Презентация о радиосвязи и телевидении. Основы радиосвязи. Этапы развития средств связи


Этапы развития средств связи Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн. Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн году экспериментально в Берлинском университете обнаружил Генрих Герц году экспериментально в Берлинском университете обнаружил Генрих Герц. 7 мая 1895 году А.С. Попов изобрел радио. 7 мая 1895 году А.С. Попов изобрел радио. В 1901 году итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. В 1901 году итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. Б.Л. Розинг 9 мая 1911 года электронное телевидение. Б.Л. Розинг 9 мая 1911 года электронное телевидение. 30 годы В.К. Зворыкин изобрел первую передающую трубку –иконоскоп. 30 годы В.К. Зворыкин изобрел первую передающую трубку –иконоскоп.


Связь – это важнейшее звено в системе хозяйства страны, способ общения людей, удовлетворение их производственных, духовных, культурных и социальных потребностей – это важнейшее звено в системе хозяйства страны, способ общения людей, удовлетворение их производственных, духовных, культурных и социальных потребностей


Основные направления развития средств связи Радиосвязь Радиосвязь Телефонная связь Телефонная связь Телевизионная связь Телевизионная связь Сотовая связь Сотовая связь Интернет Интернет Космическая связь Космическая связь Фототелеграф (Факс) Фототелеграф (Факс) Видеотелефонная связь Видеотелефонная связь Телеграфная связь Телеграфная связь






Космическая связь КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами. КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами.


Фототелеграф Фототелеграф, общепринятое сокращённое название факсимильной связи (фототелеграфной связи). Вид связи для передачи и приема нанесенных на бумагу изображений (рукописей, таблиц, чертежей, рисунков и т.п.). Вид связи для передачи и приема нанесенных на бумагу изображений (рукописей, таблиц, чертежей, рисунков и т.п.). Устройство, осуществляющее такую связь. Устройство, осуществляющее такую связь.


Первый фототелеграф В начале века немецким физиком Корном был создан фототелеграф, который ничем принципиально не отличается от современных барабанных сканеров. (На рисунке справа приведена схема телеграфа Корна и портрет изобретателя, отсканированный и переданный на расстояние более 1000 км 6 ноября 1906 года). В начале века немецким физиком Корном был создан фототелеграф, который ничем принципиально не отличается от современных барабанных сканеров. (На рисунке справа приведена схема телеграфа Корна и портрет изобретателя, отсканированный и переданный на расстояние более 1000 км 6 ноября 1906 года).


Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы. Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы.




Видеотелефонная связь Персональная видеотелефонная связь на UMTS-оборудовании Персональная видеотелефонная связь на UMTS-оборудовании Новейшие модели телефонных аппаратов имеют привлекательный дизайн, богатый выбор аксессуаров, широкую функциональность, поддерживают технологии Bluetooth и wideband-ready- аудио, а также XML- интеграцию с любыми корпоративными приложениями Новейшие модели телефонных аппаратов имеют привлекательный дизайн, богатый выбор аксессуаров, широкую функциональность, поддерживают технологии Bluetooth и wideband-ready- аудио, а также XML- интеграцию с любыми корпоративными приложениями


Виды линии передачи сигналов Двухпроводная линия Двухпроводная линия Электрический кабель Электрический кабель Метрический волновод Метрический волновод Диэлектрический волновод Диэлектрический волновод Радиорелейная линия Радиорелейная линия Лучеводная линия Лучеводная линия Волоконно–оптическая линия Волоконно–оптическая линия Лазерная связь Лазерная связь


Волоконно-оптические линии связи Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных. И это количество будет постоянно расти. Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных. И это количество будет постоянно расти.


Волоконно-оптические линии связи (ВОЛС) имеют ряд существенных преимуществ по сравнению с линиями связи на основе металлических кабелей. К ним относятся: большая пропускная способность, малое затухание, малые масса и габариты, высокая помехозащищенность, надежная техника безопасности, практически отсутствующие взаимные влияния, малая стоимость из-за отсутствия в конструкции цветных металлов. В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излучение лежит в диапазоне длин волн нм. Практическое применение в ВОЛС получил инфракрасный диапазон, т.е. излучение с длиной волны более 760 нм. Принцип распространения оптического излучения вдоль оптического волокна (ОВ) основан на отражении от границы сред с разными показателями преломления (Рис. 5.7). Оптическое волокно изготавливается из кварцевого стекла в виде цилиндров с совмещенными осями и различными коэффициентами преломления. Внутренний цилиндр называется сердцевиной ОВ, а внешний слой - оболочкой ОВ.


Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются. Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.


Впервые осуществлена лазерная связь между спутником и самолетом, Пн, 00:28, Мск Французская компания Astrium впервые в мире продемонстрировала успешную связь по лазерному лучу между спутником и самолетом. Французская компания Astrium впервые в мире продемонстрировала успешную связь по лазерному лучу между спутником и самолетом. В ходе испытаний лазерной системы связи, прошедших в начале декабря 2006 года, связь на расстоянии почти 40 тыс. км была осуществлена дважды - один раз самолет Mystere 20 находился на высоте 6 тыс. м, в другой раз высота полета составила 10 тыс. м. Скорость самолета составляла около 500 км/ч, скорость передачи данных по лазерному лучу - 50 Мб/с. Данные передавались на геостационарный телекоммуникационный спутник Artemis. В ходе испытаний лазерной системы связи, прошедших в начале декабря 2006 года, связь на расстоянии почти 40 тыс. км была осуществлена дважды - один раз самолет Mystere 20 находился на высоте 6 тыс. м, в другой раз высота полета составила 10 тыс. м. Скорость самолета составляла около 500 км/ч, скорость передачи данных по лазерному лучу - 50 Мб/с. Данные передавались на геостационарный телекоммуникационный спутник Artemis. В испытаниях использовалась авиационная лазерная система Lola (Liaison Optique Laser Aeroportee), на спутнике Artemis данные принимала лазерная система Silex. Обе системы разработаны корпорацией Astrium. В системе Lola, сообщает Optics, используется лазер Lumics с длиной волны 0,8 мкм и мощностью лазерного сигнала 300 мВт. В качестве фотоприемников используются лавинные фотодиоды. В испытаниях использовалась авиационная лазерная система Lola (Liaison Optique Laser Aeroportee), на спутнике Artemis данные принимала лазерная система Silex. Обе системы разработаны корпорацией Astrium. В системе Lola, сообщает Optics, используется лазер Lumics с длиной волны 0,8 мкм и мощностью лазерного сигнала 300 мВт. В качестве фотоприемников используются лавинные фотодиоды.

Распространение радиоволн.

Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно 50-90 км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.

Передача изображенияДля передачи изображения, его сначала надо
преобразовать в электрические сигналы. На станции
с которой передается сигнал, его преобразуют в
последовательность электрических импульсов.
Потом данными сигналами модулируются колебания
высокой частоты.

Телевидение и его развитие

Телевидение и его развитие
Развитие средств связи
осуществляется полным
ходом. Еще 20 лет назад
не в каждой квартире
можно было встретить
домашний проводной
телефон. А сейчас уже
никого не удивишь
наличием мобильного
телефона у ребенка. Об
спутниковом телевидении
можно и не упоминать.

Иконоскоп

Для преобразования
изображения в
электрический сигнал
используют прибор,
называемый иконоскоп.
Иконоскоп не является
единственным способом
преобразования
изображения в поток
электрических импульсов.

Этапы развития средств связи

Английский ученый Джеймс Максвелл в 1864 году
теоретически предсказал существование
электромагнитных волн.
1887 году экспериментально в Берлинском
университете обнаружил Генрих Герц.
7 мая 1895 году А.С. Попов изобрел радио.
В 1901 году итальянский инженер Г. Маркони впервые
осуществил радиосвязь через Атлантический океан.
Б.Л. Розинг 9 мая 1911 года электронное телевидение.
30 годы В.К. Зворыкин изобрел первую передающую
трубку –иконоскоп.

Современные направления развития средств связи

Радиосвязь
Телефонная связь
Телевизионная связь
Сотовая связь
Интернет
Космическая связь
Фототелеграф (Факс)
Видеотелефонная связь
Телеграфная связь

Радиосвязь

– передача и прием информации с помощью
радиоволн, распространяющихся в пространстве без
проводов.

Виды радиосвязи.

Радиотелеграфная
Радиотелефонная
Радиовещание
Телевидение.

Космическая связь

КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая
(лазерная) связь, осуществляемая между
наземными приемно-передающими станциями и
космическими аппаратами, между несколькими
наземными станциями через спутники связи,
между несколькими космическими аппаратами.

Фототелеграф

Фототелеграф, общепринятое сокращённое
название факсимильной связи
(фототелеграфной связи).
Вид связи для передачи и приема нанесенных
на бумагу изображений (рукописей, таблиц,
чертежей, рисунков и т.п.).
Устройство, осуществляющее такую связь.

Первый фототелеграф

В начале века немецким
физиком Корном был создан
фототелеграф,
который ничем
принципиально не отличается
от современных барабанных
сканеров. (На рисунке справа
приведена схема телеграфа
Корна и портрет
изобретателя,
отсканированный и
переданный на расстояние
более 1000 км 6 ноября 1906
года).

Шелфорд Бидвелл (Shelford
Bidwell), британский физик,
изобрел «сканирующий
фототелеграф». Для
передачи изображений
(диаграмм, карт и
фотографий) в системе
использовался материал
селен и электрические
сигналы.

Видеотелефонная связь

Персональная видеотелефонная
связь на UMTS-оборудовании
Новейшие модели телефонных
аппаратов имеют
привлекательный дизайн,
богатый выбор аксессуаров,
широкую функциональность,
поддерживают технологии
Bluetooth и wideband-readyаудио, а также XML-интеграцию с
любыми корпоративными
приложениями

Виды линии передачи сигналов

Двухпроводная линия
Электрический кабель
Метрический волновод
Диэлектрический волновод
Радиорелейная линия
Лучеводная линия
Волоконно–оптическая линия
Лазерная связь

Волоконно-оптические линии связи

Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются
самой совершенной физической средой для передачи информации.
Передача данных в оптическом волокне основана на эффекте полного
внутреннего отражения. Таким образом оптический сигнал, передаваемый
лазером с одной стороны, принимается с другой, значительно удаленной
стороной. На сегодняшний день построено и строится огромное
количество магистральных оптоволоконных колец, внутригородских и
даже внутриофисных. И это количество будет постоянно расти.

В ВОЛС применяют электромагнитные волны оптического
диапазона. Напомним, что видимое оптическое излучение лежит в
диапазоне длин волн 380...760 нм. Практическое применение в
ВОЛС получил инфракрасный диапазон, т.е. излучение с длиной
волны более 760 нм.
Принцип распространения оптического излучения вдоль
оптического волокна (ОВ) основан на отражении от границы сред
с разными показателями преломления (Рис. 5.7). Оптическое
волокно изготавливается из кварцевого стекла в виде цилиндров с
совмещенными осями и различными коэффициентами
преломления. Внутренний цилиндр называется сердцевиной ОВ, а
внешний слой - оболочкой ОВ.

Лазерная система связи

Довольно любопытное решение для
качественной и быстрой сетевой связи
разработала немецкая компания
Laser2000. Две представленные модели
на вид напоминают самые обычные
видеокамеры и предназначены для связи
между офисами, внутри офисов и по
коридорам. Проще говоря, вместо того,
чтобы прокладывать оптический кабель,
надо всего лишь установить изобретения
от Laser2000. Однако, на самом-то деле,
это не видеокамеры, а два передатчика,
которые осуществляют между собой
связь посредством лазерного излучения.
Напомним, что лазер, в отличие от
обычного света, например, лампового,
характеризуется монохроматичностью и
когерентностью, то есть лучи лазера
всегда обладают одной и той же длиной
волны и мало рассеиваются.

Впервые осуществлена лазерная связь между спутником и самолетом 25.12.06, Пн, 00:28, Мск

Французская компания Astrium впервые в мире
продемонстрировала успешную связь по
лазерному лучу между спутником и самолетом.
В ходе испытаний лазерной системы связи,
прошедших в начале декабря 2006 года, связь на
расстоянии почти 40 тыс. км была осуществлена
дважды - один раз самолет Mystere 20 находился
на высоте 6 тыс. м, в другой раз высота полета
составила 10 тыс. м. Скорость самолета составляла
около 500 км/ч, скорость передачи данных по
лазерному лучу - 50 Мб/с. Данные передавались на
геостационарный телекоммуникационный спутник

Цели урока: Ознакомиться с практическим применением электромагнитных волн; Изучить физический принцип радиотелефонной связи.

План урока: Изобретение радио А.С. Поповым Радиотелефонная вязь Модуляция Детектирование Блок-схема «Принципы радиосвязи» Простейший детекторный приёмник

Радио А. С. Попова Когерер – стеклянная трубка с двумя электродами, в ней помещены металлические опилки. Когерер (от лат. - “когеренция” - “сцепление”). Звонок – для регистрации волн и для встряхивания когерера. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема. Другой вывод присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи.

7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора – первого в мире радиоприёмника

Радиосвязь Определение. Радиосвязь – передача и приём информации с помощью радиоволн, распространяющихся в пространстве без проводов. Источник – переменный ток частоты от 2 · 10 4 Гц до 10 9 Гц (λ =0,3 м – 1,5 · 10 4 м).

Виды радиосвязи: Радиотелеграфная связь Радиотелефонная связь Радиовещание Телевидение Радиолокация Отличаются типом кодирования передаваемого сигнала.

Радиотелефонная связь – передача речи или музыки с помощью ЭМВ. При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Но колебания звуковой частоты представляют собой сравнительно медленные колебания, а ЭМВ низкой (звуковой) частоты почти не излучаются. Чтобы осуществить радиотелефонную связь необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной (используют генератор). Для передачи звука эти высокочастотные колебания изменяют (модулируют) с помощью электрических колебаний низкой (звуковой) частоты. Для приёма из модулированных колебаний высокой частоты выделяют низкочастотные колебания – детектируют.

Модуляция передаваемого сигнала – кодированное изменение одного из параметров (амплитуды, частоты).

Детектирование – процесс выделения из амплитудно-модулированных колебаний низкочастотных колебаний.

Блок-схема «Принципы радиосвязи»

Простейший радиоприёмник Приёмная антенна – для улавливания ЭМВ. Заземление - для увеличения дальности приёма. Колебательный контур – для настройки на частоту определённой радиостанции. Громкоговоритель – превращает колебания тока низкой частоты в колебания воздуха той же частоты. Конденсатор – фильтр, для сглаживания пульсации тока. 1 2 3 4 5 6

Радиосвязь - передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов. Виды радиосвязи: радиотелеграфная, радиотелеграфная, радиотелефонная и радиовещание, радиотелефонная и радиовещание, телевидение, телевидение, радиолокация. радиолокация.


Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни. Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни.


Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиолокация- обнаружение объектов и определение их координат с помощью отражения радиоволн. Расстояние от объекта до радиолокатора s =сt/2; с – скорость света; t- промежуток времени между t- промежуток времени между импульсами импульсами


Телевидение В основе телевизионной передачи изображений лежат три физических процесса: В основе телевизионной передачи изображений лежат три физических процесса: Преобразование оптического изображения в электрические сигналы Преобразование оптического изображения в электрические сигналы Передача электрических сигналов по каналам связи Передача электрических сигналов по каналам связи Преобразование переданных электрических сигналов в оптическое изображение Преобразование переданных электрических сигналов в оптическое изображение


Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп. Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп.


ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ позволяет передавать и воспроизводить цветные изображения подвижных и неподвижных объектов. Для этого в телевизионной передающей камере цветного телевидения изображение разделяется на 3 одноцветных изображения. Передача каждого из этих изображений осуществляется по тому же принципу, что и в черно-белом телевидении. В результате на экране кинескопа цветного телевизора воспроизводятся одновременно 3 одноцветных изображения, дающих в совокупности цветное. Первая система цветного телевидения механического типа была предложена в русским инженером И. А. Адамианом.


Изобретение радио Попов Александр Степанович ()- российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, изобретатель радио.


Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц». Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».




В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз. В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз.


Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн. Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн.


Несколько позднее создал подобные же приборы и провел с ними эксперименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. Попов же свое открытие не запатентовал. Попов же свое открытие не запатентовал.


Увеличение дальности связи В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Большой победой Попова и едва зародившейся радиосвязи было спасение 27 рыбаков с оторванной льдины, унесенной в море. Радиограмма, переданная на расстояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км.


К этому времени в Европе уже существовала радиопромышленность. Работы Попова в России не получили развития. Отставание России в этой области угрожающе нарастало. И когда в 1905 в связи с начавшейся русско- японской войной потребовалось большое количество радиостанций, ничего не оставалось, как заказать их иностранным фирмам.


Отношения Попова с руководством морского ведомства обострились, и в 1901 он переехал в Петербург, где был профессором, а затем первым выборным директором Электротехнического института. Заботы, связанные с выполнением ответственных обязанностей директора, совсем расшатали здоровье Попова, и он скоропостижно скончался от кровоизлияния в мозг.


Даже получив большую известность, Попов сохранил все основные черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать нуждающимся в помощи. Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова: «Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».




Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Микрофон преобразует механические звуковые колебания в электрические той же частоты. Микрофон преобразует механические звуковые колебания в электрические той же частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Передающая антенна излучает модулированные электромагнитные волны. Передающая антенна излучает модулированные электромагнитные волны.


Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Детектор выделяет из модулированных колебаний низкочастотные. Детектор выделяет из модулированных колебаний низкочастотные. Динамик преобразует э/м колебания в механические звуковые колебания. Динамик преобразует э/м колебания в механические звуковые колебания.


Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор.


Распространение радиоволн РАДИОВОЛНЫ, электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны λ больше 100 мкм). Радиоволны с различной λ отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на сверхдлинные (λ > 10 км), длинные (10-1 км), средние (м), короткие (м), УКВ (λ 10 км), длинные (10-1 км), средние (1000-100 м), короткие (100-10 м), УКВ (λ


Распространение радиоволн Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.


Космическая связь Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций. Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций.


Радар Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер Кристиан Хюльсмайер Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля. Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля.


Аварийная радиоспасательная служба Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ). Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ).


Темы сообщений Жизнь и деятельность А.С. Попова Жизнь и деятельность А.С. Попова История изобретения телевидения История изобретения телевидения Основные направления развития средств связи Основные направления развития средств связи Здоровье человека и сотовый телефон Здоровье человека и сотовый телефон Радиоастрономия Радиоастрономия Цветное телевидение Цветное телевидение История создания телеграфа, телефона История создания телеграфа, телефона Интернет(история создания) Интернет(история создания)



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: