Общий принцип работы ацп. Автоматика управления отоплением дома своими руками, ч.3. Входы АЦП. Параллельные аналого-цифровые преобразователи

Давайте рассмотрим основной спектр вопросов, которые можно отнести к принципу действия разных типов. Последовательный счет, поразрядное уравновешивание - что скрывается за этими словами? В чем заключается принцип работы АЦП микроконтроллера? Эти, а также ряд других вопросов мы рассмотрим в рамках статьи. Первые три части мы посвятим общей теории, а с четвертого подзаголовка будем изучать принцип их работы. Вы можете в различной литературе встречать термины АЦП и ЦАП. Принцип работы этих устройств немного различается, поэтому не путайте их. Так, в статье будет рассматриваться из аналоговой формы в цифровую, в то время как ЦАП работает наоборот.

Определение

Прежде чем рассматривать принцип работы АЦП, давайте узнаем, что это за устройство. Аналого-цифровые преобразователи являются приборами, которые физическую величину превращают в соответствующее числовое представление. В качестве начального параметра может выступать практически всё что угодно - ток, напряжение, емкость, сопротивление, угол поворота вала, частота импульсов и так далее. Но чтобы иметь определённость, мы будем работать только с одним преобразованием. Это "напряжение-код". Выбор такого формата работы не случаен. Ведь АЦП (принцип работы этого устройства) и его особенности в значительной мере зависят от того, какое понятие измерения используется. Под этим понимают процесс сравнения определённой величины с ранее установленным эталоном.

Характеристики АЦП

Основными можно назвать разрядность и частоту преобразования. Первую выражают в битах, а вторую - в отсчетах на секунду. Современные аналого-цифровые преобразователи могут обладать разрядностью 24 бита или скоростью преобразования, которая доходит до единиц GSPS. Обратите внимание, что АЦП может одновременно предоставлять вам в использование только одну свою характеристику. Чем большие их показатели, тем сложнее работать с устройством, да и оно само стоит дороже. Но благо можно получить необходимые показатели разрядности, пожертвовав скоростью работы прибора.

Типы АЦП

Принцип работы разнится у различных групп устройств. Мы рассмотрим следующие типы:

  1. С прямым преобразованием.
  2. С последовательным приближением.
  3. С параллельным преобразованием.
  4. Аналого-цифровой преобразователь с балансировкой заряда (дельта-сигма).
  5. Интегрирующие АЦП.

Есть много других конвейерных и комбинированных типов, которые обладают своими особенными характеристиками с разной архитектурой. Но те образцы, которые будут рассматриваться в рамках статьи, представляют интерес благодаря тому, что они играют показательную роль в своей нише устройств такой специфики. Поэтому давайте будем изучать принцип работы АЦП, а также его зависимость от физического устройства.

Прямые аналого-цифровые преобразователи

Они стали весьма популярными в 60-70-х годах прошлого столетия. В виде производятся с 80-х гг. Это весьма простые, даже примитивные устройства, которые не могут похвастаться значительными показателями. Их разрядность обычно составляет 6-8 бит, а скорость редко превышает 1 GSPS.

Принцип работы АЦП данного типа таков: на плюсовые входы компараторов одновременно поступает входной сигнал. На минусовые выводы подается напряжение определённой величины. А затем устройство определяет свой режим работы. Это делается благодаря опорному напряжению. Допустим, что у нас есть устройство, где 8 компараторов. При подаче ½ опорного напряжения будет включено только 4 из них. Приоритетным шифратором сформируется который и зафиксируется выходным регистром. Относительно достоинств и недостатков можно сказать, работы позволяет создавать быстродействующие устройства. Но для получения необходимой разрядности приходится сильно попотеть.

Общая формула количества компараторов выглядит таким образом: 2^N. Под N необходимо поставить количество разрядов. Рассматриваемый ранее пример можно использовать ещё раз: 2^3=8. Итого для получения третьего разряда необходимо 8 компараторов. Таков принцип работы АЦП, которые были созданы первыми. Не очень удобно, поэтому в последующем появились другие архитектуры.

Аналого-цифровые преобразователи последовательного приближения

Здесь используется алгоритм «взвешивания». Сокращенно устройства, работающие по такой методике, называют просто АЦП последовательного счета. Принцип работы таков: устройством измеряется величина входного сигнала, а потом она сравнивается с числами, которые генерируются по определённой методике:

  1. Устанавливается половина возможного опорного напряжения.
  2. Если сигнал преодолел предел величины из пункта №1, то сравнивается с числом, которое лежит посредине между оставшимся значением. Так, в нашем случае это будет ¾ опорного напряжения. Если опорный сигнал не дотягивает до этого показателя, то сравнение будет проводиться с другой частью интервала по такому же принципу. В данном примере это ¼ опорного напряжения.
  3. Шаг 2 необходимо повторить Н раз, что даст нам Н бит результата. Это благодаря проведению Н количества сравнений.

Данный принцип работы позволяет получать устройства с относительной высокой скоростью преобразования, которыми и являются АЦП последовательного приближения. Принцип работы, как видите, прост, и данные приборы отлично подходят для различных случаев.

Параллельные аналого-цифровые преобразователи

Они работают подобно последовательным устройствам. Формула расчета - (2^Н)-1. Для рассматриваемого ранее случая нам понадобится (2^3)-1 компараторов. Для работы используется определённый массив этих устройств, каждое из которых может сравнивать входное и индивидуальное опорное напряжение. Параллельные аналого-цифровые преобразователи являются довольно быстрыми приборами. Но принцип построения этих устройств таков, что для поддержки их работоспособности необходима значительная мощность. Поэтому использовать их при батарейном питании нецелесообразно.

Аналого-цифровой преобразователь с поразрядным уравновешиванием

Он действует по похожей схеме, что и предыдущее устройство. Поэтому чтобы объяснить функционирование АЦП поразрядного уравновешивания, принцип работы для начинающих будет рассмотрен буквально на пальцах. В основе данных устройств лежит явление дихотомии. Иными словами, проводится последовательное сравнение измеряемой величины с определённой частью максимального значения. Могут браться значения в ½, 1/8, 1/16 и так далее. Поэтому аналого-цифровой преобразователь может выполнить весь процесс за Н итераций (последовательных шагов). Причем Н равняется разрядности АЦП (посмотрите на ранее приведённые формулы). Таким образом, мы имеем значительный выигрыш во времени, если особенно важным является быстродействие техники. Несмотря на значительную скорость, эти устройства также характеризуются низкой статической погрешностью.

Аналого-цифровые преобразователи с балансировкой заряда (дельта-сигма)

Это самый интересный тип устройства, не в последнюю очередь благодаря своему принципу работы. Он заключается в том, что происходит сравнение входного напряжения с тем, что накопилось интегратором. На вход подаются импульсы с отрицательной или положительной полярностью (всё зависит от результата предыдущей операции). Таким образом, можно сказать, что подобный аналого-цифровой преобразователь является простой следящей системой. Но это только как пример для сравнения, чтобы вы могли понимать, АЦП. Принцип работы системный, но для результативного функционирования этого аналого-цифрового преобразователя мало. Конечным результатом является нескончаемый поток единиц и нулей, который идёт через цифровой ФНЧ. Из них формируется определённая битная последовательность. Различают АЦП-преобразователи первого и второго порядков.

Интегрирующие аналого-цифровые преобразователи

Это последний частный случай, который будет рассмотрен в рамках статьи. Далее мы будем описывать принцип работы данных устройств, но уже на общем уровне. Этот АЦП является аналого-цифровым преобразователем с двухтактным интегрированием. Встретить подобное устройство можно в цифровом мультиметре. И это не удивительно, ведь они обеспечивают высокую точность и одновременно хорошо подавляют помехи.

Теперь давайте сосредоточимся на его принципе работы. Он заключается в том, что входным сигналом заряжается конденсатор на протяжении фиксированного времени. Как правило, этот период составляет единицу частоты сети, которая питает устройство (50 Гц или 60 Гц). Также он может быть кратным. Таким образом, подавляются высокочастотные помехи. Одновременно нивелируется влияние нестабильного напряжения сетевого источника получения электроэнергии на точность полученного результата.

Когда оканчивается время заряда аналого-цифрового преобразователя, конденсатор начинает разряжаться с определённой фиксированной скоростью. Внутренний счетчик устройства считает количество тактовых импульсов, которые формируются во время этого процесса. Таким образом, чем больше временной промежуток, тем значительнее показатели.

АЦП двухтактного интегрирования обладают высокой точностью и Благодаря этому, а также сравнительно простой структуре построения они выполняются как микросхемы. Основной недостаток такого принципа работы - зависимость от показателя сети. Помните, что его возможности привязаны к длительности частотного периода источника питания.

Вот как устроен АЦП двойного интегрирования. Принцип работы данного устройства хотя и является довольно сложным, но он обеспечивает качественные показатели. В некоторых случаях такое бывает просто необходимым.

Выбираем АПЦ с необходимым нам принципом работы

Допустим, перед нами стоит определенная задача. Какое выбрать устройство, чтобы оно могло удовлетворить все наши запросы? Для начала давайте поговорим про разрешающую способность и точность. Очень часто их путают, хотя на практике они очень слабо зависят один от второго. Запомните, что 12-разрядный аналого-цифровой преобразователь может иметь меньшую точность, чем 8-разрядный. В этом случае разрешение - это мера того, какое количество сегментов может быть выделено с входного диапазона измеряемого сигнала. Так, 8-разрядные АЦП обладают 2 8 =256 такими единицами.

Точность - это суммарное отклонение полученного результата преобразования от идеального значения, которое должно быть при данном входном напряжении. То есть первый параметр характеризует потенциальные возможности, которые имеет АЦП, а второй показывает, что же мы имеем на практике. Поэтому нам может подойти и более простой тип (например, прямые аналого-цифровые преобразователи), который позволит удовлетворить потребности благодаря высокой точности.

Чтобы иметь представление о том, что нужно, для начала необходимо просчитать физические параметры и построить математическую формулу взаимодействия. Важными в них являются статические и динамические погрешности, ведь при использовании различных компонентов и принципов построение устройства они будут по-разному влиять на его характеристики. Более детальную информацию можно обнаружить в технической документации, которую предлагает производитель каждого конкретного прибора.

Пример

Давайте рассмотрим АЦП SC9711. Принцип работы данного устройства сложен ввиду его размера и возможностей. Кстати, говоря о последних, необходимо заметить, что они по-настоящему разнообразные. Так, к примеру, частота возможной работы колеблется от 10 Гц до 10 МГц. Иными словами, оно может делать 10 млн отсчетов в секунду! Да и само устройство не является чем-то цельным, а имеет модульную структуру построения. Но используется оно, как правило, в сложной технике, где необходимо работать с большим количеством сигналов.

Заключение

Как видите, АЦП в своей основе имеют различные принципы работы. Это позволяет нам подбирать устройства, которые удовлетворят возникшие запросы, и при этом позволят разумно распорядиться имеющимися средствами.

АЦП — Аналого-цифровой преобразователь. Из названия можно догадаться, что на вход подается аналоговый сигнал, который преобразуется в число.

Первое о чем нужно сказать — АЦП микроконтроллера умеет измерять только напряжение. Чтобы произвести измерение других физических величин, их нужно вначале преобразовать в напряжение. Сигнал всегда измеряется относительно точки называемой опорное напряжение, эта же точка является максимумом который можно измерить. В качестве источника опорного напряжения (ИОН), рекомендуется выбирать высокостабильный источник напряжения, иначе все измерения будут плясать вместе с опорным.

Одной из важнейших характеристик является разрешающая способность, которая влияет на точность измерения. Весь диапазон измерения разбивается на части. Минимум ноль, максимум напряжение ИОН. Для 8 битного АЦП это 2^8=256 значений, для 10 битного 2^10=1024 значения. Таким образом, чем выше разрядность тем точнее можно измерять сигнал.

Допустим вы измеряете сигнал от 0 до 10В. Микроконтроллер используем Atmega8, с 10 битным АЦП. Это значит что диапазон 10В будет разделен на 1024 значений. 10В/1024=0,0097В — с таким шагом мы сможем измерять напряжение. Но учтите, что микроконтроллер будет считать, величину 0.0097, 0.0098, 0.0099… одинаковыми.

Тем не менее шаг в 0,01 это достаточно неплохо. Однако, есть несколько рекомендаций, без которых эта точность не будет соблюдена, например для измерения с точностью 10бит, частота на которой работает АЦП должна быть 50-200 кГц. Первое преобразование занимает 25 циклов и 13 циклов далее. Таким образом, при частоте 200кГц мы сможем максимум выжать
200 000/13 = 15 384 измерений.

В качестве источника опорного напряжения можно использовать внутренний источник и внешний. Напряжение внутреннего источника (2,3-2,7В) не рекомендуется использовать, по причине низкой стабильности. Внешний источник подключается к ножке AVCC или Aref, в зависимости от настроек программы.

При использовании АЦП ножка AVCC должна быть подключена. Напряжение AVCC не должно отличаться от напряжения питания микроконтроллера более чем на 0,3В. Как было сказано, максимальное измеряемое напряжение равно опорному напряжению(Vref), находится оно в диапазоне 2В-AVCC. Таким образом, микроконтроллер не может измерить более 5В.

Чтобы расширить диапазон измерения, нужно измерять сигнал через делитель напряжения. Например, максимальное измеряемое напряжение 10В, опорное напряжение 5В. Чтобы расширить диапазон измерения, нужно уменьшить измеряемый сигнал в 2 раза.

Формула для расчета делителя выглядит так:

U вых = U вх R 2 /(R 1 + R 2)

Подставим наши значения в формулу:

5 = 10*R2/(R1+R2)

т.е. можно взять любые два одинаковых резистора и подключить их по схеме

Следовательно, когда мы измеряем напряжение через делитель, нужно полученное значение АЦП умножить на коэффициент=Uвых/Uвх.

Полная формула вычисления измеряемого напряжения будет выглядеть так:
U=(опорное напряжение*значение АЦП*коэффициент делителя)/число разрядов АЦП

Пример: опорное 5В, измеренное значение АЦП = 512, коэффициент делителя =2, АЦП 10разрядный.

(5*512*2)/1024=5В — реальное измеренное значение напряжения.

Некоторые программисты пишут программу так, чтобы микроконтроллер автоматически вычислял коэффициент делителя, для этого выходной сигнал измеряют образцовым прибором и заносят это значение в программу. Микроконтроллер сам соотносит истинное напряжение каждому значению АЦП, сам процесс однократный и носит название калибровки.

Перейдем к программной реализации. Создаем проект с указанными параметрами. Также подключим дисплей на порт D для отображения информации.

Измерение будет производиться в автоматическом режиме, обработка кода в прерывании, опорное напряжение подключаем к ножке AVCC. По сути нам нужно только обрабатывать получаемые данные. Измеренные данные хранятся в переменной adc_data. Если нужно опрашивать несколько каналов, то выбираем какие каналы сканировать, а данные будут для ножки 0 в adc_data, для ножки 1 в adc_data и т.д.

В основном цикле добавим строки:

result=((5.00*adc_data)/1024.00); //пересчитываем значение АЦП в вольты
sprintf(lcd_buffer,»U=%.2fV»,result); //помещаем во временную переменную результат
lcd_puts(lcd_buffer); //выводим на экран

Небольшое замечание, чтобы использовать числа с плавающей точкой, нужно в настройках проекта изменить (s)printf Features: int, width на float, width, precision. Если этого не сделать десятые и сотые мы не увидим.

Таким образом, мы всего лишь перевели значение АЦП в вольты и вывели на дисплей. Результат в протеусе выглядит так:

Резистором можно менять напряжение, измеряемое напряжение выведено на дисплей. При сборке на реальном железе к ножке Aref нужно подключить конденсатор на 0,1мкФ. Урок получился немного сложным, но думаю он вам понравится.

Файл протеуса и прошивка:

Update:
Измерение тока:

Аналоговые (АЦП) входы контроллера. Не каждому и не сразу понятно, что это такое и с чем его едят. Потому попытаюсь объяснить своими словами.

Вообще, что такое "аналоговый" вход? У контроллера два типа входов: цифровой и аналоговый. Цифровой может принимать только два значения: ноль и единица. Ноль - нет напряжения, единица - есть напряжение. Информация передается на цифровой вход импульсами во времени. А вот аналоговый вход способен принимать не только эти два значения, но вообще любое напряжение.

У контроллера NM8036 имеются два аналоговых входа (см. ). На каждый из этих входов может быть подано любое напряжение в пределах от 0 до напряжения питания (5 в). Например, 1,8 вольта, или 3,2 вольта... Короче, любое, но не более 5 вольт.

Что с этим напряжением делает контроллер? Очень просто: измеряет и представляет его в цифровом виде. Причем, делает он это в пределах от 0 до 1023. Это бинарные данные (bin-data), в которых верхний предел (1023) приравнивается к напряжению в 5 вольт. Это и есть Аналого-Цифровое Преобразование (АЦП).

Но фактическое напряжение - оно и есть фактическое. 5 вольт - они и есть 5 вольт. Это значение рассматривается здесь, как "Вольты". И правильно, вольты и есть.

Но здесь можно представить это напряжение и в других физических величинах (Физика). Например, подключили мы ко входу датчик давления или влажности, или тоже датчик температуры, но не цифровой, как DS1820, а терморезисторный. Этот терморезисторный датчик выдаст нам напряжение от 0 до 5 вольт (электронщики, не возбуждайтесь! Это лишь для примера.), но ведь нам важно знать температуру, а не напряжение!

Вот мы и калибруем эти значения. Нижний предел в настройках (см. Управление отоплением частного дома. Advanced Manager.) установим, например, в 16 градусов, а верхний - в 30 градусов. Вот такой вот у нас датчик, видите ли, подключен. А количество знаков после запятой поставим 2. И префикс укажем: С (то бишь, градусов цельсия).

И что мы при этом получим? А получим то, что когда датчик пришлет на вход напряжение, например, в 2,5 вольта, контроллер быстренько все пересчитает и выдаст нам три варианта результатов: 512 (bin-data), 2,5в (Вольты) и 23.00 С (градусов цельсия). Вот таким образом можно настроить работу практически с любым датчиком, выдающим на своем выходе аналоговое значение напряжения.

Существование двух аналоговых входов у контроллера - это ведь не только возможность подключения вышеперечисленных датчиков. Можно придумать немало схем, которые могут оказаться очень даже полезными для разных целей в частном доме. Перечислю навскидку возможные из них.

Простой выключатель на 2 положения. Может иметь на выходе Data либо 0 вольт, либо 5 вольт. Подключается тремя проводами: Vcc (+5в), Data (данные) и Gnd (общий провод). Таким выключателем можно устанавливать два разных режима работы нагрузок при программировании системы.

Переключатель на большее количество положений может обеспечить возможность программирования и большего количества режимов. Вот, скажем, на 3 положения. Каждое положение имеет свое напряжение на выходе. Самое нижнее положение - на выходе 1,25 в, среднее 2,5 в и верхнее 3.75 в. Увеличивая количество резистров в цепочке, можно увеличивать и количество положений переключателя.

Это были варианты ступенчатой регулировки, но ведь есть и вариант плавного регулирования. Здесь величина выходного напряжения зависит от положения движка переменного резистора. Можно применить, например, для ручной регулировки температуры. Сделать программу так, чтобы она поддерживала температуру в помещении такой, какая задана регулятором. Автоматическая регулировка - это одно, но нередко хочется где-то что-то повернуть, щелкнуть, чтобы было потеплее, или, наоборот, попрохладнее. Человек ведь существо привередливое.

Или применить такую схему для контроля, скажем, за уровнем воды в емкости, в колодце... Это несложно: поплавок на нитке, намотанной на ручку переменного резистора. Подпружиненной, естественно. Но это так, навскидку, без детальной проработки.

Если же продолжать фантазировать, то можно еще измерять уровень освещенности и в нужное время включать/отключать лампу... Короче, возможностей у этих аналоговых входов масса, NM8036 вполне может осилить немало задач не только в управлении отоплением частного дома, но и для решения многих других задач. О возможностях программирования поговорим в следующих статьях.

Кстати, по поводу регулировки температуры в помещении есть очень даже неплохое решение, взятое мною из . В ответ на чей-то вопрос автор сообщения Brokly (он же автор Advanced Manager) привел пример применения аналогового входа. Привожу дословно:
Вы бы еще сложнее че нить придумали. Поставьте контактный настенный термостат, подключите к аналоговому входу, и пусть алкаши сами его крутят. И уборщицу освободите, и пъяным забава. Да и контроллеру меньше работы, сработал термостат - можно не греть.

Как тебе такое, Мастер? А мне, знаешь, понравилось.

Продолжение следует...

В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

Введение

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.


Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Типы АЦП

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

  • АЦП параллельного преобразования (прямого преобразования, flash ADC)
  • АЦП последовательного приближения (SAR ADC)
  • дельта-сигма АЦП (АЦП с балансировкой заряда)
Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

Архитектура АЦП прямого преобразования изображена на рис. 1

Рис. 1. Структурная схема АЦП прямого преобразования

Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

Дельта-сигма АЦП

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

Рис.3. Структурная схема сигма-дельта АЦП.

Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к .

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

Y(s) = X(s)/(s+1) + E(s)s/(s+1)

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Немного истории

Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

Рис. 8. Первый патент на АЦП

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Литература

W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial.

Так сложилось, что основной МК с которым я работаю постоянно и на котором делаю подавляющее большинство задач это ATTiny2313 — он популярен, а, главное, это самый дешевый контроллер из всей линейки AVR с числом ног более 8. Я их брал числом около трех сотен за 18, чтоль, рублей штучка. Но вот западло — у него нет АЦП . Совсем нет. А тут он понадобился — нужно замерить сигнал с датчика. Засада. Не переходить же из-за такой фигни на более фаршированную ATTiny26 — она и стоит дороже и фиг где купишь у нас, да и что тогда делать с той прорвой ATTiny2313 что уже закуплена? Пораскинул мозгами…

А почему бы не сварганить АЦП последовательного сравнения? Конечно, быстродействие и точность будет не фонтан, зато, не меняя тип МК и всего с двумя копеечными деталями дополнительного обвеса, я получу полноценный, хоть и тормозной, 8ми разрядный АЦП, вполне удовлетворяющий моим скромным запросам!

Как работает АЦП последовательного сравнения.
Что у нас есть в ATTiny2313 аналогового? Правильно — . Теперь достаточно подать на его вход замеряемый сигнал и методично сравнивать с опорным напряжением, линейно изменяя величину опорного напряжения. На каком из опорных напряжений произойдет сработка компаратора, тому и примерно равен измеряемый сигнал +/_ шаг изменения опорного.

Осталось получить переменное опорное напряжение, а чем, из сугубо цифрового выхода контроллера, можно вытянуть аналоговый сигнал? ШИМом! Предварительно его проинтегрировав. Для интеграции используем простейший RC фильтр. Конденсатор у нас будет интегрировать заряд, а резистор не даст сдохнуть порту при зарядке кондера. Результатом прогона ШИМ’а через подобный фильтр станет достаточно стабильное постоянное напряжение.

Осталось только прикинуть номиналы фильтра. Частота среза — частота, начиная с которой, фильтр начинает глушить переменную составляющую, у Г образного RC фильтра равна обратной величине из его постоянной времени w=1/RC . Я воткнул кондер на 0.33Е-6 Ф и резистор на 470 Ом, получилось что w=6447 рад/c . Поскольку угловая частота нам никуда не уперлась, то делим ее на 2pi = 6.28 получили около килогерца, 1026.6 Гц, если быть точным. Раз частота ШИМ а у нас запросто может быть порядка десятков килогерц, то на выходе будет гладенькая такая постоянка, с незначительными пульсациями.

Теперь заворачиваем эту ботву на вход компаратора, на второй пускаем наш измеряемый сигнал и начинаем развлекаться с кодом. Получилась вот такая схема, собранная , что и . Тут, правда, не ATTiny2313, а Mega8 у которой АЦП есть, но мы пока забудем о его существовании. Красными линиями нарисован наш фильтр.

Код будет простецкий, чтобы не заморачиваться выложу и отдельные исходники в виде файлов:

  • — Головной файл
  • — Таблица векторов прерываний
  • — Инициализация периферии
  • и — Макросы и макроопределения

Прокомментирую лишь главную функцию Calc .
При вызове процедуры Calc у нас первым делом:

  1. Конфигурируется аналоговый компаратор и, главное, активизируются его прерывания.
  2. Затем в сканирующий регистр (R21) закидывается начальное значение сканирования 255.
  3. После чего это значение забрасывается в регистр сравнения ШИМ OCR1AL . ШИМ был заранее, в разделе init.asm сконфигурирован и запущен, так что сразу же на его выходе появляется сигнал скважностью (скважность это отношение длительности сигнала к периоду этого сигнала) 1 т.е., фактически, пока это просто единица.
  4. Выжидаем в функции Delay некоторое время, чтобы закончился переходный процесс (конденсатор не может мгновенно изменить свое напряжение)
  5. Уменьшем значение сканирующего регистра (что при загрузке в OCR1AL уменьшит скважность на 1/255), проверяем не стало ли оно нулю. Если нет, переходим на пункт 3.
Итогом станет последовательное уменьшение скважности сигнала с 1 до 0, с шагом в 1/255 , что будет преобразовано после фильтра в уменьшающееся напряжение. А, так как в главной процедуре у меня Calc вызывается циклически, то на входе компаратора будет пила.

Как видно, вверху есть некоторый срез. Это связано с тем, что максимальное напряжение, которое может выдать нога МК, с учетом падений на всех резисторах, порядка 4.7 вольта, а с задающего потенциоматера я могу и все 5 выкрутить. Ну еще и верхушки заваливаются чуток. Если понизить частоту, то диапазон несколько расширится.

Вот так, применив немного смекалки, а также две дополнительные детали общей суммой в один рубль и десяток строк кода, я сэкономил кучу бабла =)



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: