quick Sync).

Эволюция графики Intel | Xeon Phi (2012 год)

В то время как концепция Larrabee была более ориентирована на игры, компания увидела ее будущее в приложениях с тяжелыми вычислительными задачами и создала в 2012 году сопроцессор Xeon Phi . Одна из первых моделей под названием Xeon Phi 5110P содержала 60 процессоров x86 с большими 512-битными блоками расчета векторов с тактовой частотой 1 ГГц. На такой скорости они могли обеспечить более 1 TFLOPS вычислительной мощности, потребляя в среднем 225 Вт.

В результате высокой скорости вычислений по отношению к потребляемой мощности Xeon Phi 31S1P использовался при создании суперкомпьютера Тяньхэ-2 в 2013 году, который по сегодняшний день считается одним из самых быстрых суперкомпьютеров в мире.

Эволюция графики Intel | Ivy Bridge: Intel HD 4000 (2012 год)

С появлением Ivy Bridge Intel переработала свою графическую архитектуру. По аналогии с iGPU в Sandy Bridge графическое ядро в Ivy Bridge продавалась в трех различных версиях: HD (GT1 с шестью EU и ограниченным блоком кодирования/декодирования), HD 2500 (GT1 с шестью EU и полнофункциональным блоком кодирования/декодирования) и HD 4000 (GT2 с 16 EU и полнофункциональным блоком кодирования/декодирования). HD 4000 работал при более низкой частоте 1150 МГц, чем Intel HD 3000, но имел четыре дополнительных исполнительных блока и был значительно быстрее своего предшественника. В среднем прирост скорости в Skyrim составил 33,9 процента. Отчасти прирост производительности связан с улучшенной архитектурой, которая впервые перешла на Pixel Shader 5.0, плюс появилась поддержка DirectX 11.0 и OpenCL 1.2.

Производительность технологии Intel Quick Sync также значительно увеличилась. Транскодирование видео файлов H.264 из одного формата в другой выполнялось в два раза быстрее. Аппаратное ускорение видео также было усовершенствовано и Intel HD 4000 технически способен декодировать одновременно несколько видеопотоков в 4K.

Эволюция графики Intel | Intel расширяет графические линейку чипами Haswell (2013 год)

В архитектурном плане ядро HD Graphics в Haswell похоже на графическое ядро в Ivy Bridge и может рассматриваться как его расширение. Чтобы получить больше производительности из GPU для Haswell Intel использовала грубую силу. На этот раз компания предпочла установить в GT1 Haswell десять исполнительных блоков вместо шести в предыдущем поколении. Было включено полное декодирование видео, но отключены функции ускоренного кодирования и Quick Sync. Кроме того Intel еще сильнее разнообразила ассортимент GPU. Версия GT2 c 20 EU использовалась в трех различных графических ядрах: HD Graphics 4200, 4400 и 4600. В основном они различались по тактовой частоте.

Также Intel представила GPU более высокого класса под названием GT3. Он вмещал в себя 40 исполнительных блоков и обеспечивал значительно более высокий уровень производительности. Процессоры с ядром GT3 продавались под маркой HD Graphics 5000 и 5100. Редкая версия GT3e Intel Iris Pro 5200 включала 128 Мбайт памяти eDRAM в корпусе процессора и была первым воплощением семейства Intel Iris Pro. Несмотря на то, что Iris Pro 5200 работал быстрее решений без дополнительной eDRAM, его влияние на рынок было ограничено, так как GPU появился лишь в нескольких топовых процессорах.

Версия iGPU Haswell с низким энергопотреблением имела только четыре EU и использовалась в процессорах Intel Atom под кодовым названием Bay Trail . С появлением высокопроизводительного GT3 и экономичного Bay Trail, iGPU Haswell насчитывал восемь различных моделей. Для сравнения в поколении Sandy Bridge и Ivy Bridge было всего по три версии.

Эволюция графики Intel | Broadwell (2014 год)

В Broadwell Intel снова модернизировала iGPU для более эффективного масштабирования. В новой архитектуре исполнительные блоки были организованы в восемь подсекций. Таким образом добавлять EU было еще проще, так как Intel могла дублировать подсекции несколько раз. Версия GT1 содержала две подсекции (хотя только 12 EU были активны). Следующие три продукта: HD Graphics 5300, 5500, 5600 и P5700 использовали чип GT2 с 24 EU (но некоторые версии имели только 23 активных EU).

Более быстрые ядра GT3 и GT3e содержали по 48 EU и использовались в HD Graphics 6000, Iris Graphics 6100, Iris Pro Graphics 6200 и Iris Pro Graphics P6300. Подобно чипам Haswell Iris Graphics, модели линейки Broadwell Iris Graphics включали графическое ядро GT3e со 128 Мбайт встроенной памяти eDRAM. Каждая группа из восьми исполнительных блоков имела 64 Кбайт общей кэш-памяти. Эти графические процессоры поддерживали DirectX 12, OpenGL 4.4 и OpenCL 2.0.

Эволюция графики Intel | Skylake (2015 год)

Последняя версия интегрированной графики Intel реализована в процессорах на архитектуре Skylake . Эти графические чипы близки с iGPU Broadwell, имеют одинаковое архитектурное построение и равное количество EU почти во всех моделях. Основные изменения коснулись именования. Intel изменила названия на HD Graphics 500. GPU начального уровня стали называться HD Graphics и HD Graphics 510 и использовать кристалл GT1 с 12 EU. HD Graphics 515, 520, 530 и P530 используют чип GT2 с 24 EU.

Начиная со Skylake Intel еще сильнее разделила продукты серии Iris и Iris Pro. Iris 540 и 550 будут поставляться с 48 исполнительными блоками в чипе GT3e. Пока не ясно, какое название ядра будет у Iris Pro 580, но оно будет содержать в общей сложности 72 EU и, вероятно, окажется значительно быстрее, чем графический процессор Iris Pro 6200 в CPU Broadwell. Не ясно, сколько eDRAM будет в этих чипах, но Intel, скорее всего, будет и дальше разделять графику Iris и Iris Pro по уровню производительности. Iris 540 будет иметь только 64 Мбайт памяти eDRAM, то есть половину от GT3e в Broadwell. Что касается Iris Pro или Iris 550, Intel пока не объявляла их точных характеристик.

При покупке ноутбука одним из важнейших вопросов для любого покупателя является выбор типа графического ядра: интегрированного или дискретного. Если вы будете играть в компьютерные игры, то вам однозначно нужен будет ноутбук с выделенной графической системой, если вы хотите играть с комфортом, запускать игры на высоких настройках графики и высоких разрешениях дисплея, например, Full HD (1080p), то в этом случае вам придется раскошелится на ноутбук с игровой дискретной видеокартой хотя бы начального уровня типа nVidia Ge Force GTX 850\ 950M, но как правило стоимость таких ноутбуков переваливает за 50.000 рублей.

А что делать, если играть на ноутбуке хочется, а денег на высокопроизводительную машину нет. Выход из создавшейся ситуации безусловно есть, но только в том случае, если ваши потребности в 3D-графике ограничиваются трехмерными пользовательскими интерфейсами, а в компьютерных играх вы будете довольствоваться низкими настройками графики и небольшими разрешениями, в таких случаях ноутбук с интегрированным в процессор GPU подойдет как нельзя кстати. Ноутбуки со встроенными графическими решениями обычно продаются дешевле, да и уровень производительности некоторых встроенных видеокарт последнее время не уступает дискретным видеокартам нижнего и даже среднего ценового диапазона. Долгое время рынок интегрированных графических систем был целиком под властью компании Intel, при этом уровень производительности встроенной графики в 3D-приложениях был ниже всякой критики. Впрочем, она изначально предназначалась для корпоративного сектора рынка и полностью удовлетворяла его потребности, но время шло и от встроенной графики стало требоваться все больше производительности. Вскоре к Intel подтянулась, и компания AMD и какое-то время ей даже удалось вырваться вперед со своими гибридными APU, но с выходом в этом году новых процессоров на архитектуре, Broadwell и Skylake от intel, производительность встроенных решений в 3D приложениях, от обеих компаний практически сравнялась.

Итак, рассмотрим, что же на данный момент нам предлагают AMD и Intel в сегменте встроенной мобильной графики.

Новое поколение встроенной графики от Intel.

Начнем с компании Intel. Интересной особенностью, которая впервые появилась в архитектуре процессоров Intel Sandy Bridge - было интегрированное видеоядро. Это означало, что, несмотря на наличие дискретного графического решения в вашем ноутбуке, вы всегда могли воспользоваться дополнительными мощностями процессора, что позволяло без проблем кодировать видео, смотреть фильмы в высоком разрешении, просматривать 3D-контент и запускать простые игры. Сегодня в состав Skylake входит интегрированная видеокарта, которая во многом превосходит подобные решения в предшествующих процессорах. Девятое поколение интегрированной графической подсистемы – Intel Gen9 Graphics, реализованное в составе новой архитектуры, и, как и весь чип Skylake, изготавливаемое с соблюдением норм 14-нм техпроцесса, получило мощные структурные изменения наряду с повышенной энергоэффективностью. Унаследовав базовые черты от предыдущей архитектуры Broadwell, новая графика включает в себя огромную гамму решений, от базовой логики HD Graphics 510 (GT1e) на основе одного модуля с 12-ю исполнительными устройствами до мощнейшей графической подсистемы Iris Pro Graphics 580 (GT4e) на базе трех модулей с 72 исполнительными устройствами, встроенным eDRAM-буфером емкостью 128 Мбайт, с суммарной пиковой производительностью до 1152 гигафлопс (Gen9 GT4 больше чем Gen8 GT3 примерно в полтора раза). Графическая производительность у 9-го поколения значительно различается, самыми низко производительными будет встроенная графика HD Graphics 510 (GT1e), Graphics 515 (GT2e) и Graphics 520 (GT2e), данные решения станут неотъемлемой частью процессоров семейства Core M. Встроенные видеокарты в составе CPU Core M, в лучшем случае потянут только старые игры на низких настройках графики. За ними по производительности идет встроенное графическое ядро HD Graphics 530 (GT3e), которое станет неотъемлемой частью некоторых процессоров линейки Core i5, Core I7, в плане производительности данное графическое решение с легкостью справится со многими компьютерными играми правда только на разрешении дисплея не больше 720р(HD), причем на низких, а в некоторых игровых приложениях и на средних настройках графики. По сути графическая производительность HD Graphics 530 соответствует дискретной видеокарте GeForce 920M. В следующую группу можно выделить HD Graphics 540 и HD Graphics 550 данная встроенная графика станет скорее всего неотъемлемой частью UVL процессоров на архитектуре Skylake, от HD Graphics 530 эти два решения отличаются вдвое увеличенным количеством исполнительных устройств 48 против 24 у HD Graphics 530 остальные характеристики у все трех встроенных видеокарт одинаковые частотные характеристики составляют 300-1150МГц, а Пропускная способность памяти равна 64/128 бит. По производительности HD Graphics 540\550 примерно соответствуют дискретной видеокарте GeForce 920M. Ну и замыкает линейку встроенных видеокарт от Intel высокопроизводительное графическое ядро Iris Pro Graphics HD Graphics 580 (GT4e) , который является самым мощным встроенным графическим решением от Intel на данный момент. Как обещает производитель производительность Graphics 580 в 3 D приложениях у будет сопоставима с настольной видеокартой NVIDIA GeForce GTX 750, GT4e должен обеспечить производительность на уровне 1,15 Гфлопс; прирост относительно GT3e (Broadwell) составит порядка 50%. В аккурат к появлению Windows 10 в новой графике Intel появилась полноценная аппаратная поддержка Direct X 12 для игр, а также технологий Open CL 2.0 и Open GL 4.4 для более чёткой и качественной картинки. По данным Intel, новая графика обеспечит прирост производительности в 3D-играх до 40% по сравнению с предыдущим поколением. Новое девятое поколение графики Intel также поддерживает расширенный список аппаратных функций ускорения кодирования и декодирования (HEVC, AVC, SVC, VP8, MJPG), расширенные возможности обработки и преобразования "сырых" данных непосредственно с 16-битной матрицы цифровой камеры с качеством до 4K 60p, а также расширенные возможности движка Quick Sync с режимом Video Fixed-Function (FF), позволяющие декодировать H.265/HEVC без обращения к вычислительным ядрам.

Технические характеристики

HD Graphics 5xx
Производитель
intel
Архитектура
Skylake GT2e Skylake GT3e Skylake GT4e
Название
HD Graphics 510 HD Graphics 515 HD Graphics 520 HD Graphics 530 HD Graphics 540 HD Graphics 550 HD Graphics 580
Исполнительные устройства
12 24 24 24 48 48 72
Тактовая частота ядра
300-950 МГц 300-1000 МГц 300-1050 МГц 300-1150 МГц 300-1050 МГц 300-1100 МГц нет данных МГц
Разрядность шины памяти
64\128 Бит
eDRAM
нет 128 МБ
DirectX
DirectX 12
Технология
14 н.м.

Новое поколение встроенной графики от AMD.

AMD Carrizo - это шестое поколение мобильных APU AMD Carrizo - это первые в мире APU производительного класса, полностью разместившиеся на одном кристалле, тогда как ранее в чипах такого класса графический чип или южный мост если и располагались на единой с процессором подложке, то в виде отдельного кристалла. Здесь же северный мост, Fusion Controller Hub (южный мост), графика и процессорные ядра уместились на одном кристалле, выращенном в рамках 28-нм техпроцесса Global Foundries. В Carrizo используется графика, которую сама AMD называет GCN третьего поколения. В третьем поколении архитектура претерпела некоторые изменения - по сути, это поколение GCN было использовано в GPU Tonga (Radeon R9 285). Также встроенное графическое ядро получило 512 Кбайт собственной кеш-памяти второго уровня. Среди прочего заявлены поддержка DirectX 12 (Level 12), улучшенная производительность при работе с тесселяцией, цветовая компрессия без потерь, обновленный набор инструкций ISA, связность CPU- и GPU-кешей и высококачественный скейлер. В Carrizo графический контроллер Radeon R7 имеет 8 вычислительных кластеров, в то время как мобильные варианты Kaveri обладали лишь шестью такими блоками, то есть графическое ядро Carrizo располагает 512 потоковыми процессорами и способно выдавать пиковую производительность до 819 GFLOPS. Carrizo имеет три встроенных контроллера дисплеев и поддерживает вывод изображения с разрешением до 4K включительно. Шестое поколение A-серии также стало первым решением для ноутбуков, которое поддерживает аппаратное декодирование HEVC, гетерогенную системную архитектуру HSA 1.0 и технологию ARM TrustZone. Производитель особо подчеркнул поддержку новыми процессорами функциональности вышедшей Наличие аппаратного декодера H.265/HEVC в новых процессорах AMD Carrizo позволяет не только более плавно воспроизводить видео высокой четкости, но и обеспечивать в разы более длительное время автономной работы. операционной системы Windows 10, включая оптимизацию графики DirectX 12. В процессорах 6-го поколения компании AMD для ноутбуков используется GPU уровня дискретных графических решений, а благодаря архитектуре Graphics Core Next (GCN) достигается двукратное превосходство в производительности по сравнению с конкурентами. Благодаря этому пользователь получает возможность играть на ноутбуке в самые популярные онлайн игры в HD-разрешении, в том числе: DoTA 2, League of Legends и Counter Strike: Global Offensive. В прочих играх прирост fps в сравнении с Kaveri составит от 30 до 40%/ Так же отметим, что технология AMD Dual Graphics позволяет использовать «в связке» процессоры 6-го поколения для ноутбуков и графические карты AMD Radeon R7 Mobile, что делает возможным увеличение частоты кадров до 42%, а фирменная технология AMD FreeSync обеспечивает высокую плавность геймплея. Отметим, что процессор поддерживает многопоточные API, в том числе DirectX 12, Vulkan и Mantle, позволяющие использовать передовые игровые технологии, направленные на повышение производительности и качества изображения. Модельный ряд встроенной графики AMD Radeon Rх, начинается с встроенного графического ядра AMD Radeon R7 Mobile, данный графический адаптер является самым производительным в линейке. AMD Radeon R7 (Carrizo) – интегрированная видеокарта в APU Carrizo, на момент анонса (середина 2015 года) использованная в SoC AMD FX-8800P с 512 шейдерами GCN и частотой 800 МГц. В зависимости от конфигурации TDP (12-35 Вт) и используемой ОЗУ (до DDR3-2133 в двухканальном режиме), производительность может существенно отличаться. Далее идет AMD Radeon R6 (Carrizo) – низкоуровневая встроенная видеокарта, анонсированная в середине 2015 года. Она разработана для APU Carrizo, к примеру, AMD A10-8700P или A8-8600P, и имеет 384 GCN шейдеров и 720 соответственно. Графика предлагает две конфигурации, отличающиеся TPD (от 12 до 35 Вт) и типом используемой памяти (до DDR3-2133 в двухканальном режиме). Следующий графический ускоритель Замыкает линейку Radeon R5 (Carrizo), который встраивается в некоторые процессоры, например AMD A6-8500P . Его производительности с трудом хватает даже на самые нетребовательные игры 2-летней давности (Tomb Raider, Dead Space 3, BioShock Infinite) на минимальных настройках в играх вроде Crysis 3 или Battlefield 4, данный видеоускоритель выдает максимум 10-20 кадров в секунду. Встроенная видеокарта Radeon R5 (Carrizo) имеет в своем арсенале 256 шейдерных процессоров (4модуля GCN) работающих на частоте 800 МГц. Что касается встроенной графики Radeon R4\R3\R2, то ее возможностей хватит в лучшем случае для игр 4-5 летней давности.

Технические характеристики

AMD Radeon Rx
Производитель
AMD
Архитектура
Carrizo
Название
AMD Radeon R7 AMD Radeon R6 AMD Radeon R5
Шейдерные процессоры
512 384 256 128(Carrizo-L)
Тактовая частота ядра
800 (Boost) МГц 850 (Boost) МГц
Разрядность шины памяти
64\128 Бит 64 Бит
Тип памяти
собственной видеопамяти нет
DirectX
DirectX 12
Технология
28 н.м.

Синтетические тесты

Для начала посмотрим производительность встроенной график в синтетическом тесте 3DMark (2013) - Fire Strike Standard Score на разрешении 1920x1080 пикселей.

Intel Iris Pro Graphics 6200-(Core i7 5950HQ)

Intel Iris Pro Graphics 5100-(Core i5 4158U)

Kaveri AMD Radeon R5-(AMD A8-7200P)

Kaveri AMD Radeon R4-(AMD A6 Pro-7050B)

В синтетическом тесте 3D Mark Fire Strike , как и следовало ожидать встроенная графика AMD немного отстает от графических решений компании Intel. Как в сегменте высокопроизводительных решений так и среди бюджетных видеокарт. Если с синтетическими тестами все понятно, то все же будет интересно посмотреть как поведет себя встроенная графика в реальных игровых приложениях. На наш взгляд, акцентировать внимание на производительности встроенной графики процессоров типа Core i7 4750HQ и им подобных, которые предназначенных для энтузиастов и геймеров, нет смысла. В 99% случаев в ноутбуке будет установлена более производительная дискретная 3D-карта. Так же отметим, что «тяжеловесные» настройки графики выявляют ряд игр, где потенциала даже такой графики как Iris Pro Graphics будет явно недостаточно. Приемлемая производительность в заветном разрешении Full HD будет достигнута только путем снижения качества графики до минимального в лучшем случае до среднего уровня.

Call of Duty: Advanced Warfare - разрабатывалась в течение трех лет с учетом всех возможностей игровых систем нового поколения. Обновленный подход к созданию игры позволит применить новую тактику. Продвинутые военные технологии и уникальный экзоскелет помогут выжить там, где обычный солдат не продержится и пяти минут! Кроме того, вас ожидает захватывающий сюжет и новые персонажи, роль одного из которых исполнил обладатель премии «Оскар» Кевин Спейси. Игровой движок для Call of Duty Advanced Warfare является продуктом собственной разработки студии Sledgehammer Games. В сети практически нет информации о структуре и разработке данного движка. Скорее всего, движок является дальнейшим развитием линейки продуктов для игр на базе собственной интеллектуальной собственности студии Sledgehammer Games.

720p (HD) Low

720p (HD) Normal

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4400-(Core i7 4500U)

Intel HD Graphics 4400-(Core i7 4500U)

AMD Radeon R9 M370X+(Core i7 4870HQ)

AMD Radeon R9 M370X+(Core i7 4870HQ)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Kaveri AMD Radeon R6-(AMD A10-7400P)

Kaveri AMD Radeon R6-(AMD A10-7400P)

Carrizo AMD Radeon R5-(AMD A6-8500P)

Metro Last Light (рус. Метро: Луч надежды) - компьютерная игра в жанре шутера от первого лица, сиквел игры Metro 2033. Сиквел разрабатывался на трёх основных руководящих принципах: первый - это сохранить атмосферу ужаса первой части, второй - разнообразить набор оружия, третий - усовершенствовать технологии Metro 2033. Разработчики из 4А Games также учли некоторые пожелания игроков и пообещали на этот раз исправить некоторые ошибки, подправить искусственный интеллект и стелс элементы. Авторы «Metro: Last Light » решили не брать за основу сюжета события второй книги Дмитрия Глуховского. Вместо этого, игра является прямым продолжением первой части с насыщенным линейным сюжетом. Главным героем «Metro: Last Light » вновь становится Артём, которому на этот раз приходится предотвратить гражданскую войну между обитателями московского метро. Metro Last Light разрабатывался на модифицированной версии 4А Engine, который использовался в Metro2033. Из улучшений следует отметить более продвинутый ИИ и оптимизацию графического движка. Благодаря использованию PhysX движок получил множество возможностей, например, разрушаемое окружение, симуляцию изгибов на одежде, волны на воде и другие элементы, полностью подверженные влиянию окружающей среды. Metro Last Light является на данный момент одним из самых технологических продуктов современности, даже несмотря на то, что игра вышла не только под персональные компьютеры, но и под текущее поколение игровых консолей.

720p (HD) Low (DX10)

720p (HD) Medium,(DX10) 4xAF

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4400-(Core i7 4500U)

Intel HD Graphics 4400-(Core i7 4500U)

AMD Radeon R9 M370X+(Core i7 4870HQ)

AMD Radeon R9 M370X+(Core i7 4870HQ)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Kaveri AMD Radeon R6-(AMD A10-7400P)



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: