Аккумулятор 12 вольт в схеме гарантированного питания. Бесперебойное питание вашей электроники

Ни одно электронное устройство не может быть застраховано от внезапного пропадания питания. Особенно, если речь идёт о сетевом напряжении 220 В и дело происходит в сельской местности. Для повышения надёжности стараются предусмотреть запасной источник энергии. В идеальном случае он должен при аварии автоматически включаться в работу, причём самостоятельно, без участия человека.

Для резервирования обычно используют сменные батареи и аккумуляторы. При батарейном питании желательно применять «алкалиновые» гальванические элементы (Alkaline). Они имеют большую ёмкость, низкий саморазряд, правда, и по цене дороже. Отличить, что есть что, можно по маркировке на корпусе, например, «R6» (обычная батарея типоразмера АА) и «LR6» (то же самое, но Alkaline).

Специфика современных МК заключается в том, что они могут программно переходить в энергосберегающий ждущий режим SLEEP с очень малым потреблением тока. Это позволяет вместо батарей/аккумуляторов использовать электролитические конденсаторы большой ёмкости или, ещё лучше, ионисторы.

Первые ионисторы были разработаны в 1966 г. фирмой Standard Oil Company. Они представляют собой специальные накопительные конденсаторы с органическим электролитом. Типовая ёмкость достигает 0.1...50 фарад при рабочем напряжении 2... 10 В. Для справки, ёмкость Земли (шара размером с Землю, как уединённого проводника) составляет всего лишь 0.0007 фарад.

Ионисторы известны в зарубежной технической литературе как конденсаторы с двойным электрическим слоем (Double-Layer capacitors), суперконденсаторы (SuperCaps), резервные конденсаторы (Backup capacitors). Встречаются и фирменные названия: UltraCap (EPCOS), Gold Capacitors (Panasonic), DynaCap (ELNA), BOOSTCAP (Maxwell Technologies). В странах СНГ используется устойчивый термин «ионистор», отражающий другую особенность этих приборов — участие ионов в формировании заряда.

Современные ионисторы условно делятся на три группы в зависимости от рекомендуемого в даташите длительного тока нагрузки:

  • Low current (низкий ток, меньше 1.5 мкА);
  • Medium current (средний ток, от 1.5 мкАдо 10 мА);
  • High current (большой ток, от 10 мА до 1 А).

Рабочее напряжение ионисторов подчиняется ряду: 2.5; 3.3; 5.5; 6.3 В.

На Рис. 6.16, а...т показаны схемы организации бесперебойного питания.

Рис. 6.16. Схемы организации бесперебойного питания (начало):

а) диоды VDI, VD2 служат для развязки каналов, чтобы ток из основного источника не перетекал в резервный, и наоборот. Если два источника питания разные по величине, то основным будет канал с более высоким напряжением. При абсолютном равенстве питающих напряжений диод Шоттки в резервном канале следует заменить обычным кремниевым диодом 1N4004.

б) развязывающие диоды VDI, VD2 включаются до (а не после) стабилизатора напряжения DA 1. Основное питание поступает через обычный диод VD1 (чтобы на нём рассеивалось побольше мощности), а резервное батарейное — через диод Шоттки VD2 (чтобы напряжение на входе стабилизатора DA I было как можно выше);

в) диоды VD2...VD4 включаются после (а не до) стабилизатора DA 1;

г) диод VD2 позволяет организовать дополнительный источник отрицательного напряжения -0.7 В, который, однако, перестаёт функционировать с переходом на резервное питание от батареи GB1. Диод Шоттки VD1 можно заменить обычным кремниевым диодом КД102А;

д) ионистор С J позволяет «на ходу» производить замену истощившихся батарей GBl, GB2, не прерывая питание МК достаточно длительное время. Если напряжение на ионисторе снижается медленно, то М К не требует рестарта. Резистор RI ограничивает ток заряда ионистора;

Рис. 6.16. Схемы организации бесперебойного питания (продолжение):

е) стабилизатор DAI ограничивает начальный ток заряда резервного ионистора СЗ на уровне не более 100 мА. Для справки, большой ток, начиная примерно с 250 мА, может повредить иони-стор. Диод VDI снижает выходное напряжение на 0.2 В. Кроме того, при отключении основного питания он не даёт разряжаться ионистору СЗ через выходные цепи внутри стабилизатора DA1

ж) транзистор VT1 выполняет функцию развязывающего диода наравне с «настоящим» диодом VD1, но имеет меньшее падение напряжения «коллектор — эмиттер» в открытом состоянии (0.1...0.15 В вместо 0.2 В). Основное питание +5 В(1), резервное питание +5 В(2);

з) аналогично Рис. 6.16, ж, но на полевом транзисторе VT1, при этом падение напряжения на открытом переходе «сток — исток» будет меньше, чем у биполярного транзистора при прочих равных условиях;

и) накопительный конденсатор C1 поддерживает некоторое время работоспособность МК при отключении батареи GB1. Длительность аварийного функционирования зависит от ёмкости и тока утечки конденсатора C1, а также от тактовой частоты МК и его способности устойчиво работать при пониженном питании;

к) благодаря диодному мосту VDI... VD4, входное напряжение 9... 12 В может быть как постоянным (DC), так и переменным (АС);

Рис. 6.16. Схемы организации бесперебойного питания (продолжение): л) резервный ионистор С2 некоторое время поддерживает напряжение в цепи +4.8 В (к которой подключается МК) при снятии основного питания +11 В от сетевого источника. Транзисторы VTI, VT2 не дают разряжаться ионистору через внутреннее сопротивление микросхемы DAI и нагрузку в цепи +5 В;

м) светодиод HL1 индицирует питание только в том случае, когда работает резервная батарея GB1. Резистором R1 устанавливается требуемая яркость свечения. При замыкании контактов переключателя SAI питание поступает от основного источника +5 В, при этом диод VD1 и транзистор VT1 закрываются и светодиод HL1 гаснет;

н) основной канал питания — это пальчиковые батареи GBl, GB2, а резервный канал — литиевый аккумулятор GB3. При отключённых батареях GBl и GB2 МК будет получать питание от аккумулятора GB3, находясь в дежурном режиме, поскольку внешние исполнительные устройства (цепь +3.2 В) будут обесточены. Диод VD1 не позволяет разряжаться аккумулятору GB3 через нагрузку, подключённую к цепи +3.2 В;

о) в исходном состоянии питание устройства производится от трёх батарей GB1...GB3, при этом индикатор HL1 светится зелёным цветом. При подаче внешнего питания +5 В срабатывает реле К1, контакты К1.1 замыкаются, батареи отключаются, индикатор HL1 светится красным цветом. Если вместо красного наблюдается жёлтый цвет индикатора, то следует последовательно с выводом «G» светодиода включить диод типа КД522Б катодом к HL1. Резистор R1 уменьшает ток потребления по цепи +5 В, однако, при неустойчивом срабатывании реле этот резистор можно заменить перемычкой; О

Рис. 6.16. Схемы организации бесперебойного питания (окончание): п) резервный аккумулятор GB1 постоянно подзаряжается небольшим током через резистор R1. Стабилитрон VD6 совместно с диодом VD7 ограничивают напряжение на аккумуляторе на уровне +13.7 В. Диоды VD4, VD5 открываются только при снятии основного питания +16 В. Диоды VD3, VD8 небходимы, поскольку ёмкость конденсаторов на выходе стабилизаторов DAI, DA2 больше, чем на входе (сравнить C1 и CJ, СЗ и С4)

р) питание +5 В является основным, а питание от литиевой батареи/аккумулятора GBI — резервным. На выход OUT поступает большее из двух напряжений, подаваемых на входы VCC и ВАТ микросхемы DA1. При снижении напряжения на выводе VCC ниже +4.75 В (подстраивается резистором R2), на выходе PFO формируется НИЗКИЙ уровень. Это система раннего предупреждения о неполадках в питании, чтобы МК мог переключиться на резервный источник. При снижении напряжения на выводе VCC ниже +4.65 В, генерируется импульс сброса RES;

с) аналогично Рис. 6.16, р, но с резервным питанием от ионистора C1. Сигнал сброса RES поступает на вход прерывания INT, поскольку аппаратно сбрасывать МК не обязательно из-за плавного снижения напряжения OUT;

т) ВЫСОКИМ/НИЗКИМ уровнем с выхода МК питание коммутируется или от цепи +5 В, или от резервного аккумулятора GB1, который подзаряжается небольшим током через элементы VDI, R4. При пропадании питания +5 В аккумулятор GB1 включается автоматически, при этом в МК надо произвести сброс, поскольку он может «зависнуть» при резком скачке напряжений.

  • Электроника для начинающих
  • Пролог

    В была рассмотрена постановка задачи на разработку маломощного резервного источника питания на мощность 60 Вт с синусом на выходе для циркуляционного насоса системы отопления. Была выбрана концепция реализации данного устройства. В этой статье пойдет речь о разработке электрической схемы устройства, с необходимыми расчетами для выбора номиналов компонентов, входящие в состав устройства.

    Вооружившись САПРами и учебниками черновиками, карандашом и GOOGLE приступим к проектированию. Начнем с простого – система питания устройства.

    Организация питания

    Для питания элементов схемы нам понадобится три типа шины постоянного напряжения в 12, 5 и 3,3 Вольта.

    Двенадцати вольтная шина – основная. Она является питанием моста, осуществляющего закачку тока в низковольтную обмотку линейного сетевого трансформатора. С нее же питаем драйвера транзисторов, входящих в мост. Коммутирующие сеть реле тоже будут питаться с данной шины.

    Пяти вольтная шина необходима для питания токовой микросхемы ACS712, микросхемы логики, символьного ЖКИ и т.д.

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Лирическое отступление

    Для наглядности куски схемы рисовались в Proteuse v 7.7. В его библиотеках есть не все использованные компоненты, так что некоторые компоненты заменены на аналоги. Окончательная, полная схема будет в формате САПРа Dip Trace. Со всеми утвержденными компонентами. Но это уже в следующей статье.


    Родилась вот такая схема:

    Картинка кликабельна.

    Формирователи шины 5 и 3,3 Вольта организованы на 1 % LDO стабилизаторах типа NCP1117STхх. Аналоговое питание модуля АЦП берется с шины 3,3 Вольта через индуктивность, сглаживающие и блокировочные конденсаторы. Аналоговую землю тоже стоило бы разделить. Но в данной схеме этого нет, так как измерения не критичные, и погрешность в пару разрядов не приведет к «расстройству» устройства. Применим программный фильтр – скользящее среднее и может даже погрешности в один разряд добьёмся.

    Измерение тока и защита от перегрузки

    Датчик тока ACS712ELCTR-05B-T представляет собой интегральную микросхему. Детектирование тока происходит на эффекте Холла. Данный датчик позволяет МК измерять как прямой, так и обратный ток. С остальными характеристиками можно ознакомиться из его pdf . Выход датчика аналоговый. Средняя точка, соответствующая нулевому току = 2,5 В. Усиление 185мВ на 1 Ампер. Хотя датчик регистрирует и большие токи, только линейность искажается, и при определенном токе входит в насыщение. Так что для согласования выхода датчика с МК, поставим делитель напряжения. И поделим шкалу пополам. Разрядности АЦП МК хватит для приемлемой точности.

    Для быстродействующей защиты от перегрузки или короткого замыкания в низковольтной обмотке линейного трансформатора, установим токовый шунт. Сигнал с шунта усилим на ОУ и на компараторе соберем схему сравнения с защелкой. Данные о перегрузке будем загонять в МК, а также по этому сигналу будем закрывать ВСЕ ключи моста.

    Небольшое видео, симуляции работы токовой защиты, представлено ниже.

    Силовая часть

    Силовая часть РИПа представлена на рисунке.


    Картинка кликабельна.

    Мост транзисторов «опирается» на токовый шунт, для обеспечения быстродействующей защиты. Выход моста через LC фильтр, рассчитанный на частоту среза в ~ 1 кГц, подается на низковольтную обмотку трансформатора. О фильтре и трансформаторе стоит поговорить более подробно.

    Расчет фильтра производился в программе «Калькулятор РЛ» ссылку на так называемый офф. сайт уже не найду. Поэтому архив с калькулятором выложил сюда . Вот скрин расчета.

    Полученная индуктивность в 10 миллигенри довольна внушительна. Но и емкость получилась приличная. Так как у нас на выходе с фильтра переменка, то полярным конденсатором не обойдешься. В схему заложил два керамических конденсатора в параллель - 4.7 мкФ, X7R, 25В (1206).

    Расчет дросселя по полученным данным производил в программе Coil32. Вот ссылка на архив с программой. Ферритовое кольцо для такого дросселя выбрал со следующими параметрами: Кольцо N87 R25x15x10. Вот скрин расчета в программе.

    Получилось 70 витков провода диаметром 1 мм, для обеспечения нужной индуктивности. Вполне приемлемо для ручной намотки.

    Выбор трансформатора пал на тороидальный трансформатор типа ТТП-60, со вторичным напряжение в 9 Вольт. Расчет прост. Переменное напряжение в 9 Вольт дает в амплитуде 12,7 Вольт. Напряжение заряженного АКБ порядка 13 Вольт. Так что сможем более менее на выходе получить 220 вольт. Для заряда АКБ конечно маловато. Поэтому есть предложение, домотать вторичку витков на 5-6. То есть получилась низковольтная обмотка с отводом. С крайних выводов обмотки снимаем повышенное напряжение для заряда АКБ, во время работы от сети. А на крайний и средний вывод подаем напряжение с моста, когда работаем от АКБ. По напряжению, снимаемому с крайних выводов обмотки, судим о напряжении в высоковольтной обмотке во время работы от АКБ, обратная связь для регулировки.

    Транзисторы моста управляются от МК через драйверы полумостов IRS2101S. Управление верхними ключами осуществляется по бутстрепной схеме. Управление P-канальным зарядным транзистором осуществляется обычным биполярником. Сглаживающий зарядный дроссель имеет те же габариты и расчетные величины, что и дроссель в LC фильтре после моста.

    Детектирование наличия сети и коммутация

    Для детектирование сети применятся конденсаторная схема питания. Напряжение заводится на оптопару. Выход оптопары загоняем в МК для контроля наличия сети. Схема показана ниже.


    Картинка кликабельна.

    Сетевое напряжение через гасящий конденсатор, диоды, стабилитрон, сглаживающие конденсаторы, токоограничивающий резистор подается на светодиод оптопары. Выход идет в МК.

    Управление реле, коммутирующие сеть на нагрузку, осуществляется от МК.

    Токовая защита реализована на ОУ и компараторе. Выход компаратора расходится на два транзистора. Один для ввода сигнала в МК, второй для закрывания всех транзисторов моста.

    На рисунке ниже представлены схемы включения драйверов для моста.


    Картинка кликабельна.

    Все типовое, согласно даташиту на драйвер IRS2101S.

    Схема формирование импульсов моста

    Чтоб не нагружать МК бесполезной работой, формирование сигналов импульсов моста собрано на логике И. От МК требуется три сигнала. Один синусоидальный ШИМ за период, а также два дискретных сигнала, первая полуволна и вторая. Реализация такого подхода изображена на рисунке.


    Картинка кликабельна.

    Перегрузка по току, заведена в МК и продублирована светодиодом. Управление зарядным P-канальным транзистором организованно на биполярном NPN транзисторе.

    Логика работы моста будет заключаться в следующем. 20 кГц ШИМ будет модулироваться таблицей синуса в количестве 400 значений. Передача значений в регистр ШИМ будет организованна через ДМА. После загрузки половины буфера, то есть 200 значений, одного полупериода, ДМА вызовет прерывание, где сигналы MCU_P_1 и MCU_P_2 будут взаимно инвертироваться. После загрузки всего буфера, в прерывании от ДМА будет происходить обратное инвертирование сигналов MCU_P_1 и MCU_P_2. И далее в циклическом режиме. Постоянный уровень полуволны, будет подаваться на верхний транзистор плеча, а синусоидальный ШИМ на нижний ключ противоположного плеча. Следующий полупериод – это другая пара транзисторов.

    Во время перегрузки по току, NPN транзистор Q7 обеспечит на входе логики низкий уровень, что в свою очередь приведет к низкому уровню на выходе логике и как следствие – запиранию ВСЕХ транзисторов моста.

    Аппаратная платформа

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Как уже упоминалось выше, МК будет от ST семейства STM32. Чем обуславливается такой выбор?
    • МК имеет невысокую стоимость. Аналоги по возможностям от ATMEL или PIC имеют даже более высокие цены, при разрядности в 8 бит.
    • Наличие на борту 12 битного АЦП, ЦАП, контроллера ДМА.
    • 32 бит разрядность ядра.
    • Увеличенную емкость память программ и данных.
    Одним словом выигрывает по многим позициям.

    Для индикации работы устройства и вывода необходимых данных в схеме будет использоваться знакосинтезирующий ЖКИ с управляющим контролером KS0066 (HD44780). Библиотек для работы с таким дисплеем в рунете полно.

    Схема подключения дисплея к контроллеру выглядит следующим образом.


    Картинка кликабельна.

    Подключение происходит напрямую. Порты МК непосредственно подключены к дисплею. Сопряжение 3 вольтовой и 5 вольтовой логики не производилось. Здесь возможно появятся проблемы, и придется выводы МК настроить как выходы с открытым коллектором, и подтянуть линии к 5 вольтам, а сами выходы МК использовать толерантные к 5 вольтам. Как говорится жизнь покажет, но при разработке печатной платы, необходимо заложить данный «апдейт».

    Пользовательские кнопки необходимы для организации навигации по меню и параметрам, отображаемым на дисплее.

    Дополнительные расчеты

    Для расчета бутстрепного конденсатора воспользуемся методом, предложенным в данной статье . В конце описания есть пример расчета необходимой емкости бутстрепного конденсатора. Возьмем его за основу и пересчитаем для наших реалий.

    Определимся с параметрами схемы:

    • V IN,MAX = 15V максимальное входное напряжение,
    • V DRV = 12V напряжения питания драйвера и амплитуда управляющего сигнала,
    • dV BST = 0.5V пульсация напряжения на конденсаторе C BST в установившемся режиме,
    • dV BST,MAX = 3V максимальное падение напряжения на C BST перед тем как сработает схема защиты от пониженного напряжения или амплитуда управляющего сигнала станет недостаточной,
    • f DRV = 100 Hz частота преобразования, так как наш конденсатор работает в промежутке 10 мс,
    • D MAX = 1 максимальный коэффициент заполнения при минимальном входном напряжении.
    Характеристики применяемых компонентов:
    • Q G = 24 nC общий заряд переключения IRLZ44ZS при V DRV = 5V и V DS = 44V,
    • R GS = 10К величина резистора R GS ,
    • I R = 10uA ток утечки диода D BST при максимальном входном напряжении и температуре его перехода TJ = 80°C,
    • V F = 0.6V падение напряжения на диоде D BST при токе 0.1A и температуре перехода TJ = 80°C,
    • I LK = 0.13mA ток утечки схемы сдвига уровня при максимальном входном напряжении и температуре кристалла TJ = 100°C,
    • I QBS = 1mA ток, потребляемый драйвером верхнего уровня.

    Рассчитанное значение подберем из стандартного ряда. Тип конденсатора возьмем танталовый, для уменьшения тока утечки самого конденсатора. Итого получается 47 мкФ x 25 В, тип D.

    Рассчитаем ток заряда конденсатора, тем самым подберем диод.

    Так что диод рассчитанный на прямой ток в 1 А, справится с этой задачей.

    Заключение

    В этой статье разработали электрическую схему РИПа. Теперь все куски схемы соберем воедино. И на основе уже утвержденной схемы разработаем топологию печатной платы. Разводку печатной платы и обобщенную электрическую схему со спецификацией по компонентам представлю в следующей статье.

    Программную реализацию функционала устройства распишу в отдельной статье. Есть задумка реализовать в программе много интересных решений, например, ПИД регулирование выходного напряжения при работе от АКБ.

    Эпилог

    Этой статьей, хотел вынести на суд общественности и опытных радиолюбителей и не любителей тоже, схематические решения. Быть может, внимательный читатель найдет какие-либо критические ошибки в схемотехники или предложит более правильное исполнение отдельных узлов. Найдется какое-нибудь более простое решение узлов или для повышения надежности внести дополнительные схемотехнические решения.

    Периодические отключения электричества способны вывести из строя всю систему отопления и повлиять на работу бытовой техники. Организация резервного питания дома только на первый взгляд сложная задача. В этой статье мы расскажем вам, как самостоятельно организовать резервное электроснабжение дома.

    Практически в любом хозяйстве можно найти ряд устройств, которые было бы неплохо обеспечить резервным питанием. Сюда можно отнести холодильник, водонасосное оборудование, отопительный котел, компьютеры и устройства телефонии. Внезапно прерванная подача питания или скачки напряжения сокращают срок работы двигателей, возможен выход из строя блоков питания электронных устройств.

    Существует два способа снизить влияние городской электросети на ритм своего быта. Для этого используют или источники бесперебойного питания (ИБП), или аварийные электрические генераторы .

    Использование ИБП в домашнем хозяйстве

    Почти все современные настольные компьютеры снабжены блоками бесперебойного питания для защиты от потери данных. Схожие по устройству приборы, но более мощного класса, могут быть использованы для питания бытовой техники во время аварийного обесточивания. Специфика их использования распространяется вплоть до организации аккумуляторных хранилищ, способных обеспечить весь дом электроэнергией в течение одного-двух дней.

    И все же в быту наиболее широко применяются ИБП, защищающие отдельный потребитель или несколько, объединенных в выделенную линию, к которой может быть подключена также котельная или дежурное освещение. Это в корне меняет план электроснабжения дома, может потребоваться прокладка дополнительной проводки.

    Инверторная система бесперебойного питания: 1 — сеть; 2 — батарейный инвертор; 3 — аккумуляторный банк; 4 — потребители

    Перед приобретением ИБП следует составить список аварийных потребителей и рассчитать их мощность, потребляемую за наиболее продолжительный период, на который возможно отключение энергии. При этом обязательно учитывается как режим работы оборудования, так и прошлые опыты простоя без электричества.

    Например, в резервном питании нуждаются:

    1. Холодильник — 400 Вт, время работы — 6 ч.
    2. Циркуляционный насос — 95 Вт, время работы — 24 ч.
    3. Газовый котел и автоматика котельной — 85 Вт, время работы — 24 ч.
    4. Зарядка ноутбука и телефонов — 200 Вт, время работы — 4 ч.

    Таким образом, можно определить общее потребление приборов: 2,4 + 2,28 + 2,04 + 0,8 = 7,52 кВт/ч в сутки. Чтобы учесть и компенсировать временную деградацию аккумуляторов ИБП, к этому значению нужно добавить 30%, в итоге необходимая суточная емкость батареи ИБП составит почти 9,8 кВт/ч. Сделав поправку на время аварийной работы, вы получите необходимую мощность устройства. Учитывайте, что устройства такого класса мощности весьма дорогостоящие и делать дополнительный запас мощности не всегда нужно: поскольку ИБП не будет работать под полной нагрузкой, расчетной емкости хватит вполне.

    Конфигурации защищенных сетей

    При необходимости организовать резервное питание одному-двум потребителям, разумно использовать локальные ИБП. Так не потребуется переделка проводки в доме, нужно только корректно выбрать место установки прибора, а он довольно громоздкий.

    В целом при нагрузке свыше 3 кВА/ч имеет смысл устанавливать одно устройство резервного питания для всех потребителей, организовав для них выделенную линию. Покупка одного мощного ИБП выгоднее нескольких менее мощных, в этом случае расходы на монтаж новой проводки вполне оправданы.

    Другой плюс высокомощных ИБП — возможность самостоятельно определить режим и характеристики выходного тока для более продолжительной автономной работы. Встроенный контроллер заряда в таких устройствах существенно продлевает жизнь батарей и поддерживает их в полной готовности даже во время длительного простоя. Большинство устройств имеют интерфейс связи с ПК для отслеживания журнала работы и диагностики, а встроенный стабилизатор напряжения исключит скачки напряжения и сетевые помехи.

    Длительная автономная работа — подключаем генератор

    Есть два пути повышения времени автономной работы: наращивание парка аккумуляторных батарей и использование автономного источника электроэнергии. Первый вариант более дорогостоящий и использовать его следует лишь в тех условиях, где установка ДВС-генератора невозможна, например, в квартирах или офисах. Возникает спорный вопрос: а зачем нужен ИБП при наличии генератора?

    Практика показывает, что параллельное использование этих устройств имеет свои плюсы:

    1. Электроснабжение осуществляется абсолютно беспрерывно.
    2. Характеристики тока, генерируемого портативными электростанциями, далеки от идеальных. Стабилизатор ИБП сглаживает помехи, имеет УЗИП электронного типа.
    3. При работе от генератора не нужны устройства высокого класса мощности, достаточно чтобы они соответствовали пиковой нагрузке при одновременно включенных потребителях. В случае, рассмотренном выше, будет достаточно ИБП мощностью 1 кВА/ч.

    В отдельных случаях имеет смысл использовать генераторы с функцией автозапуска. В момент перехода на питание от аварийного генератора и при возникновении нештатных ситуаций (генератор заглох, кончилось топливо), питание переключается на ИБП. В нормальном же режиме генерируемого электричества будет достаточно для поддержки полного заряда батарей и включения всех потребителей в работу.

    Гибридная система бесперебойного питания: 1 — сеть; 2 — инвертор; 3 — генератор; 4 — аккумуляторный банк; 5 — потребители

    Построение схемы на многофункциональном АВР

    Комфорт от применения ИБП достаточно высок, чтобы многие владельцы задумались о резервном питании всей электросети, а не отдельных потребителей. Для этого также есть несколько путей решения.

    При невозможности установить генератор функцию резервного питания на себя берет сборка аккумуляторных батарей достаточной емкости. Тип аккумулятора определяется режимом работы: гелиевые имеют наибольшую цикличность и рассчитаны на частые включения, свинцово-кислотные AGM-аккумуляторы дешевле, их оптимально использовать для работы в режиме байпаса.

    Аккумуляторный парк собирается из нескольких параллельно подключенных необслуживаемых аккумуляторов емкостью в 100-200 А/ч. Суммарная емкость парка должна соответствовать общему энергопотреблению в пересчете на низкое напряжение, то есть в рассмотренном выше случае потребление приборов от сети 230 В составило 9,8 кВт/ч или кВА/ч. При напряжении 12 В это эквивалентно общему потреблению в 816 А/ч, так определяется суммарная емкость парка. При сборке нужно учитывать также собственное энергопотребление системы и потери в проводах низкого напряжения, это примерно 5-7% от первоначальной мощности. Все функции по управлению системой бесперебойного питания берет на себя инвертор с электронным управлением. Стоимость устройства надлежащего качества (MeanWell) на 1 кВт пиковой мощности составляет 400-600 $, от 3 до 5 кВт — 1200-1400 $. К слову, комплексные устройства с теми же параметрами обходятся как минимум в 2-3 раза дороже.

    Резервная система с блоком АВР: 1 — сеть; 2 — генератор; 3 — аккумуляторный банк; 4 — щит автоматического ввода резерва (АВР); 5 — многофункциональный инвертор; 6 — потребители

    При наличии генератора аккумуляторный парк можно существенно сократить до одного-двух часов бесперебойной работы. Но потребуется установка устройства АВР с функцией запуска генератора. Подойдут и простейшие щиты отечественного производства, такие как ЩАПг-3-1-50 «Техэнерго» (~20 000 руб.) или сборки АВР самостоятельного исполнения.

    Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
    При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
    В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
    Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
    Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

    Рис. 10.1. Основная схема резервирования источников питания

    Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

    Рис. 10.3. Схема резервирования источника питания охранного устройства

    Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
    Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
    источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
    Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
    Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
    Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

    Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

    В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
    Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
    Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
    использование резервного источника питания. Схема одного из них показана на рис. 10.5.
    Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

    Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

    Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
    В схеме использовано реле РЭС-64А РС4.569.724.
    Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
    Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
    Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
    Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

    Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

    Рис. 10.7. Схема автоматического коммутатора питания

    Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
    В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
    Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
    При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
    При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
    Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
    Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
    Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

    Рис. 10.8. Комбинированный блок питания электронно-механических часов

    При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
    Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
    Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
    В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

    Рис. 10.9. Схема резервированного питания электронных часов

    С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
    Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
    Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

    Рис. 10.10. Схема низковольтного источника бесперебойного питания

    Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

    Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

    Через диод VD7 и резистор R4 устройство подключено к ИР/7.
    При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

    Ничего не может быть хуже, чем отключение света зимой. Любой из загородных жителей рано или поздно сталкивается с ситуацией, когда лампочки гаснут, скважинный насос перестаёт качать воду, а батареи системы отопления остывают на глазах. Время задействовать резервное питание!

    Но есть и другое решение проблемы с перебоями электричества: система резервного питания дома или сокращённо – СРП.

    Для правильного выбора такой системы питания необходимо понять, чем она отличается от системы автономного питания (САП).

    Андрей-АА, Новая Москва.

    СРП используется в том случае, когда к основной электросети. При отключении основного питания резервное электропитание «подхватывает» основных потребителей электроэнергии: скважинный насос, котёл, холодильник, компьютер, телевизор и другое электрооборудование . САП – это основная система электропитания для дома, применяемая при полном отсутствии основной электросети.

    Переходим к выбору системы резервного питания. По мнению Андрей-АА , существует 4 основных типа резервного питания для дома.

    • Если сеть отключается ненадолго, но суммарно в месяц более чем на 10 часов, то оптимальной будет система, состоящая из инвертора, зарядного устройства и блока аккумуляторов, заряжаемых от сети.

    Инвертор – это преобразователь постоянного тока от аккумуляторных батарей в переменное однофазное напряжение 220В, от которого работает оборудование в доме.

    • Если сеть отключают менее чем на 10 часов в месяц, то выгодней система из электрогенератора с двигателем внутреннего сгорания (ДВС), оборудованного системой автоматического пуска.
    • Если сеть отключают часто и надолго, или когда напряжение в сети слишком низкое, то оптимальной является система, состоящая из генератора, блока аккумуляторов, зарядного устройства и инвертора.

    По аналогичному принципу строятся и системы автономного электропитания, но к ним предъявляются более высокие требования по мощности.

    • Если требуемую мощность можно ограничить 1-1,5 кВт, то в качестве резервной системы питания можно использовать автомобиль с подключённым к нему инвертором.

    Остановимся подробнее на третьем варианте. Пользователь с ником galexy456 предлагает пошаговый план создания бюджетной системы резервного питания для дома.

    1 В электрический щиток заводятся два кабеля из подсобного помещения. Первый кабель необходим, чтобы подать электричество на инвертор. Второй – чтобы передать электричество от инвертора в дом.

    galexy456

    У меня на улице смонтирован маленький щиток, в котором реализована схема автоматического ввода резерва, или сокращённо АВР

    АВР – это автоматический переключатель одной нагрузки на две питающих линии – основную и резервную.

    2 В подсобное помещение ставим инвертор, аккумуляторы и коммутируем все устройства.

    Инверторы бывают двух основных типов – с синусом на выходе (оптимальный вариант) и с так называемым «модифицированным синусом». Если инвертор выдаёт «модифицированный синус», то некоторые приборы при подключении к нему могут выйти из строя из-за высокого уровня гармоник частоты в питании – 150Гц, 250Гц, 350Гц и т.д.

    В случае отключения электричества такая система работает следующим образом. АВР самостоятельно и быстро – так, что приборы не успевают отключиться, переключает питание с основного на резервное.

    Теперь все подключённые энергопотребители продолжают работать от аккумуляторов и инвертора. Если энергоснабжение отсутствует больше 5-6 часов, то, не дожидаясь полного разряда аккумуляторов (от этого сильно сокращается срок их службы), для продолжения бесперебойного питания необходимо вручную завести генератор.

    Существуют системы резервного питания с автоматическим запуском генератора, установленным в отапливаемом подсобном помещении и снабжённом принудительным отводом выхлопных газов. Главный недостаток таких СРП – это их высокая цена.

    galexy456

    После запуска генератора инвертор переводит нагрузку на питание приборов от него и одновременно начинает заряжать аккумуляторы. Таким образом, продлевается время работы системы и экономится моторесурс генератора, т.к. он работает не в постоянном режиме.

    Необходимо помнить, что запускать генератор следует уже после израсходования ёмкости аккумуляторов примерно на 30-60%.

    Любая, даже самая продвинутая и дорогая система резервного питания, в первую очередь, приучает экономить энергоресурсы в доме, т.к. от этого напрямую зависит время работы системы резервного электроснабжения дома.

    Форумчане советуют:

    • заменить все лампочки в доме на энергосберегающие;
    • проложить вторую, резервную линию электросети, к которой, в случае отключения электричества, можно подключить самое необходимое оборудование в доме;
    • как следует утеплить дом, чтобы уменьшить затраты на отопление;
    • при работе резервной системы питания не пользоваться мощными электроприборами: утюгом, электрочайником, пылесосом.

    Андрей-АА

    Включение фена, чайника или утюга на 3-7 минут сильно не разрядит аккумуляторы, но глажку или работу с мощным электроинструментом лучше не допускать.

    Для построения СРП нагрузку в доме можно условно разделить на три части:

    1. Отопление.
    2. Водонагревательные приборы.
    3. Приборы, требующие обязательного резервного питания, а именно:
    • освещение;
    • циркуляционные насосы отопления;
    • скважинный насос и насосная станция;
    • компьютер;
    • холодильник, телевизор, Интернет.

    Также в качестве резервной системы питания можно использовать и автомобиль. Для этого необходимо:

    1. Приобрести инвертор с синусоидальным выходом на 12-220 В мощностью до 2 кВт с защитой от перегрузки по току или по мощности.
    2. Пользователи сайта FORUMHOUSE могут узнать, как самостоятельно сделать систему питания. Вся информация по расчёту собрана в этом дневнике. Автоматический «от А до Я» описан в этой теме.

      А в этом видео рассказывается о том, как инвертор и блок аккумуляторов могут увеличить электрическую мощность в доме.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: