Автономные доплеровские устройства и системы навигации летательных аппаратов доплеровский измеритель вектора скорости и угла сноса (дисс) лекция ирэ кафедра. Радиовысотомер малых высот

Назначение и классификация ДИСС.

ЛИТЕРАТУРА

Контрольные вопросы

Упражнения

Найти общее решение и решение задачи Коши уравнений в частных производных

2. , .

3. , .

4. , .

8. , .

9. , .

10. , .

1. Перечислите предположения, которые были сделаны при выводе уравнения колебания струны.

2. Перечислите силы, действующие на небольшой участок струны.

3. Выведите уравнение колебаний струны.

4. Напишите уравнения продольных и крутильных колебаний стержня.

5. Перечислите физические процессы, которые называют волновыми.

6. Что необходимо определить для однозначной характеристики волнового процесса?

7. Перечислите три вида граничных условий.

8. Что называется задачей Коши?

9. Что называется краевой задачей?

10. Что называется смешанной задачей?

11. Выведите формулу Даламбера решения задачи Коши для волнового уравнения.

12. Дайте физическую интерпретацию формулы Даламбера.

13. Как изменится решения волнового уравнения в случае полуограниченной струны. Дайте физическую интерпретацию

14. В чем заключается метод разделения переменных?

15. Сформулируйте задачу Штурма-Лиувилля.

16. Что называется собственной функцией задачи?

17. Что такое собственное значение задачи?

18. При каких значения параметра l задача Штурма-Лиувилля имеет нетривиальные решения.

19. Запишите решение задачи Штурма-Лиувилля.

20. В силу каких предположений сумма частных решений есть также решение?

21. Что позволяют определить начальные условия.

22. Приведите физическую интерпретацию полученного решения.

23. Что называется стоячей волной?

24. В чем заключается метод решения неоднородного волнового уравнения?

25. Как называются одномерные, двумерные и трехмерные волны?

26. Что называется средним арифметическим функции?

27. Получите формулу Пуассона для решения сферического волнового уравнения.

28. В чем заключается принцип Гюйгенса.

1. Вертоградов В.И. «РЭО ЛА». Часть1.М.: Воениздат, 1979, инв.68.

2. Конспект лекций и групповых занятий.

Составил майор __________________________ М.Ковалев.


1. Назначение и классификация ДИСС………………………….5

2. Принцип действия ДИСС………………………………………7


Определение путевой скорости и истинного путевого угла всегда вызывало наибольшие трудности при управлении движением ЛА. Эти два основных элемента полёта необходимы при счислении пути и для автономного определения действительного местоположения ЛА.

Задача определения путевой скорости и угла сноса может быть решена методом построения векторного треугольника. Для этого необходимо иметь данные о воздушной скорости ЛА V и о скорости ветра U, которые являются составляющими вектора скорости W. Данные о воздушной скорости можно получить при помощи системы воздушных сигналов (СВС), имеющейся на ЛА. Непрерывное же получение достаточно точных данных о скорости ветра в условиях полёта является трудноосуществимой задачей. Поэтому реализовать метод определения путевой скорости и угла сноса путем решения векторного треугольника очень сложно.


Решать поставленную задачу наиболее целесообразно методом непосредственных измерений при помощи радионавигационных устройств, работа которых основана на использовании эффекта Доплера – доплеровский измеритель путевой скорости и угла сноса (ДИСС).

ДИСС на ЛА может быть выполнен в виде самостоятельного радионавигационного устройства. В этом случае данные, получаемые от ДИСС, могут использоваться для решения различных задач, связанных с боевым применением ЛА (напр. задач бомбометания, пуска ракет и др.).

Однако чаще всего ДИСС используется в качестве автономной навигационной системы (АНС), упрощенная структурная схема которой приведена на слайде №2. В состав АНС также входят навигационный вычислитель (НВ), курсовая система (как источник информации об истинном курсе ЛА), датчик воздушной скорости (ДВС), РСБН.

На основе данных получаемых от ДИСС, РСБН, КС и ДВС навигационный вычислитель решает следующие задачи:

· определяет курс следования на выбранный пункт маршрута;

· определяет текущие координаты самолета;

· вычисляет оставшееся расстояние и время полета до выбранного пункта маршрута;

· определяет курсовую поправку для вывода ЛА на линию заданного пути.

Выходным устройством АНС является индикатор. Кроме того, данные от вычислителя подаются на автопилот (АП) для автоматического управления ЛА.

ДИСС можно использовать не только для обеспечения полета самолета по маршруту, но и режимов висения и посадки вертолетов. При решении этих задач ДИСС измеряет три составляющие полной скорости ЛА (скорости относительно земной поверхности), в том числе и вертикальную составляющую (слайд №1).

Поскольку доплеровские измерители являются автоматическими устройствами, т.е. работают без связи с наземными устройствами, их дальность действия оказывается неограниченной. В этом заключается важнейшее преимущество ДИСС.

ДИСС могут устанавливаться на ЛА различного назначения, летающие как с очень малой путевой скоростью, так и с очень большой. Принципиальных ограничений по скорости для ДИСС не существует.

ДИСС классифицируют по количеству лучей, формируемых антенной системой, и по характеру излучаемого сигнала.

По количеству лучей : одно-, двух-, трех- и четырех лучевые ДИСС (слайд №3).

По характеру излучаемого сигнала все ДИСС делятся на 2 группы:

1. измерители с импульсным излучением (достоинства: относительная простота и независимость результатов измерений от стабильности частоты передатчика; недостатки: дополнительная погрешность при полете над пересеченной местностью, невозможно измерить вертикальную составляющую полной скорости, которая необходима в вертолетах и космических кораблях).

2. измерители с непрерывным излучением (преимущество: более высокая чувствительность, чем у импульсных ДИСС; недостаток: трудности при обеспечении развертки приемника и передатчика, что приводит к необходимости использования двух антенн.

ДИСС с непрерывным излучением либо немодулированные, либо частотномодулированные колебания.


Для измерения навигационных параметров в ДИСС используется эффект Доплера. Этот эффект проявляется в изменении частоты принимаемых, отраженных от земной поверхности колебаний, относительно частоты излучаемых колебаний ДИСС, размещенной на самолете. Разница этих частот называется доплеровской частотой или доплеровским сдвигом частоты

F Д =f ПР -f ИЗЛ =2V P /l. (1)

где f ПР и f ИЗЛ частоты излучаемых и принимаемых сигналов;

l=l ИЗЛ – длина волны;

V P -радиальная скорость, т.е. скорость ЛА в направлении излучения.

Для пояснения принципа действия доплеровского измерителя путевой скорости и угла сноса (ДИСС) рассмотрим простейший ДИСС. Функциональная схема однолучевого измерителя, работающий в режиме непрерывного излучения, изображена на слайде № .

Передатчик измерителя генерирует синусоидальные сигналы высокой частоты ¦ 0 , которые через направленный разделитель поступают в антенну и излучаются ею по направлению к земле. Отраженные от шероховатостей земной поверхности радиоволны, имеющие доплеровский сдвиг по частоте, воспринимаются антенной и через направленный разделитель поступают на смеситель приёмника. На смеситель приемника кроме отражённых радиосигналов ¦ 0 +F Д поступают также просочившиеся через разделитель ослабленные прямые радиосигналы передатчика частоты ¦ 0 . В результате взаимодействия этих сигналов на выходе смесителя образуется напряжение разностной, т. е. доплеровской, частоты F Д. Это напряжение усиливается и подается на измерительную схему (частотомер) , которая выдает постоянное напряжение U д, пропорциональное по величине доплеровской частоте F Д. Это напряжение подается на индикаторный стрелочный прибор, шкала которого градуирована в единицах скорости V п.

Покажем, как с помощью однолучевого доплеровского измерителя можно определить путевую скорость и угол сноса ЛА.

Предположим, что ЛА совершает горизонтальный полет (V ПZ =0) с воздушной скоростью V, путевой скоростью V П (напомним, что при V ПZ =0 вектор путевой скорости горизонтальной плоскости V ПГ равен вектору полной скорости V П) и имеет угол сноса a (слайд №). Пусть в начальном положении луч антенны развернут относительно вектора воздушной скорости так, что проекция оси луча на горизонтальную плоскость составляет с вектором V угол b и, кроме того, луч наклонен по направлению к земной поверхности на угол g. Угол наклона луча g отсчитывается от горизонтали в вертикальной плоскости Р , проходящей через ось луча. Тогда составляющую вектора путевой скорости в направлении излучения (т.е. радиальную составляющую) V r найдем следующим образом:

Следовательно, в соответствии с формулой для доплеровского сдвига частоты (1) запишем

Измерительная схема (частотомер) выдает напряжение U Д, пропорциональное F Д:

Где k - коэффициент пропорциональности.

Поворачивая антенну в горизонтальной плоскости и наблюдая за показаниями индикаторного прибора, можно найти такое положение антенны, при котором напряжение U Д, а следовательно, и доплеровский сдвиг частоты становится максимальным. Это будет наблюдаться при b=a. Тогда для F Д MAX получим

Зная угол g, по значению F Д MAX можно определить путевую скорость V П, а по углу разворота антенны b относительно продольной оси аппарата, при котором доплеровская частота достигает максимума, можно судить о величине угла сноса a.

Однолучевые доплеровские измерители при колебаниях самолета имеют сравнительно большие ошибки в результатах измерения угла сноса и путевой скорости.

Для повышения точности измерений путевой скорости и угла сноса самолета применяются многолучевые ДИСС. Так, в получившем широкое распространение ДИСС-7 используется 4 луча, проекции которых на горизонтальную плоскость показаны на рисунке, приведенном на слайде №5.

С учетом того, что в ДИСС-7 углы, характеризующие положение лучей неизменны и известны, получаем, что составляющие путевой скорости ЛА могут быть рассчитаны по выражениям, приведенным на слайде №6.

Рассчитав составляющие полной скорости, можно определить путевую скорость и угол сноса

Эти формулы представляют собой основные рабочие алгоритмы, на основе которых в бортовой ЭВМ или в навигационном вычислителе определяются значения путевой скорости и угла сноса. Однако эти значения дают приближенные значения, т.к. необходимо учитывать:

Влияние отклонения реальных углов визирования антенных лучей от номинальных значений;

Отклонение реальной частоты излучения от номиналов;

Смещение доплеровских частот, обусловленное характером отражающей поверхности.

Значение отклонений углов визирования лучей и частоты излучения от номиналов указывается в сводном паспорте на вычислитель.

Главным источником погрешности в ДИСС является смещение доплеровской частоты, обусловленное характером отражающей поверхности (ХОП) . Причиной ошибок смещения частоты Доплера является зависимость удельной эффективной отражающей площади от угла падения луча визирования на отражающей поверхность (см. Слайд №7).

Происходит деформация доплеровского спектра и смещение его максимума в сторону низких частот в результате изменения коэффициента отражения в пределах ширины антенного луча, т.к. низкие частоты соответствуют точкам, облучаемым под большим углом падения, чем точки, соответствующие высоким частотам.

На слайде №8 показан характер изменения коэффициента отражения в зависимости от углов падения лучей для различного ХОП.

Наиболее сильно коэффициент отражения меняется в зависимости от угла падения для морских поверхностей.

В результате смещения максимума мощности в спектре отраженного сигнала смещается и средняя доплеровская частота. Величина смещения средней доплеровской частоты за счет изменения ХОП различна и может достигать 0,03Fд, что приводит к возникновению значительной погрешности в измерении путевой скорости ЛА, если не принять никаких мер.

Величину смещения средней доплеровской частоты Δ хоп, можно определить по значению Δσ=σ(γ 2) – σ(γ 1) (см. слайд №8). На основании этой зависимости в ДИСС осуществляется вычисление калибровочной поправки Δ хоп на ХОП.

В ДИСС-7 по соотношению мощностей принятых четвертого и первого луча ДИСС вычисляется Δ хоп и в виде напряжения U хоп =kΔ хоп подается в бортовую ЭВМ или в навигационный вычислитель. Где k – постоянный масштабный коэффициент. В ДИСС-7 величина U хоп изменяется в пределах от 0 до 8,8 В.

ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ДИСС-7

Общие сведения

Доплеровский измеритель путевой скорости и угла сноса ДИСС-7 («Поиск») обеспечивает непрерывное автоматичес­кое измерение составляющих вектора путевой скорости W само­лета. Предназначен для работы только в составе навигационного комплекса и прицельно-навигационной системы (ПНС) или со специальным вычислителем В-144.

В состав ДИСС входят: передающее устройство, приемное устройство, частотомер и синхронизатор (рис. 13.3), Принцип работы состоит в следующем. Передающее устройство генерирует немодулированные СВЧ колебания, которые излучаются направленно к наземной поверх­ности (рис, 13.4, а). Передающая антенна, как и приемная, имеет остронаправленную (игольчатую) четырехлучевую диаграмму направленности. Лучи антенны 1, 2, 3 развернуты в горизонтальной плоскости на угол β от продольной оси самолета и наклонены в вертикальной плоскости на угол γ.

Рис. 13.3. Структурная схема ДИСС-7

Рис. 13.4. Положение лучей антенны ДИСС-7: а - вид в пространстве; б - вид сверху

относительно продольной оси самолета показано на рис. 13.4, б ).

Излучение (и прием) энергии по лучам 1, 2, 3, 4 происходит поочередно. Очередность излучения (и приема) задается синхро­низатором.

Отраженные от земной поверхности сигналы принимаются при­емной антенной и из-за проявления эффекта Доплера имеют сдвиг по частоте. В приемнике происходит усиление принятых сигналов и выделение доплеровской частоты F Д. Доплеровская частота поступает в частотомер. В частотомере осуществляется обнаружение доплеровской частоты и формирование импульсов напряже­ния, частота повторения которых равна доплеровской частоте по лучам 1, 2, 3.

Рис. 13.5. Вектор полной путевой скорости и его составляющие

Величины доплеровских частот F Д (рис. 13.5) по лучам 1, 2, 3 составят:

F Д1 = (W X cosβcosγ- W Z sinβcosγ-W Y sinγ)

F Д2 = (W X cosβcosγ+ W Z sinβcosγ+W Y sinγ)

F Д3 = (W X cosβcosγ- W Z sinβcosγ+W Y sinγ),

где W X , W Y , W Z - проекция полного вектора путевой скорости на оси самолетной системы координат.

Величины W X cosβcosγ, W Z sinβcosγ, W Y sinγ представляют собой проекции составляющих полной путевой скорости на направ­ления излучения (рис. 13.6).



Доплеровские частоты F Д1, F Д2 , F Д3 из частотомера поступают в вычислительное устройство для измерения путевой скорости и угла сноса самолета. В вычислительном устройстве осуществляет­ся решение системы уравнений относительно W X , W Y , W Z при этом следует иметь в виду, что доплеровские сдвиги частот F Д2 и F Д3 отрицательны, так как лучи 2 и 3 направлены назад, и в расчетах используются их модули.

Величину продольной составляющей полного вектора путевой скорости W Х найдем, вычитая из первого уравнения системы вто­рое:

W Х = .

Величину вертикальной составляющей полного вектора путе­вой скорости W Y найдем, складывая первое уравнение с третьим уравнением системы:


Величину поперечной составляющей полного вектора путевой скорости Wz найдем, вычитая из третьего уравнения системы вто­рое:

Wz=

С учетом того, что в ДИСС-7 угол β=45°, угол γ= 66°, по­лучим:

W X =0,83(F Д1 -|F Д3 |)λ 0 ;

W Y =0,28(|F Д3 |-|F Д1 |)λ 0 ;

W Z =0,83(|F Д3 |-|F Д2 |)λ 0

Полученные выражения представляют основные рабочие формулы, на основании которых в бортовой ЦВМ или в спе­циализированном вычислителе В-144 определяется вектор путе­вой скорости.

Составляющие вектора полной путевой скорости W x , W Y , W z позволяют вычислить горизонтальную составляющую путевой скорости W и угол сноса самолета а по следующим формулам:

; tgα=

Измеренные составляющие вектора полной путевой скорости W x , W Y , W z , а также W и αиспользуются для решения навига­ционных и боевых задач. Величины W и α могут быть сняты со специального индикатора или с индикатора вычислителя В-144.

Следует отметить, что рабочие формулы являются приближен­ными, так как в них не учтены отклонения реальных углов лучей, реальной частоты излучаемых колебаний от номинальных значе­ний, не учтено смещение доплеровских частот, определяемое ха­рактером отражающей поверхности.

Все блоки измерителя размещены на общем основании, уста­навливаемом в нижней части фюзеляжа самолета.

В комплект блоков ДИСС-7 входят следующие блоки: питания передатчика ПК7, коммутации ПК8, приемник ПК3, электронный ПК-5 (2 шт.), питания низковольтный ПК4, пере­датчик ПК2 (2 шт.), антенное устройство ПК1.

Измеритель ДИСС-7, работающий совместно с вычислителем В-144, имеет следующие тактико-технические данные:

Диапазон измеряемых путевых скоростей -250-3200 км/ч.

Диапазон измеряемых углов сноса - ±15°

Точность измерений путевой скорости - ± (5,5+0,006W )км/ч

Точность измерения угла сноса - ±54".

Диапазон рабочих высот - до 25000 м.

Диапазон волн - сантиметровый.

Вид излучения - непрерывный.

Мощность передатчика -2Вт.
Чувствительность приемника - 106 дБ.

Число лучей антенны - 4.

Частота коммутации лучей антенны -2,5Гц.
Время непрерывной работы - 12 ч.

Назначение

Доплеровский измеритель представляет собой автоном­ную радиолокационную аппаратуру, предназначенную для автоматического непрерывного измерения и индикации трех составляющих вектора путевой скорости значения пу­тевой скорости, угла сноса и выдачи этой информации в другие бортовые системы вертолета.

Состав и размещение

На вертолете установлены:

Высокочастотный блок (блок ВЧ) в шіжмеіі части хвостовой балки между ши. 17 и 19;

Вычислитель составляющих скорости (блок ВЕС), низковольтный источник питания (блок НП-2), коробка соединительная (прибор КС) на левом борту в районе шп. 4а и 4;

Бортовой пульт контроля (прибор ВПК) на цент­ральном пульте;

Индикатор малых скоростей и висения (блоков), ин­дикатор угла сноса и путевой скорости (индикаторы УС и ПС, рис. 26.5), табло ДИСС НЕ РАБОТАЕТ на прибор­ной доске;

Выключатель ДИСС на приборном щитке радиообо­рудования;

Предохранитель ПМ-10 в цепи питания аппаратуры напряжением +27 В в РУ-6;

Предохранитель ПМ-5 в цепи питания аппаратуры напряжением 115 В 400 Гц, три предохранителя ПМ-2 в цепи питания аппаратуры напряжением ~36 В в РУ-11;

Предохранитель ПМ-5 в цепи включения аппаратуры +27 В в ЦРУ.

Основные данные

1. В аппаратуре предусмотрены следующие режимы работы:

«Навигация», включается автоматически по достижении объектом путевой скорости 50 км/ч. В этом режиме инди­кация путевой скорости осуществляется на индикаторе УС-ПС;

«Висение», включается автоматически при уменьшении

путевой скорости объекта ниже 50 км/ч. При этом индика­ция продольной, поперечной и вертикальной составляющих полной скорости осуществляется на индикаторе малых ско­ростей и висения;

«Память», включается автоматически при отказе раз­личных элементов и узлов аппаратуры и при уменьшении отраженных сигналов при полете над штилевыми участка­ми водной поверхности, бетонными площадками и взлетно- посадочными полосами значительной протяженности. При этом на индикаторе УС и ПС загорается табло П, а на при­борной доске - табло ДИСС НЕ РАБОТАЕТ, запрещаю­щие использовать показания индикатора малых скоростей и висения и индикатора УС и ПС.

2. Вид излучения - непрерывный.

3. Частота излучения - /о±7,5 МГц.

4. Мощность передатчика - 250 МВт.

5. Рабочий диапазон высот: м

в режиме «Навигация» - от 10 до 3000 м; в режиме «Висение» над сушей - от 4 до 3000 м; в режиме «Висение» над морем-от 4 до 300 м.

6. Диапазон измерения путевой скорости-от 0 до 400 км/ч.

7. Диапазон измерения угла сноса ±30°.

8. Диапазон измерения н индикации вектора путевой скорости в режиме «1 Іашн ацня»:

продольной - от 50 до 400 км/ч; поперечной - ±Ю0 км/ч; вертикальной - ±10 м/с.

9. Диапазон измерении и индикации вектори путевой скорости в режиме «Висение»:

продольной - от -25 до 50 км/ч; поперечной - ±25 км/ч; вертикальной - ±10 м/с.

10. Время готовности к работе-не более 3 мни

11. Время непрерывной работы - нс более 6 ч.

12. Потребляемый ток: по цепи +27 В-7 А;

по цепи ~115 В 400 Гц - 7 А; по цепи ~36 В 400 Гц- 1 А.

13. Масса - не более 50 кг.

Связь с бортовым оборудованием

Питание ДИСС-32 от бортовых источников +27 II, »■’115 В 400 Гц и ~36 В 400 Гц осуществляется при цклю чении ДИСС.

Ті Зак. 3154дсп

Встроенный подсвет индикатора малых скоростей и ви — сения и индикатора угла сноса и путевой скорости вклю­чения включается с помощью выключателя, расположен­ного на приборной доске летчика или штурм ана-операто — ра. Углы крена и тангажа подаются от гировертикали МГВ-1СУ.

В НКВ-252 ДИСС-32 выдает сигналы продольной и по­перечной составляющих путевой скорости, а также сигнал ИСПРАВНОСТЬ в виде напряжений постоянного тока.

В ПК. В-252 ДИСС-32 выдает сигналы продольной, по­перечной и вертикальной составляющих путевой скорости, а также сигналы ИСПРАВНОСТЬ и ПАМЯТЬ в виде на­пряжений постоянного тока. Сигнал угла сноса выдается в виде переменного напряжения частотой 400 Гц.

В ППС «Осьминог» аппаратура выдает сигналы про­дольной и поперечной составляющих путевой скорости, а также сигнал ИСПРАВНОСТЬ в виде напряжений посто­янного тока.

В СУС аппаратура выдает сигнал путевой скорости в виде напряжения постоянного тока.

Органы управления и индикации

Включение и выключение ДИСС-32 производится вы­ключателем ДИСС на приборном щитке радиооборудова­ния.

На индикаторе угла сноса и путевой скорости установ­лены (рис. 26.5);

Переключатели С, М-С, М-Б. В положении С (суша) обеспечивается нормальная работа аппаратуры при полете над сушей, в положении М-С (море спокой­ное)- при полете над морем с волнением моря 1-3 бал­ла, а в положении М-Б (море бурное) - при полете над мо­рем с волнением более 3 баллов;

Табло П. Включение табло происходит при перехо­де аппаратуры в режим «Память».

На лицевой панели прибора БПК установлены (рис. 26.6):

Рис. 26.6. Прибор БПК. Пульт выбора ре-
жимов НКВ-252

Табло ВСС (красного цвета). Загорание табло сиг­нализирует об отказе блока ВСС;

Табло ВЧ (красного цвета). Загорание табло сигна­лизирует об отказе блока ВЧ;

Табло И (красного цвета)-не задействовано;

Табло ПОЛЕТ (зеленого цвета). Загорание табло сигнализирует об исправности ДИСС-32;

Табло ИСПРАВНОСТЬ (зеленого цвета). Загорание табло сигнализирует об исправности ДИСС-32, приеме от­раженных сигналов и готовности выдачи информации по­требителям;

Табло ПОИСК (желтого цвета). Загорание табло сигнализирует о переходе ДИСС-32 из режима «Захват» в режим «Поиск» любого из трех приемных каналов;

Клавиша КОНТР. ДИСС с встроенным подсветом, служит для перевода ДИСС-32 в режим контроля;

Четыре клавиши с встроенным подсветом, служат для включения одной из четырех контрольных задач;

ВПЕРЕД-17, ВЛЕВО-17, ВНИЗ-З;

НАЗАД-17, ВПРАВО-17, ВВЕРХ-3;

СКОРОСТЬ 127, СНОС «_0;

СКОРОСТЬ 258, СНОС *_9,5;

Клавиша ВКЛ. ПОИСКА (без подсвета), служит для перевода аппаратуры в режим «Поиск».

Сигнальное табло ДИСС НЕ РАБОТАЕТ на приборной доске сигнализирует о переходе аппаратуры в режим «Па­мять».




АВТОНОМНЫЕ ДОПЛЕРОВСКИЕ УСТРОЙСТВА И СИСТЕМЫ НАВИГАЦИИ ПРЕДНАЗНАЧЕНЫ: Для измерения путевой скорости, угла сноса и составляющих вектора скорости летательных аппаратов (ЛА); Для определения координат их местоположения и автоматического управления полетом; Для измерения скорости ветра; ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011


КООРДИНАТЫ ПУНКТА НАЗНАЧЕНИЯ И НАВИГАЦИОННЫЙ ТРЕУГОЛЬНИК СКОРОСТЕЙ Движение ЛА по отношению земной поверхности происходит в результате взаимодействия силы тяги двигателей, аэродинамических сил и силы тяжести, вызывающих перемещение ЛА со скоростью по отношению к воздушной массе, и в результате действия ветра, вызывающего перемещение воздушной массы вместе с ЛА со скоростью. Результирующий вектор полной скорости определяет скорость движения ЛА по отношению к земной поверхности. ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 НПМ и КПМ Начальный и конечный пункты маршрута ЗПУ Заданный путевой угол К – курс – угол сноса – угол сноса ветром – угол аэродинамического скольжения Рис. 1


ОСНОВНЫЕ ЧАСТИ АВТОНОМНОЙ ДОПЛЕРОВСКОЙ СИСТЕМЫ НАВИГАЦИИ И УПРАВЛЕНИЯ ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Рис. 2 ДИСС определяет на борту ЛА направление вектора путевой скорости по отношению к продольной оси ЛА. Для определения направления полета ЛА по отношению к странам света, т.е. в системе координат, связанной с Землей, необходимо знание курса ЛА, определяющего переход по направлению от подвижной системы координат к неподвижной. Итак, для того, чтобы определить, в каком направлении и с какой скоростью летит аппарат, необходимо наличие как доплеровского устройства, измеряющего угол сноса и путевую скорость, так и курсовой системы. Интегрирование получаемых данных о перемещении ЛА с помощью так называемого навигационного вычислителя координат и учет координат начального пункта маршрута позволяет ответить на вопрос, где находится ЛА. Для того, чтобы решить задачу, в каком направлении и сколь долго лететь до пункта назначения, необходимо сопоставить информацию о действительном положении ЛА с заданными координатами пункта назначения.




ХАРАКТЕРИСТИКИ ОТРАЖЕНИЯ ЗОНДИРУЮЩИХ СИГНАЛОВ ОТ ЗЕМНОЙ ПОВЕРХНОСТИ ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Величина удельной эффективной площади обратного рассеяния зависит от большего числа параметров: от длины волны и поляризации излучаемых колебаний, вида отражающей поверхности ее характеристик и углов визирования. С увеличением угла визирования растет уровень отраженного сигнала, но это приводит к уменьшению чувствительности доплеровской частоты и минимальный разброс мощности отраженного сигнала. Поэтому компромисс 65 – 75 град. 1 - пашня 2 – лес 3 – поле с зеленой травой 4 – песчаная пустыня 5 – поле, покрытое снегом 6 – ледовая поверхность Рис. 5


ПОГРЕШНОСТИ ОДНОЛУЧЕВОГО ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Угол сноса равен углу, составленному осью самолета и осью ДНА в момент совмещения с направлением вектора путевой скорости, т.е. при Однолучевая система находит практического применения из-за низкой точности измерения Допустим, если, то погрешность измерения составляет (3) (4) (5) (6) Рис. 6


ПОГРЕШНОСТИ ОДНОЛУЧЕВОГО ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Если продифференцируем максимальную доплеровскую частоту по углу визирования, то получим Тогда Стабилизация антенны в горизонтальной плоскости или введение поправок на крен при обработке усложняет измеритель, но не устраняет недостатков однолучевого метода, к которым следует отнести высокие требования к стабильности частоты излучаемых колебаний. Решение проблемы: многолучевые ДИСС


МНОГОЛУЧЕВОЙ ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Рис. 7 Многолучевые ДИСС По назначению и способу построения измерители вектора скорости ЛА могут быть условно разделены на два основных типа: ДИСС, измеряющие путевую скорость и угол сноса ЛА или продольную и поперечную составляющие вектора путевой скорости (самолетные ДИСС), и ДИСС, измеряющие полный вектор скорости ЛА, т.е. три его составляющие (вертолетные ДИСС)










ТРЕХ-ЧЕТЫРЕХЛУЧЕВОЙ ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Так как вектор скорости ЛА определяется в общем случае проекциями на три некомпланарных направления, то для определения всех трех составляющих необходимо излучать и принимать сигналы минимум по трем лучам антенны.



ЛИТЕРАТУРА 1.Колчинский В. Е., Мандуровский И. А., Константиновский М.И. Автономные доплеровские устройства и системы навигации ЛА. М.: Сов. Радио, 1975, 432 с. 2.Радиотехнические системы. Под ред. Ю. М. Казаринова, М.: Высшая школа, с. 3.Сборник описаний лабораторных работ по радиолокации ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 СОСТАВИЛИ А.И. БАСКАКОВ, Б. ОДСУРЭН

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Обзор и анализ аналогичных систем

1.1 Обзор существующих устройств

Обзор и анализ существующих моделей фильтров для систем ДИСС затруднителен в связи с тем, что данная область знаний является закрытой для широкого круга специалистов, поэтому оценить параметры, качество и особенности реально существующих фильтров не представляется возможным. С учетом этого для сравнительного анализа разрабатываемого цифрового фильтра для системы ДИСС использован DSP модуль для обработки радиолокационных сигналов на основе TMS320C5410A и Altera Cyclone EP1C6T144. DSP модуль представляет собой эффективную систему управления транспортными потоками на автомагистралях и обеспечивает:

1) Ввод аналоговых сигналов по 2-м каналам и их одновременное преобразование в цифровую форму с точностью 12 бит и частотой дискретизации до 50 МГц. Частота дискретизации и моменты взятия отсчетов для каждого из каналов задаются независимо;

2) Предварительную цифровую обработку сигналов на частоте дискретизации, выполняемую на ПЛИС;

3) Передачу результатов предварительной обработки из ПЛИС в ЦПОС со скоростью 20 Мбит/с;

4) Основную цифровую обработку сигналов, выполняемую на ЦПОС;

5) Выдачу низкоскоростных управляющих сигналов по 8 цифровым оптически изолированным линиям;

6) Выдачу высокоскоростного управляющего сигнала по 1 цифровой линии;

7) Работу в составе локальных сетей с интерфейсами RS232 и 100 Мбит/с Ethernet;

8) Дистанционную замену программ ЦПОС и ПЛИС, и отладку программ ЦПОС и ПЛИС по интерфейсу JTAG;

9) Рабочий диапазон температур - 40 …+85°С.

ПЛИС (Altera Cyclone EP1C6T144I7), использованная в данном модуле, выполняет предварительную цифровую обработку сигнала в реальном масштабе времени. В ПЛИС реализованы корреляторы, полосовые фильтры, схема синхронизации, формирование тактовых сигналов для АЦП, интерфейс связи с ЦПОС. Фильтры для каждого канала дальности реализованы по многокаскадной схеме с понижением частоты дискретизации с 50 МГц до 4. После понижения частоты дискретизации отсчеты сигналов передаются в ЦПОС для спектрального анализа и дальнейшей обработки .

Данный модуль взят за аналог ввиду применения в нем ПЛИС для ЦОС.

1 .2 Анализ требований к разрабатываемому устройству

Разрабатываемое устройство на ПЛИС по сравнению с вышеописанным модулем для обработки радиолокационных сигналов выполняет узкоспециализированую задачу предварительной фильтрации линейно-частотно модулированного сигнала (ЛЧМ).

Проектируемый фильтр строится на основе банка цифровых фильтров, в котором входной сигнал, представленный последовательностью отсчетов, с помощью N различных цифровых субфильтров (каналов) разбивается на N подполос фильтрации, ширина которых значительно меньше рабочей полосы частот. Согласно заданию на дипломное проектирование число каналов выбрано равным 16, исходя из того, что увеличение количества каналов ведет к увеличению затрат ресурсов ПЛИС, а уменьшение ведет к снижению точности вычислений.

Поскольку в качестве основы для проектирования ЦФ выбраны фильтры, используемые в системе ДИСС-7, рабочая частота которого составляет 13325ГГц±25МГц, то ширина полосы пропускания фильтра находится в пределах 0..50 МГц. Соответственно, частота дискретизации по теореме Котельникова должна превосходить максимальную частоту в полосы пропускания (50 МГц) минимум в 2 раза.

Исходя из вышесказанного к проектируемому фильтру предъявляются следующие требования:

а) 16 канальный банк цифровых фильтров;

б)ширина полосы пропускания 50 МГц;

в)частота дискретизации 102 МГц;

г)возможность изменения функциональности фильтра за счет перепрограммирования по интерфейсу JTAG;

д)рабочий диапазон температур -40 …+125°С.

2 . Теоретические основы реализации цифровой фильтрации

Поскольку реализация цифровой фильтрации в широкой полосе частот требует как минимум двукратного увеличения частоты дискретизации относительно максимальной частоты полосы (согласно теореме Котельникова), то реализация ЦФ затруднена ограничением частоты дискретизации устройства ЦОС, поэтому используют банк фильтров.

Банк фильтров (БФ) - цифровое устройство, в котором входной сигнал, представленный последовательностью отсчетов, с помощью М различных цифровых фильтров разбивается на М различных канальных сигналов (для обработки некоторым способом каждого из них), из которых с помощью выходных фильтров и последующего суммирования образуется последовательность отсчетов выходного сигнала.

Основную идею построения системы анализа / синтеза сигналов с использованием банка фильтров раскрывает рисунок 2.1.

Рисунок 2.1 - Система анализа / синтеза сигналов на основе банка фильтров

Исходный сигнал разбивается при помощи фильтров анализа H k (z), k=0,1…, M-1 на M субполосных составляющих, которые в идеальном случае в частотной области не перекрываются. Подобрав соответствующим образом набор фильтров синтеза F k (z), k=0,1…, M-1, можно восстановить исходный сигнал из его субполосных компонент. Вследствие ограничения ширины спектра сигналов на выходе БФ можно уменьшить частоту дискретизации субполосных сигналов пропорционально уменьшению ширины спектра. Для понижения частоты дискретизации на стадии анализа и последующего повышения на стадии синтеза используются соответственно компрессоры и экспандеры частоты дискретизации. В случае, когда коэффициент прореживания в каждом канале равен отношению ширины спектра субполосного сигнала к ширине спектра исходного, т.е.

говорят о системе анализа / синтеза с полной децимацией. Таким образом, получается M сигналов, отражающих поведение исходного сигнала в каждом частотном поддиапазоне, которые представлены в сумме тем же количеством отсчетов, что и исходный сигнал. Каждый субполосный сигнал в отдельности может быть эффективно обработан по некоторому алгоритму b k , k=0,1…M-1. БФ разделяют на банки с равнополосными и неравнополосными каналами, ортогональные, биортогональные, двухканальные и многоканальные и т.д. Каждый фильтр банка цифровых фильтров образует канал. Поэтому говорят об M-канальном банке фильтров.

Сигнал в канале называется субполосой, отсюда название субполосная фильтрация или субполосное кодирование.

Равнополосная декомпозиция подразумевает одинаковый коэффициент децимации и одинаковую суммарную ширину полосы пропускания каждого канала. В этот класс цифровых БФ входят также банки с многокомпонентными фильтрами (имеющими более одной полосы пропускания). В случае неравнополосных каналов коэффициенты децимации различны и в общем случае могут быть выражены в виде рационального числа

Дециматор (компрессор частоты дискретизации) - устройство, осуществляющее децимацию (прореживание) сигнала во времени. Децимация - операция, заключающаяся в исключении (пропуске) отсчетов входного сигнала, с порядковым номером, кратным коэффициенту децимации. Децимация в M раз обозначается обычно как: В частотной области это запишется как то есть спектр выходного сигнала операции децимации содержит M копий «расширенного» в M раз спектра входного сигнала, как это показано на рисунке 2.2.

Рисунок 2.2 - Децимация сигнала в M раз

Как видно из рисунка 2.2, если сигнал неограничен полосой частот, то происходит наложение спектров копий, то есть алайзин (от англ. «aliasing»). Поэтому в банке фильтров перед децимацией выполняется НЧ-фильтрация. Совокупность фильтра и дециматора называется фильтром-дециматором.

Интерполятор - устройство, выполняющее действия, обратные децимации. Интерполяция - операция, заключающаяся во встраивании (добавлении) между отсчетами, чей порядковый номер кратен определенному числу, некоторой константы (обычно нуля). Интерполяция в M раз обычно обозначается как (M ^):

В частотной области это записывается как то есть спектр выходного сигнала операции интерполяции содержит M копий «сжатого» в M раз спектра входного сигнала. Эти копии повторяются через. Для их устранения после интерполятора ставится НЧ-фильтр. Совокупность интерполятора и фильтра называется фильтром-интерполятором.

Частота дискретизации входного сигнала снижается при помощи дециматора, а затем осуществляется процесс фильтрации, таким образом общая вычислительная сложность уменьшается пропорционально коэффициенту децимации. После окончания обработки субполосного сигнала в каждом банке фильтров частота дискретизации повышается при помощи интерполятора. Данные равенства (эквивалентные схемы включения) широко применяются для вывода различных соотношений и представлены на рисунке 2.3.

Рисунок 2.3 - Эквивалентные схемы включения фильтров-дециматоров и фильтров-интерполяторов

Банк цифровых фильтров предназначен для разбиения входного сигнала на несколько подканалов. В рассматриваемом случае банк фильтров - совокупность однотипных полосовых фильтров, перекрывающих весь исследуемый частотный диапазон.

Пусть исследуемая полоса:

где Fs - частота дискретизации входного комплексного сигнала.

Тогда центральная частота k-ого фильтра:

где K - число подканалов, равное числу фильтров;

k - номер канала фильтра;

Центральная частота фильтра прототипа.

Выходные отсчеты k-ого канала (фильтра) определяются следующей формулой:

Все полосовые фильтры получены из исходного ФНЧ сдвигами его частотной характеристики (входного сигнала) (рисунок 2.4). Такие сдвиги может обеспечить дискретное преобразование Фурье:

где K - количество отсчетов в выборке; k - номер гармоники.

Рисунок 2.4 - АЧХ банка фильтров

Повторяя преобразования (2.7) на каждом текущем отсчете, получим:

что соответствует формуле (2.6), когда h(i)=1, i = (0, K-1). Теперь ДПФ (рисунок 2.5) можно рассматривать как набор из K полосовых фильтров:

где K - k-номер фильтра (канала).

Частотная характеристика, представленная на рисунке 2.5 имеет ряд существенных недостатков: растекание в боковые лепестки, наложение соседних каналов.

Улучшить АЧХ возможно лишь при использовании стандартных окон Хеннинга, Хемминга, Хана, Блэкмена и т.д. Применение эти окон позволяют убрать боковые лепестки (растекание), но лишь за счет усиления эффекта наложения.

Рисунок 2.5 - Эффекты наложения и растекания ДПФ

Это объясняется тем, что во временной области все стандартные окна фактически сужают интервал анализа относительно исходного прямоугольного окна, что в частотной области приводит к обратному эффекту. Вывод прост: для того чтобы частотные характеристики каналов не перекрывались, интервал, на котором происходит взвешивание сигнала, должен быть больше интервала ДПФ-анализа. Фактически, нужно сначала сформировать взвешивающим окном желаемую форму частотной характеристики, а потом проводить ДПФ. Если снять ограничение на длину интервала взвешивания N = K и заменить его на более легкое - N = LхK, L = 2, 3, 4,…, то есть N больше, но кратно интервалу ДПФ-анализа, то подбором взвешивающего окна можно задать любую форму частотной характеристики фильтра. Это позволит обеспечить и отсутствие перекрытия соседних каналов, и максимально равномерную характеристику в полосе пропускания. Как показывают вычисления, для обеспечения перекрытия соседних каналов менее 5% при любом К длина окна N должна быть в 12-16 раз больше К. Чтобы вернуться к выбранной длине интервала ДПФ-анализа, взвешенную последовательность длины N = LхK разбивают на L блоков по K отсчетов, после чего эти блоки накладывают друг на друга и поэлементно суммируют. Каждый r-й отсчет наложенной последовательности, полученной в момент времени t, z t (r)=z t (K-i), i = (0, K-1), определяется выражением:

где N = LхK, n - номер блока, п = (0, L-1).

Далее над полученными К отсчетами проводится ДПФ. Поэлементное сложение блоков длины. К взвешенной последовательности допустимо, так как все используемые в ДПФ комплексные экспоненты укладываются в К отсчетах целое число периодов, поэтому каждый К-й отсчет умножается на одно и то же значение.

Отсчеты после ДПФ описываются выражением:

Фактически взвешивающее окно - это импульсная характеристика КИХ фильтра.

На практике обычно имеет место перекрытие АЧХ соседних каналов. Перекрытие вызвано тем, что невозможно получить идеально прямоугольную форму АЧХ взвешивающего окна. Это означает, что частотная полоса в каждом канале будет несколько шире, чем Fs/K. Следовательно, после децимации в К раз выходной сигнал будет искажен (рисунок 2.6).

Рисунок 2.6 - Иллюстрация эффекта наложения при децимации: а) спектр исх. сигнала; б) спектр сигнала после децимации в 2 раза

Поэтому для устранения нежелательных эффектов децимации проводится следующее преобразования не через К, а через K/2 входных отсчетов, таким образом создается двукратный запас по частоте дискретизации выходного сигнала .

При проектировании банка цифровых фильтров с равнополосными каналами используется модель с полной модуляцией. Если банк основан на одном НЧ-фильтре-прототипе с конечной импульсной характеристикой (КИХ), то ширина полосы пропускания фильтра-прототипа определяет ширину каждого канала. Чтобы такой фильтр мог выделить полосу, соответствующую каждому каналу, необходимо сдвинуть спектр в область низких частот при помощи гетеродина (экспоненциального модулятора), а затем осуществить НЧ-фильтрацию фильтром-прототипом. После чего можно снизить частоту дискретизации субполосного сигнала без потери информации. Снижение частоты дискретизации осуществляет компрессор посредствам децимации, который удаляет М-1 отсчетов из каждой последовательности длиной M.

Максимальный коэффициент децимации равен количеству каналов K, таким образом, данный банк фильтров является максимально децимированным. Синтез осуществляется в обратной последовательности. Сначала увеличивается частота дискретизации. В экспандере между каждыми двумя отсчетами вставляются M-1 нулевых отсчетов. Затем осуществляется фильтрация субполосных сигналов с последующей модуляцией с целью перемещения субполосы в соответствующий частотный диапазон, который она занимала в исходном широкополосном сигнале. Суммирование выходов всех каналов синтезирующего банка фильтров дает восстановленный широкополосный сигнал, что представлено на модели ниже (рисунок 2.7).

Рисунок 2.7 - Модель ДПФ-модулированного банка фильтров, основанного на полной модуляции

НЧ-фильтр-прототип может быть спроектирован стандартными методами, такими как синтез при помощи взвешивающих окон, частотной выборки и т.д. Частота среза фильтра-прототипа определяет количество каналов и их ширину, так как вся полоса может быть поделена на K равных частей. Степень наложения субполос ограничивается в соответствии с требованиями, налагаемыми областью применения конкретного банка фильтров .

Импульсная и частотная характеристика фильтра для каждого канала определяется следующим образом:

Система характеризуется равномерным размещением полос с шагом

Непосредственная реализация такой схемы банка фильтров является крайне неэффективной. В каждом канале при большой частоте дискретизации осуществляется свертка с импульсной характеристикой фильтра-прототипа, что приводит к значительному увеличению вычислительных затрат, которые можно снизить путем снижения частоты дискретизации. Ключом для построения эффективной структуры является полифазная декомпозиция фильтра-прототипа. Она основывается на разбиении, децимации, группировании коэффициентов фильтра на подгруппы, называемые полифазными фильтрами.

Такое группирование полифазных фильтров может быть поделено между каналами, что изображено на рисунках 2.8 и 2.9.

Оценка субполосных сигналов осуществляется после модуляции, реализуемой при помощи ДПФ, вычислительную сложность которого можно ограничить, используя алгоритмы БПФ .

Рисунок 2.8 - Полифазная структура канала максимально децимированного банка анализа

На основе приведенных выше теоретических сведений в данном дипломном проекте разрабатывается цифровой фильтр на основе ДПФ-модулированных банков анализа и синтеза с равнополосными каналами. Число каналов ЦФ составляет 16, т.к. обеспечивается оптимальное распределение ресурсов ПЛИС и выполнение поставленной задачи. Ширина канала составляет 3.125 МГц.

3 . Реализация математической модели фильтра в пакете MATLAB

3.1 Основы проектирования фильтров в MATLAB

радиолокационный сигнал фильтрация модель

Для построения фильтра-прототипа и расчета коэффициентов проектируемого фильтра использована среда Matlab.

В пакете Signal Processing, входящем в Matlab, имеется две графических среды, позволяющих рассчитывать и анализировать дискретные фильтры: FDATool (Filter Design & Analysis Tool) и блок работы с фильтрами, входящий в среду SPTool. В среде FDATool поддерживается больше методов синтеза; в SPTool имеется возможность ручного графического редактирования расположения нулей и полюсов функции передачи фильтра.

Расчет фильтра начинается с задания требуемых параметров на вкладке Design Filter. Тип синтезируемой АЧХ выбирается с помощью переключателя Filter Туре. Возможны следующие варианты: Lowpass (ФНЧ), Highpass (ФВЧ), Bandpass (полосовой фильтр), Bandstop (режекторный фильтр). Выбор пятого положения переключателя позволяет использовать раскрывающийся список, в котором перечислены более сложные варианты: Differentiator (дифференцирующий фильтр), Hilbert Transformer (преобразователь Гильберта), Multiband (многополосный фильтр), Arbitrary Magnitude (произвольная АЧХ) и Arbitrary Group Delay (произвольная групповая задержка).

Выбрав категорию синтезируемой АЧХ, следует выбрать тип синтезируемого фильтра, установив переключатель, расположенный в разделе Design Method, в положение IIR (рекурсивный) или FIR (нерекурсивный). Каждому положению переключателя соответствует список возможных методов синтеза. Состав этого списка меняется в зависимости от выбранного типа АЧХ. Например, при синтезе фильтра с произвольной зависимостью групповой задержки от частоты (Arbitrary Group Delay) переключатель автоматически установится в положение IIR, а в списке будет доступен всего один метод - метод минимизации р-нормы ошибки (Constrained Least Pth Norm). В случае синтеза АЧХ четырех простейших типов набор возможных методов синтеза значительно шире:

Нерекурсивные фильтры (FIR). Здесь доступны следующие методы:

а) Equiripple - синтез фильтров с равномерными пульсациями АЧХ методом Ремеза;

б) Least-Squares - минимизация среднеквадратического отклоне-ния АЧХ от заданной;

в) Window - синтез с использованием весовых функций (окон);

Рекурсивные фильтры (IIR). Здесь доступны четыре варианта синтеза по различным аналоговым прототипам методом билинейного Z-преобразования:

а) Butterworth - синтез фильтра Баттерворта;

б) Chebyshev Type I - синтез фильтра Чебышева первого рода;

в) Chebyshev Type II - синтез фильтра Чебышева второго рода;

г) Elliptic - синтез эллиптического фильтра.

В разделе Filter Order указывается требуемый порядок фильтра или устанавливается переключатель в положение Minimum order (наименьший возможный порядок). В разделе Frequency Specifications и Magnitude Specifications необходимо ввести частоту дискретизации Fs, граничные частоты полосы пропускания и полосы задерживания (Fpass и Fstop), допустимые затухания в полосе пропускания и в полосе задерживания (Apass и Astop). После задания всех параметров нажимается кнопка Design Filter и производится расчёт коэффициентов фильтра, после чего можно просмотреть характеристики синтезированного фильтра .

3.2 Расчет коэффициентов фильтра

Фильтр рассчитывается с частотой дискретизации 102 МГц и частотой среза 50 МГц. Тип фильтра - ФНЧ, с конечной импульсной характеристикой (FIR). Полоса пропускания равна - диапазон частот (50 МГц), Число коэффициентов фильтра (порядок фильтра) - 768 (16*48), т.к. при проектировании фильтра была экспериментально получена оптимальная длина полосы, равная 48.

Послерасчёта коэффициенты фильтра экспортируются через меню File - Export to - Coefficient File, в Options выбирается формат Binary и экспортируется в файл h.fcf, который приведен в приложении Б.

В дальнейшем этот файл будет использоваться как подключаемый в проект программной реализации фильтра.

3.3 Реализация ДПФ-модулированных банков фильтров

Можно построить математическую модель банка фильтров, используя функции пакета MATLAB.

Функция анализатора - dft01a (x, K, M, h), где

x - анализируемый сигнал,

K - количество каналов,

M - коэффициент децимации,

На выходе функции - X - матрица с сигналами каналов банка фильтра.

1) Формирование сигнала модуляции (гетеродин).

2) Модуляция входного сигнала - получение канальных сигналов.

3) НЧ-фильтрация каналов.

4) Децимация канальных сигналов.

Функция синтезатора - dft01s (X, M, h), выполняет действия обратные функции анализатора, на входе функции X - матрица с сигналами каналов, M - коэффициент интерполяции, h - коэффициенты фильтра-прототипа.

1) Определение количества каналов по размеру матрицы с сигналами каналов.

2) Добавление нулевых отсчетов.

3) Подготовка фильтра.

4) Фильтрация каналов.

5) Формирование коэффициентов модулятора (гетеродина).

6) Модуляция.

7) Суммирование выходов всех каналов и получение синтезированного сигнала.

Так как прямая реализация уступает в эффективности полифазной, то необходимо провести подробный анализ полифазной реализации банков фильтров. Функция анализатора полифазной реализации, с максимальной децимацией - dft02a (x, K, h), где

x - анализируемый сигнал,

K - количество каналов,

h - коэффициенты фильтра-прототипа.

На выходе функции - X - матрица с сигналами каналов цифрового банка фильтра .

Основные этапы выполняемые функцией анализатора:

1) Сортировка входных отсчетов сигнала на каналы - децимация. Осуществляется при помощи функции reshape, которая преобразует вектор входных отсчетов в матрицу, последовательно заполняя её сверху вниз, справа налево.

2) Разбиение фильтра-прототипа на полифазные фильтры. Осуществляется при помощи функций reshape и flipud, последняя функция переворачивает матрицу (от англ. flip up down).

3) Полифазная фильтрация каналов. Осуществляется функцией filter.

4) Модуляция посредствам ДПФ. Осуществляется функцией fft.

Функция синтезатора полифазной реализации - dft02s (X, h), как и для прямой реализации, выполняет действия обратные функции анализатора, на входе функции X - матрица с сигналами каналов, h - коэффициенты фильтра-прототипа.

Основные этапы выполняемые функцией синтезатора:

1) Определение количества каналов.

2) Обратное ДПФ, осуществляется функцией ifft.

3) Разбиение фильтра-прототипа на полифазные фильтры.

4) Полифазная фильтрация каналов

5) Синтезированный сигнал - интерполяция.

В Приложении В представлен листинг алгоритмов реализации банков цифровых фильтров в среде Matlab.

В качестве входного сигнала используется ЛЧМ сигнал, так как этот сигнал используется в системе ДИСС в качестве зондирующего и по его форме и спектру легче оценить воздействие на него банка фильтров.

Линейно-частотная модуляция (ЛЧМ) сигнала - это вид частотной модуляции, при которой частота несущего сигнала изменяется по линейному закону.

Изменение частоты f(t) внутри импульсов с ЛЧМ происходит согласно формуле:

где - центральное значение несущей частоты;

База (крутизна изменения частоты) ЛЧМ сигнала;

Длительность сигнала;

Максимальное и минимальное значение частоты радиосигнала.

Фаза сигнала с ЛЧМ определяется как:

Тогда ЛЧМ сигнал описывается следующим выражением:

где - амплитуда; - начальная фаза .

Основные параметры разрабатываемого банка ЦФ:

Частота дискретизации fs=102 МГц;

Количество каналов k=16;

Количество коэффициентов фильтра прототипа n=768.

4 . Практическая реализация банка цифровых фильтров

4.1 Структура и описание ПЛИС

В настоящее время существует большое количество производителей ПЛИС (Altera, Xilinx, Actel, Atmel, Gray, National Instuments и др.), но лидерами в производстве ПЛИС являются фирмы Altera и Xilinx.

При выборе элементной базы ПЛИС учитываются следующие факторы:

· быстродействие,

· низкая стоимость,

· более совершенное программное обеспечение (ПО).

Продукты фирмы Altera имеют более совершенное ПО (Quartus II), чем продукты фирмы Xilinx (ISE). Поэтому используется ПЛИС Altera. В таблице 4.1.1 представлены сравнительные характеристики семейств Cyclone.

Таблица 4.1.1 - Сравнительные характеристики семейств Cyclone

Выбор элементной базы ПЛИС производится между семейством Cyclone и Cyclone II, т.к. производительности этих СБИС вполне хватит для реализации поставленной задачи. Если сравнивать производительность наилучшей модели первого поколения Cyclone и младшую модель второго поколения, то стоимость младшей модели Cyclone II будет значительно ниже. Разработка банка цифровых фильтров будет основана на ПЛИС фирмы Altera семейства Cyclone II.

Семейство Cyclone II - второе поколение дешевых FPGA фирмы Altera. Они на 30% дешевле и в три раза более емкие, чем микросхемы первого поколения. Данные ПЛИС выпускаются на 300-мм пластинах по
90-нм технологическому процессу (в то время как Cyclone - по технологии 130 нм) с напряжением питания ядра 1.2 В. Cyclone II имеют также и больше функциональности, в том числе, встроенные умножители, поддержку большего числа стандартов ввода / вывода, интерфейсов с новыми устройствами памяти. Они содержат до 68 тысяч логических элементов, до 622 пользовательских линий ввода / вывода и до 1.1 Мбит встроенной памяти в различных конфигурациях, включая двухпортовые и однопортовые RAM, ROM и FIFO. Особенностью семейства Cyclone II является наличие встроенных умножителей 18 х 18, каждый из которых может использоваться как два умножителя 9 х 9. Блоки ввода / вывода микросхем Cyclone II поддерживают различные стандарты, в том числе и дифференциальные. Для семейства Cyclone II оптимизировано уже более 40 IP-компонент от Altera и AMPP (Altera Megafunction Partners Program).

Отличительные особенности:

1) Архитектура семейства Cyclone II содержит от 4608 до 68416 логических элементов;

2) М4К встроенные блоки памяти;

3) До 1.1 Мбит встроенной RAM памяти;

4) Тактовая частота 260 МГц;

5) Встроенные умножители;

6) Поддержка дифференциальных быстродействующих каналов, включая LVDS (311 MbPS), mini-LVDS, RSDS, LVPECL;

7) Поддержка быстродействующей внешней памяти, включая DDR2, DDR и SDR SDRAM;

8) Питание портов I/O 1.5, 1.8, 2.5 или 3.3 В;

9) Поддержка интерфейса JTAG;

10) До четырех ФАПЧ (PLL) на микросхему с умножением частоты и сдвигом фаз;

11) Питание ядра 1.2 В.

Таблица 4.1.2 - Обзор семейства Cyclone II.

Устройство

Логические элементы

Блоки ОЗУ М4К

Всего ОЗУ, бит

Встроенные умножители 18 х 18

Максимальное количество

пользовательских выводов

Дифференциальные каналы

Для реализации цифрового фильтра для системы ДИСС выбрана СБИС EP2C35F484I8. Обозначение СБИС состоит из следующих составных частей и обозначает:

EP2C - Altera Cyclone второго поколения;

35 - Примерно 35 000 логических элементов;

F - Тип корпуса: F = fineline (1,0 mm) BGA;

484 - Количество выводов корпуса;

I - Рабочая температура: Industrial (-40..+125°С);

8 - Градация быстродействия: 6, 7,8.

EP2C35 состоит из блоков ОЗУ М4К (M4K Blocks), встроенных умножителей (Embedded Multipliers), ФАПЧ (фазовая автоподстройка частоты) (PLL), блоков логических элементов (logic array), элементов ввода-вывода (IOEs).

Самым наименьшим элементом в архитектуре Cyclone II является логический элемент (LE). Основу логических элементов составляет функциональный генератор (Look-Up Table - LUT) .

Логический элемент Cyclone II может работать в различных режимах:

1. Нормальный режим используется для задач общей логики и комбинационных функций;

2. Арифметический режим используется для того, чтобы осуществить сумматоры, счетчики, аккумуляторы и компараторы.

16 логических элементов (LEs) образуют блоки логических элементов (Logic Array Blocks).

Cyclone II имеет 4 банка портов ввода / вывода. Каждый банк имеет свое питание VCCIO, поддерживает много стандартов с одинаковым уровнем питания и имеет вывод двойного назначения VREF.

По своей архитектуре микросхемы FPGA построены с использованием памяти Static RAM, то есть при каждом включении требуют «загрузки» выполняемой программы, следовательно, для работы фильтра потребуется наличие конфигурационного ПЗУ. Конфигурационные ПЗУ предназначены для загрузки статической памяти FPGA .

EP2C20F256I8 использует конфигурационное ПЗУ EPCS4- Flash микросхема. Она может программироваться в системе с использованием кабеля Byteblastertm II Download Cable или использовать специальный блок Altera Programming Unit (APU). EPCS4 имеют четырехпроводной интерфейс: (DCLK), Serial Data Output (DATA), AS Data input (ASDI) и Chip Select (Ncs). DCLK генерируется Cyclone FPGA (14-20 МГц) .

4.2 Особенности САПР ПЛИС

Программное обеспечение Altera Quartus II предоставляет полную мультиплатформенную среду проектирования, которая может быть легко перенастроена под конкретные требования. Это идеальная среда для проектирования на основе ПЛИС законченных систем на кристалле (SOPS). Программное обеспечение Quartus II включает в себя средства для всех фаз проектирования с применением ПЛИС как FPGA, так и CPLD структур .

Порядок работы с ПО Altera Quartus II включает следующие основные этапы:

1) Техническое задание;

2) Ввод описания проекта (поведенческое или структурное);

3) Моделирование (функциональное);

4) Синтез:

а) Преобразование описания проекта в схему на заданной элементной базе;

б) Оптимизация схемы с учётом ограничений по быстродействию и занимаемой площади ПЛИС;

5. Разводка и размещение внутренних ресурсов ПЛИС с учётом наложенных ограничений по быстродействию и занимаемые ресурсы;

6. Временной анализ - проверка соответствия созданной ПЛИС условиям быстродействия ТЗ;

7. Моделирование на вентильном уровне;

8. Тестирование и отладка ПЛИС в составе системы (ISP, JTAG, Signal tap) .

Для выполнения задания на дипломное проектирование необходимо последовательно выполнить указанные этапы, за исключением этапа тестирования и отладки, который не входит в задачи данного дипломного проекта.

В рамках пакета Quartus II создается проект (схемный, текстовый, комбинированный ввод проекта). Для создания сложных проектов существуют интегрированные средства помощи Mega Wizard & SOPC. Особенностью среды Quartus II является наличие системы синтеза, системы размещения внутренних ресурсов и разводки ПЛИС, системы моделирования, системы временного анализа и анализа потребляемой энергии, системы интеграции с другими САПР, средств оптимизации быстродействия LogicLock, интегрированных средств разработки ПО для микро-ЭВМ.

При схемном вводе описания проекта могут использоваться:

1) Простейшие логические элементы;

2) Параметризируемые модули;

3) Мегафункции Altera;

4) Ранее созданные компоненты (тестовым и др. способами).

В качестве аппаратурных языков описания схем, реализуемых в ПО Quartus II, используются языки VHDL или Verilog.

IP (Intellectual Property) ядра - логические блоки написанные на языках VHDL или Verilog, используются для сложных многокомпонентных проектов. Многие фирмы предлагают готовые, протестированные IP-ядра, реализующие различные алгоритмы и интерфейсы.

В состав IP входят мегафункции. Для задач цифровой фильтрации применяется мегафункция Mega Core FIR Compiler. Применение данной мегафункции позволяет быстро спроектировать цифровой фильтр исходя из заданных параметров.

4.3 Расчет и реализация банка цифровых фильтров в среде Quartus II v . 8 .1

Для начала работы в среде Quartus II необходимо создать новый проект (New Project Wizard). При создании проекта необходимо указать имя проекта, месторасположение проекта, тип ПЛИС, на котором будет выполнен проект.

Описание проекта будет реализовано на схемном вводе. В меню File->New-> Block Diagram/Schematic создается файл верхнего уровня для схемного описания проекта. Важно чтобы имя проекта совпадало с именем файла верней иерархии. Реализуемый проект состоит из двух блоков: фильтра-дециматора (фильтра-анализатора) и фильтра- интерполятора (фильтра-синтезатора). На примере рассматривается реализация фильтра-дециматора.

Для ускоренного создания проекта в появившемся окне необходимо нажать вкладку Symbol-> MegaWizard Plug-In Manadger.

Далее необходимо создать новую модель мегафункции. В следующем диалоговом окне необходимо указать путь и имя выходного файла, мегафункцию (FIR Compiler v8.1), а также следует выбрать семейство ПЛИС, на котором будет реализована данная мегафункция и язык описания (Verilog HDL).

Настройки поделены на две составляющие: создание и генерация коэффициентов мегафункцией (Floating Coefficient Set) или импорт коэффициентов из среды Matlab (Imported Coefficient Set).

Для генерации коэффициентов мегафункцией (fircompiler) необходимо в окне FilterType выбрать тип фильтра (Low Pass). Порядок фильтра, определяется количеством коэффициентов фильтра (Coefficients). Во вкладке Window Type выбирается метод, по которому будет осуществлен синтез АЧХ проектируемого фильтра. Синтез АЧХ осуществляется только методом окон. Этот недостаток компенсируется возможностью загрузки коэффициентов проектируемого фильтра, полученных, с использованием среды FDATool, входящий в Matlab. Во вкладках Cuttof Freq.1 и Sample Rate указывается граничная частота и частота дискретизации соответственно (50МГц и 102 МГц).

Во вкладке Rate Specification осуществляется выбор типа фильтра: дециматора, интерполятора. Во вкладке Factor выбирается индекс децимации / интерполяции (соответствует количеству каналов). Также в настройках можно выбрать разрядность входной шины данных, способ представления входных данных: signed - десятичное число со знаком, unsigned - десятичное число без знака, тип структуры проектируемого фильтра (полностью параллельная, последовательная), указать где будут храниться коэффициенты.

Далее проводится графический анализ влияния ошибок квантования коэффициентов фильтра на его АЧХ. Ошибки квантования - представление коэффициентов фиксированным набором битов, например 16 бит. Операции сложения и вычитания в формате с фиксированной запятой не приводят к необходимости округления результатов - они могут лишь вызвать переполнение. В отличие от сложения умножение чисел с фиксированной запятой приводит к увеличению числа значащих цифр результата и, следовательно, к необходимости округления. Если результат умножения по модулю не превышает единицы, то применение формата с плавающей запятой даст большую точность .

Однако операции сложения в формате с плавающей запятой могут приводить к потере точности. В данном случае выбирается опция преобразования из формата с плавающей запятой в формат с фиксированной запятой (закладка Floating point to fixed point conversion) c последующим масштабированием коэффициентов с точностью 16 бит. В соответствии с заданной точностью, мегафункция автоматически находит масштабный коэффициент.

На следующем этапе задается фактор интерполяции (или децимации) фильтра, если необходимо спроектировать интерполяционный или децимирующий фильтр (по умолчанию фактор задается равным 1). Следующий шаг - задание архитектуры проектируемого КИХ-фильтра (параллельная или последовательная) и конвейерных свойств фильтра: оптимизация по скорости работы (частоте) или по площади занимаемых ресурсов (число задействованных макроячеек) ПЛИС.

Реализация фильтра-интерполятора с помощью мегафункции будет аналогична.

Для создания входных и выходных выводов на разрабатываемой блок-схеме необходимо на панели инструментов выбрать вкладку Symbol. В левой части окна необходимо последовательно указать путь к библиотеке с нужными примитивами: altera/quartus81/libraries/primitives/pin/input. В правой части окна появится изображение выбранного примитива. В данном случае это входной вывод input. После нажатия клавиши ОК выбранный символ появится в основном поле программы. При таком вводе автоматически включается режим «Повторного ввода» (Repeat-insert-mode), при котором один символ можно вставить в несколько мест проекта. Введенный символ привязывается к курсору. Теперь при нажатии левой кнопки мыши символ вводится на указанное в данный момент место схемы. Далее его можно перевести в другое место схемы и там его аналогичным способом зафиксировать. Для завершения вставки достаточно нажать на клавиатуре клавишу ESC или на правую кнопку мыши.

Аналогичным образом вводятся все выводы, необходимые для создания проекта. После окончания ввода всех выводов необходимо перезаписать файл проекта.

Для данного проекта понадобится 3 входных вывода (вход для сброса, вход для синхроимпульса и вывод для входной последовательности) и один выходной вывод (для выходной последовательности).

После соединения всех выводов с функциональными блоками необходимо произвести компиляцию проекта, запустив полную компиляцию проекта, выбрав в меню «Обработка» (Processing) команду «Пуск компилятора» (Start Compilation). Компилятор пакета Quartus II состоит из ряда модулей, выполняющих следующие функции:

· проверка проекта на наличие ошибок;

· логический синтез;

· размещение и разводка проекта в ПЛИС;

· генерация выходных файлов для моделирования проекта;

· анализ временных характеристик;

· программирование.

В начале компиляции проекта из него извлекается информация об иерархических связях между составляющими его файлами, и описание проекта проверяется на наличие основных ошибок. Затем создается организационная карта проекта, и все файлы преобразуются в единую базу данных, с которой в последствие и будет работать система.

Компилятор создает файлы для программирования и конфигурирования ПЛИС фирмы Altera.

Промежуточные и окончательные результаты компиляции в системе Quartus II можно посмотреть в окне «Отчет о компиляции» (Compilation Report). На рисунке представлен отчет о компиляции проекта.

Отчет о компиляции проекта

Как видно из рисунка данный проект занимает 52% логических элементов ПЛИС, что означает наличие незадействованных ячеек, а следовательно, посредством перепрограммирования ПЛИС можно дополнить список функций реализуемых на ПЛИС.

После компиляции проекта доступно моделирование (Simulation), которое позволяет определить реакцию разработанного проекта на заданное входное воздействие, то есть позволяет убедиться в правильности его функционирования.

Цифровой банк фильтров имеет три входа и один выход. На вход clock подается последовательность синхроимпульсов, на вход reset единичный импульс для сброса предыдущих состояний ЦФ, на вход in_data подается сигнал, подлежащий фильтрации. С выхода out_data снимается отфильтрованный сигнал.

Список литературы

1. ДИСС - База знаний (электронный ресурс). - Режим доступа: http://www.avsim.su/wiki/ДИСС

2. Доплеровский измеритель скорости и сноса (электронный ресурс). - Режим доступа: http://ru.wikipedia.org/wiki/Доплеровский_измеритель_скорости_и_сноса

3. Л. Азаренков, И. Канатов, Д. Каплун. Банк Цифровых фильтров // Компоненты и технологии. - 2007. - №10. - С. 156-161

4. Цифровые банки фильтров: анализ, синтез и применение в мультимедиасистемах: Учеб. метод. пособие по курсу «Теория и применение ЦОС»/ Сост. и общ. ред. А.А. Петровский, М. Парфенюк, А. Борович, М.З. Лившиц. - Минск: БГУИР, 2006. - 82 с.

5. А. Беляев, Т. Солохина, В. Юдинцев. Современные устройства цифровой обработки сигналов. Вместе или врозь // Электроника: наука, технология, бизнес. - 2009. - №1

6. DSP модуль для обработки радиолокационных сигналов на основе TMS320C5410A и Altera Cyclone EP1C6T144 (электронный ресурс). - Режим доступа: http://cad.ntu-kpi.kiev.ua/~dsplab/ru/publish/C5410_and_Altera

7. А.Б. Сергиенко «Цифровая обработка сигналов» - СПб.: Питер, 2002. - 608 с.

8. Cyclone II Device Handbook - Altera corporation, 2008. - 470 с.

9. Линейная частотная модуляция (электронный ресурс). - Режим доступа:

http://ru.wikipedia.org/wiki/Линейная_частотная_модуляция

10. Общая технология проектирования в среде Quartus II: Учеб.метод. пособие по курсу «Схемотехническое проектирование ЭВС»/ Сост. и общ. ред. Ю.Ф. Опадчий. - Москва: МАТИ, 2005. - 79 с.: ил.

11. Quartus II Handbook Version 8.1 - Altera corporation, 2008. - 2496 с.

12. Андрей Строгонов. Проектирование цифровых фильтров в системе MATLAB/Simulink и САПР ПЛИС Quartus // Компоненты и технологии. - 2008. - №6. - С. 122-126.

13. Дубровский Н.А. Организация производства: Учеб.-метод. комплекс. - Новополоцк: УО «ПГУ», 2006. - 368 с.

15. Охрана труда: Учеб.-метод. комплекс/ сост. И.Н. Клышко, Н.С. Дмитриченко, Л.Д. Петрусенко; под общ. ред. И.Н. Клышко. - Новополоцк: ПГУ, 2006. - 196 с.

16. Защита населения и хозяйственных объектов в чрезвычайных ситуациях: Учеб.-метод. комплекс для студ. технических, финансово-экономических и юридических спец./ Сост. и общ. ред. Э.П. Калвана. - Новополоцк: ПГУ, 2005. - 356 с.

Размещено на Allbest.ru

Подобные документы

    Самолетные и вертолетные доплеровские измерители скорости и угла сноса (ДИСС). Разработка цифрового фильтра для системы ДИСС. Требования к разрабатываемому устройству. Теоретические основы реализации цифровой фильтрации. Экономическое обоснование проекта.

    дипломная работа , добавлен 11.02.2013

    Цифровой фильтр с заданными характеристиками: рабочие коэффициенты, передаточная функция, параметры и структура. Программная и аппаратная реализация спроектированного фильтра, его тестирование. Особенности режимов работы фильтра в полосе пропускания.

    контрольная работа , добавлен 19.09.2012

    Разработка общего алгоритма функционирования цифрового фильтра нижних частот. Разработка и отладка программы на языке команд микропроцессора, составление и описание электрической принципиальной схемы устройства. Быстродействие и устойчивость фильтра.

    курсовая работа , добавлен 28.11.2010

    Разработка математической модели цифрового фильтра нижних частот. Структурная и электрическая принципиальная схемы системы с обоснованием выбора элементов. Время выполнения программы работы цифрового фильтра. Оценка инструментальной погрешности системы.

    курсовая работа , добавлен 13.06.2016

    Нахождение коэффициентов фильтра с помощью программного пакета MatLab. Структурная схема прямой канонической формы фильтра. Листинг программного пакета visual DSP++. Построение амплитудно-частотной характеристики синтезированного фильтра, расчет графика.

    курсовая работа , добавлен 23.04.2013

    Расчет цифрового фильтра нижних частот с конечной импульсной характеристикой. Синтез фильтра методом окна (параболического типа). Свойства фильтра: устойчивость, обеспечение совершенно линейной фазочастотной характеристики. Нахождение спектра сигнала.

    курсовая работа , добавлен 07.07.2009

    Изучение сущности цифровой фильтрации - выделения в определенном частотном диапазоне с помощью цифровых методов полезного сигнала на фоне мешающих помех. Особенности КИХ-фильтров. Расчет цифрового фильтра. Моделирование работы цифрового фильтра в MatLab.

    курсовая работа , добавлен 21.09.2010

    Изучение методов цифровой фильтрации в обработке сигналов. Исследование способов синтеза бесконечной импульсной характеристики приборов для очищения жидкостей процеживанием. Особенность имитирования фильтров нижних частот в программной среде Matlab.

    дипломная работа , добавлен 20.05.2017

    Линейно частотно-манипулированные сигналы. Создание согласованного фильтра и его импульсной характеристики. Создание накопителя и прохождение через него. Функциональная схема цифрового согласованного обнаружителя сигналов. Создание ЛЧМ–сигнала.

    курсовая работа , добавлен 07.05.2011

    Расчет цифрового и аналогового фильтра-прототипа. Структурные схемы и реализационные характеристики фильтра. Синтез цифрового фильтра в системе программирования MATLAB. Частотные и импульсные характеристики цифрового фильтра, карта его нулей и полюсов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: