Введение в криптографию. Общие вопросы, проблемы и решения


Метод шифровки/дешифровки называют шифром (cipher ). Некоторые алгоритмы шифрования основаны на том, что сам метод шифрования (алгоритм) является секретным. Ныне такие методы представляют лишь исторический интерес и не имеют практического значения. Все современные алгоритмы используют ключ для управления шифровкой и дешифровкой; сообщение может быть успешно дешифровано только если известен ключ. Ключ, используемый для дешифровки может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (или алгоритмы секретным ключом) и асиметричные (или алгоритмы с открытым ключом). Разница в том, что симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования (или же ключ для дешифровки просто вычисляется по ключу шифровки). В то время как асимметричные алгоритмы используют разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Смметричные алгоритмы подразделяют на потоковые шифры и блочные шифры . Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором бит данных (обычно размер блока составляет 64 бита) и шифруют этот набор как единое целое.

Ассиметричные шифры (также именуемые алгоритмами с открытым ключом, или --- в более общем плане --- криптографией с открытым ключом) допускают, чтобы открытый ключ был доступн всем (скажем, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только нужный человек (тот, кто владеет ключом дешифровки). Ключ для шифрования называют открытым ключом , а ключ для дешифрования --- закрытым ключом или секретным ключом .

Современные алгоритмы шифровки/дешифровки достаточно сложны и их невозможно проводить вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Вообще говоря, симметричные алгоритмы работают быстрее, чем ассиметричные. На практке оба типа алгоритмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко - в книжном магазине, библиотеке, патентном бюро или в Интернет. К широко известным симметричным алгоритмам относятся DES и IDEA, Наверное самым лучшим асимметричным алгоритмом является RSA.

Цифровые подписи

Некоторые из асимметричных алгоритмов могут использоваться для генерирования цифровой подписи . Цифровой подписью называют блок данных, сгенерированный с использованием некоторого секретного ключа. При этом с помощью открытого ключа можно проверить, что данные были действительно сгенерированы с помощью этого секретного ключа. Алгоритм генерации цифровой подписи должен обеспечивать, чтобы было невозможно без секретного ключа создать подпись, которая при проверке окажется правильной.

Цифровые подписи используются для того, чтобы подтвердить, что сообщение пришло действительно от данного отправителя (в предположении, что лишь отправитель обладает секретным ключом, соответствующим его открытому ключу). Также подписи используются для проставления штампа времени (timestamp ) на документах: сторона, которой мы доверяем, подписывает документ со штампом времени с помошью своего секретного ключа и, таким образом, подтверждает, что документ уже существовал в момент, объявленный в штампе времени.

Цифровые подписи также можно использовать для удостоверения (сертификации --- to certify ) того, что документ принадлежит определенному лицу. Это делается так: открытый ключ и информация о том, кому он принадлежит подписываются стороной, которой доверяем. При этом доверять подписывающей стороне мы можем на основании того, что ее ключ был подписан третьей стороной. Таким образом возникает иерархия доверия. Очевидно, что некоторый ключ должен быть корнем иерархии (то есть ему мы доверяем не потому, что он кем-то подписан, а потому, что мы верим a-priori, что ему можно доверять). В централизованной инфраструктуре ключей имеется очень небольшое количество корневых ключей сети (например, облеченные полномочиями государственные агенства; их также называют сертификационными агенствами --- certification authorities ). В распределенной инфраструктуре нет необходимости иметь универсальные для всех корневые ключи, и каждая из сторон может доверять своему набору корневых ключей (скажем своему собственному ключу и ключам, ею подписанным). Эта концепция носит название сети доверия (web of trust ) и реализована, например, в PGP.

Цифровая подпись документа обычно создается так: из документа генерируется так называемый дайджест (message digest ) и к нему добавляется информация о том, кто подписывает документ, штамп времени и прочее. Получившаяся строка далее зашифровывается секретным ключом подписывающего с использованием того или иного алгоритма. Получившийся зашифрованный набор бит и представляет собой подпись. К подписи обычно прикладывается открытый ключ подписывающего. Получатель сначала решает для себя доверяет ли он тому, что открытый ключ принадлежит именно тому, кому должен принадлежать (с помощью сети доверия или априорного знания), и затем дешифрует подпись с помощью открытого ключа. Если подпись нормально дешифровалась, и ее содержимое соответствует документу (дайджест и др.), то сообщение считается подтвержденным.

Свободно доступны несколько методов создания и проверки цифровых подписей. Наиболее известным является алгоритм RSA.

Криптографические хэш-функции

Криптографические хэш-функции используются обычно для генерации дайджеста сообщения при создании цифровой подписи. Хэш-функции отображают сообщение в имеющее фиксированный размер хэш-значение (hash value ) таким образом, что все множество возможных сообщений распределяется равномерно по множеству хэш-значений. При этом криптографическая хэш-функция делает это таким образом, что практически невозможно подогнать документ к заданному хэш-значению.

Криптографические хэш-функции обычно производят значения длиной в 128 и более бит. Это число значительно больше, чем количество собщений, которые когда-либо будут существовать в мире.

Много хороших криптографических хэш-функций доступно бесплатно. Широко известные включают MD5 и SHA.

Криптографические генераторы случайных чисел

Криптографические генераторы случайных чисел производят случайные числа, которые используются в криптографических приложениях, например - для генерации ключей. Обычные генераторы случайных чисел, имеющиеся во многих языках программирования и программных средах, не подходят для нужд криптографии (они создавались с целью получить статистически случайное распределение, криптоаналитики могут предсказать поведение таких случайных генераторов).

В идеале случайные числа должны основываться на настоящем физическом источнике случайной информации, которую невозможно предсказать. Примеры таких источников включают шумящие полупроводниковые приборы, младшие биты оцифрованного звука, интервалы между прерываниями устройств или нажатиями клавиш. Полученный от физического источника шум затем "дистиллируется" криптографической хэш-функцией так, чтобы каждый бит зависел от каждого бита. Достаточно часто для хранения случайной информации используется довольно большой пул (несколько тысяч бит) и каждый бит пула делается зависимым от каждого бита шумовой информаци и каждого другого бита пула криптографически надежным (strong ) способом.

Когда нет настоящего физического источника шума, приходится пользоваться псевдослучайными числами. Такая ситуация нежелательна, но часто возникает на компьютерах общего назначения. Всегда желательно получить некий шум окружения --- скажем от величины задержек в устройствах, цифры статистики использования ресурсов, сетевой статистики, прерываний от клавиатуры или чего-то иного. Задачей является получить данные, непредсказуемые для внешнего наблюдателя. Для достижения этого случайный пул должен содержать как минимум 128 бит настоящей энтропии.

Криптографические генераторы псевдослучайных чисел обычно используют большой пул (seed-значение), содержащий случайную информацию. Биты генерируется путем выборки из пула с возможным прогоном через криптографическую хэш-функцию, чтобы спрятать содержимое пула от внешнего наблюдателя. Когда требуется новая порция бит, пул перемешивается путем шифровки со случайным ключом (его можно взять из неиспользованной пока части пула) так, чтобы каждый бит пула зависел от каждого другого бита. Новый шум окружения должен добавляться к пулу перед перемешиваниям, дабы сделать предсказание новых значений пула еще более сложным.

Несмотря на то, что при аккуратном проектировании криптографически надежный генератор случайных чисел реализовать не так уж и трудно, этот вопрос часто упускают из вида. Таким образом, следует подчеркнуть важность криптографического генератора случайных чисел --- если он сделан плохо, он может легко стать самым уязвимым элементом системы.

Обеспечиваемая шифром степень защиты

Хорошие криптографические системы создаются таким образом, чтобы сделать их вскрытие как можно более трудным делом. Можно построить системы, которые на практике невозможно вскрыть (хотя доказать сей факт обычно нельзя). При этом не требуется очень больших усилий для реализации. Единственное, что требуется --- это аккуратность и базовые знания. Нет прощения разработчику, если он оставил возможность для вскрытия системы. Все механизмы, которые могут использоваться для взлома системы надо задокументировать и довести до сведения конечных пользователей.

Теоретически, любой шифровальный алгоритм с использованием ключа может быть вскрыт методом перебора всех значений ключа. Если ключ подбирается методом грубой силы (brute force ), требуемая мощность компьютера растет экспоненциально с увеличением длины ключа. Ключ длиной в 32 бита требует 2^32 (около 10^9) шагов. Такая задача под силу любому дилетанту и решается на домашнем компьютере. Системы с 40-битным ключом (например, экспортный американский вариант алгоритма RC4) требуют 2^40 шагов --- такие компьютерные мощности имеются в большинстве университетов и даже в небольших компаниях. Системы с 56-битными ключами (DES) требуют для вскрытия заметных усилий, однако могут быть легко вскрыты с помощью специальной аппаратуры. Стоимость такой аппаратуры значительна, но доступна для мафии, крупных компаний и правительств. Ключи длиной 64 бита в настоящий момент, возможно, могут быть вскрыты крупными государствами и уже в ближайшие несколько лет будут доступны для вскрытия преступными организацими, крупными компаниями и небольшими государствами. Ключи длиной 80 бит могут в будущем стать уязвимыми. Ключи длиной 128 бит вероятно останутся недоступными для вскрытия методом грубой силы в обозримом будущем. Можно использовать и более длинные ключи. В пределе нетрудно добиться того, чтобы энергия, требуемая для вскрытия (считая, что на один шаг затрачивается минимальный квантовомеханический квант энергии) превзойдет массу солнца или вселенной.

Однако, длина ключа это еще не все. Многие шифры можно вскрыть и не перебирая всех возможных комбинаций. Вообще говоря, очень трудно придумать шифр, который нельзя было бы вскрыть другим более эффективным способом. Разработка собственных шифров может стать приятным занятием, но для реальных приложений использовать самодельные шифры не рекомендуется если вы не являетесь экспертом и не уверены на 100 процентов в том, что делаете.

Вообще говоря, следует держаться в стороне от неопубликованных или секретных алгоритмов. Часто разработчик такого алгоритма не уверен в его надежности, или же надежность зависит от секретности самого алгоритма. Вообще говоря, ни один алгоритм, секретность которого зависит от секретности самого алгоритма не явяется надежным. В частности, имея шифрующую программу, можно нанять прграммиста, который дизассемблирует ее и восстановит алгоритм методом обратной инженерии. Опыт показывает, что большинство секретных алгоритмов, ставших впоследствии достоянием общественности, оказались до смешного ненадежными.

Длины ключей, используемых в криптографии с открытым ключом обычно значительно больше, чем в симметричных алгоритмах. Здесь проблема заключается не в подборе ключа, а в воссоздании секретного ключа по открытому. В случае RSA проблема эквивалентна разложению на множители большого целого числа, которое является произведением пары неизвестных простых чисел. В случае некоторых других криптосистем, проблема эквивалентна вычислению дискретного логарифма по модулю большого целого числа (такая задача считается примерно аналогичной по трудности задаче разложения на множители). Имеются криптосистемы, которые используют другие проблемы.

Чтобы дать представление о степени сложности вскрытия RSA, скажем, что модули длиной 256 бит легко факторизуются обычными программистами. Ключи в 384 бита могут быть вскрыты исследовательской группой университета или компании. 512-битные ключи находятся в пределах досягаемости крупных государств. Ключи длиной в 768 бит вероятно не будут надежны продолжительное время. Ключи длиной в 1024 бит могут считаться безопасными до тех пор, пока не будет существенного прогресса в алгоритме факторизации; ключи длиной в 2048 большинство считает надежными на десятилетия. Более подробную информацию о длинах ключей RSA можно почерпнуть из статьи Брюса Шнайера (Bruce Scheier).

Важно подчеркнуть, что степень надежности криптографической системы определяется ее слабейшим звеном . Нельзя упускать из вида ни одного аспекта разработки системы --- от выбора алгоритма до политики использования и распространения ключей.

Криптоанализ и атаки на криптосистемы

Криптоанализ - это наука о дешифровке закодированных сообщений не зная ключей. Имеется много криптоаналитических подходов. Некоторые из наиболее важных для разработчиков приведены ниже.
  • Атака со знанием лишь шифрованного текста (ciphertext-only attack ): Это ситуация, когда атакующий не знает ничего о содержании сообщения, и ему приходтся работать лишь с самим шифрованным текстом. На практике, часто можно сделать правдоподобные предположения о структуре текста, поскольку многие сообщения имеют стандартные заголовки. Даже обычные письма и документы начинаются с легко предсказумой информации. Также часто можно предположить, что некоторый блок информации содержит заданное слово.
  • Атака со знанием содержимого шифровки (known-plaintext attack ): Атакующий знает или может угадать содержимое всего или части зашифрованного текста. Задача заключается в расшифровке остального сообщения. Это можно сделать либо путем вычисления ключа шифровки, либо минуя это.
  • Атака с заданным текстом (chosen-plaintext attack ): Атакующий имеет возможнот получить шифрованный документ для любого нужного ему текста, но не знает ключа. Задачей является нахождение ключа. Некоторые методы шифрования и, в частности, RSA, весьма уязвимы для атак этого типа. При использовании таких алгоритмов надо тщательно следить, чтобы атакующий не мог зашифровать заданный им текст.
  • Атака с подставкой (Man-in-the-middle attack ): Атака направлена на обмен шифрованными сообщениями и, в особенности, на протокол обмена ключами. Идея заключается в том, что когда две стороны обмениваются ключами для секретной коммуникации (например, используя шифр Диффи-Хелмана, Diffie-Hellman), противник внедряется между ними на линии обмена сообщениями. Далее противник выдает каждой стороне свои ключи. В результате, каждая из сторон будет иметь разные ключи, каждый из которых известен противнику. Теперь противник будет расшифровывать каждое сообщение своим ключом и затем зашифровывать его с помощью другого ключа перед отправкой адресату. Стороны будут иметь иллюзию секретной переписки, в то время как на самом деле противник читает все сообщения.

    Одним из способов предотвратить такой тип атак заключается в том, что стороны при обмене ключами вычисляют криптографическую хэш-функцию значения протокола обмена (или по меньшей мере значения ключей), подписывают ее алгоритмом цифровой подписи и посылают подпись другой стороне. Получатель проверит подпись и то, что значение хэш-функции совпадает с вычисленным значением. Такой метод используется, в частности, в системе Фотурис (Photuris).

  • Атака с помощью таймера (timing attack ): Этот новый тип атак основан на последовательном измерении времен, затрачиваемых на выполнение операции возведения в стенень по модулю целого числа. Ей подвержены по крайней мере следующие шифры: RSA, Диффи-Хеллман и метод эллиптических кривых. Дополнительную информацию смотрите в оригинальной статье и во множестве последовавших статей.
Имеется множество других криптографических атак и криптоаналитических подходов. Однако приведенные выше являются, по-видимому, наиболее важными для практической разработки систем. Если кто-либо собирается создавать свой алгоритм шифрования, ему необходимо понимать данные вопросы значительно глубже. Одно из мест, где можно начать систематическое изучение информации --- это замечательная книга Брюса Шнейера "Прикладная криптография" (Bruce Schneier, Applied Cryptography).

Disclaimer. Все приведенные здесь мнения и выводы являются субъективной точкой зрения автора, и автор не может нести ответственность за их ильность.

  • Предисловие
  • Базовая терминология
  • Основные алгоритмы шифрования
  • Цифровые подписи
  • Криптографические хэш-функции

Предисловие

Разные люди понимают под шифрованием разные вещи. Дети играют в игрушечные шифры и секретные языки. Это, однако, не имеет ничего общего с настоящей криптографией. Настоящая криптография (strong cryptography ) должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями --- такими как мафия, транснациональные корпорации и крупные государства. Настоящая криптография в прошлом использовалась лишь в военных целях. Однако сейчас, с становлением информационного общества, она становится центральным инструментом для обеспечения конфиденциальности.

По мере образования информационного общества, крупным государствам становятся доступны технологические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и бесчисленное множество других важных вещей.

Криптография не является более придумкой военных, с которой не стоит связываться. Настала пора снять с криптографии покровы таинственности и использовать все ее возможности на пользу современному обществу. Широкое распространение криптографии является одним из немногих способов защитить человека от ситуации, когда он вдруг обнаруживает, что живет в тоталитарном государстве, которое может контролировать каждый его шаг.

Базовая терминология

Представьте, что вам надо отправить сообщение адресату. Вы хотите, чтобы никто кроме адресата не смог прочитать отправленную информацию. Однако всегда есть вероятность, что кто-либо вскроет конверт или перехватит электронное послание.

В криптографической терминологии исходное послание именуют открытым текстом (plaintext или cleartext ). Изменение исходного текста так, чтобы скрыть от прочих его содержание, называют шифрованием (encryption ). Зашифрованное сообщение называют шифротекстом (ciphertext ). Процесс, при котором из шифротекста извлекается открытый текст называют дешифровкой (decryption ). Обычно в процессе шифровки и дешифровки используется некий ключ (key ) и алгоритм обеспечивает, что дешифрование можно сделать лишь зная этот ключ.

Криптография --- это наука о том, как обеспечить секретность сообщения. Криптоанализ --- это наука о том, как вскрыть шифрованное сообщение, то есть как извлечь открытый текст не зная ключа. Криптографией занимаются криптографы , а криптоанализом занимаются криптоаналитики .

Криптография покрывает все практические аспекты секретного обмена сообщениями, включая аутенфикацию, цифровые подписи, электронные деньги и многое другое. Криптология --- это раздел математики, изучающий математические основы криптографических методов.

Основные алгоритмы шифрования

Метод шифровки/дешифровки называют шифром (cipher ). Некоторые алгоритмы шифрования основаны на том, что сам метод шифрования (алгоритм) является секретным. Ныне такие методы представляют лишь исторический интерес и не имеют практического значения. Все современные алгоритмы используют ключ для управления шифровкой и дешифровкой; сообщение может быть успешно дешифровано только если известен ключ. Ключ, используемый для дешифровки может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (или алгоритмы секретным ключом) и асиметричные (или алгоритмы с открытым ключом). Разница в том, что симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования (или же ключ для дешифровки просто вычисляется по ключу шифровки). В то время как асимметричные алгоритмы используют разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Смметричные алгоритмы подразделяют на потоковые шифры и блочные шифры . Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором бит данных (обычно размер блока составляет 64 бита) и шифруют этот набор как единое целое. Начальное представление о них можно получить в статье об алгоритмах.

Ассиметричные шифры (также именуемые алгоритмами с открытым ключом, или --- в более общем плане --- криптографией с открытым ключом) допускают, чтобы открытый ключ был доступн всем (скажем, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только нужный человек (тот, кто владеет ключом дешифровки). Ключ для шифрования называют открытым ключом , а ключ для дешифрования --- закрытым ключом или секретным ключом .

Современные алгоритмы шифровки/дешифровки достаточно сложны и их невозможно проводить вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Вообще говоря, симметричные алгоритмы работают быстрее, чем ассиметричные. На практке оба типа алгоритмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко - в книжном магазине, библиотеке, патентном бюро или в Интернет. К широко известным симметричным алгоритмам относятся DES и IDEA, Наверное самым лучшим асимметричным алгоритмом является RSA. На страничке литературы приведен список хороших учебников по криптографии и смежным вопросам.

Цифровые подписи

Некоторые из асимметричных алгоритмов могут использоваться для генерирования цифровой подписи . Цифровой подписью называют блок данных, сгенерированный с использованием некоторого секретного ключа. При этом с помощью открытого ключа можно проверить, что данные были действительно сгенерированы с помощью этого секретного ключа. Алгоритм генерации цифровой подписи должен обеспечивать, чтобы было невозможно без секретного ключа создать подпись, которая при проверке окажется правильной.

Цифровые подписи используются для того, чтобы подтвердить, что сообщение пришло действительно от данного отправителя (в предположении, что лишь отправитель обладает секретным ключом, соответствующим его открытому ключу). Также подписи используются для проставления штампа времени (timestamp ) на документах: сторона, которой мы доверяем, подписывает документ со штампом времени с помошью своего секретного ключа и, таким образом, подтверждает, что документ уже существовал в момент, объявленный в штампе времени.

Цифровые подписи также можно использовать для удостоверения (сертификации --- to certify ) того, что документ принадлежит определенному лицу. Это делается так: открытый ключ и информация о том, кому он принадлежит подписываются стороной, которой доверяем. При этом доверять подписывающей стороне мы можем на основании того, что ее ключ был подписан третьей стороной. Таким образом возникает иерархия доверия. Очевидно, что некоторый ключ должен быть корнем иерархии (то есть ему мы доверяем не потому, что он кем-то подписан, а потому, что мы верим a-priori, что ему можно доверять). В централизованной инфраструктуре ключей имеется очень небольшое количество корневых ключей сети (например, облеченные полномочиями государственные агенства; их также называют сертификационными агенствами --- certification authorities ). В распределенной инфраструктуре нет необходимости иметь универсальные для всех корневые ключи, и каждая из сторон может доверять своему набору корневых ключей (скажем своему собственному ключу и ключам, ею подписанным). Эта концепция носит название сети доверия (web of trust ) и реализована, например, в PGP.

Цифровая подпись документа обычно создается так: из документа генерируется так называемый дайджест (message digest ) и к нему добавляется информация о том, кто подписывает документ, штамп времени и прочее. Получившаяся строка далее зашифровывается секретным ключом подписывающего с использованием того или иного алгоритма. Получившийся зашифрованный набор бит и представляет собой подпись. К подписи обычно прикладывается открытый ключ подписывающего. Получатель сначала решает для себя доверяет ли он тому, что открытый ключ принадлежит именно тому, кому должен принадлежать (с помощью сети доверия или априорного знания), и затем дешифрует подпись с помощью открытого ключа. Если подпись нормально дешифровалась, и ее содержимое соответствует документу (дайджест и др.), то сообщение считается подтвержденным.

Свободно доступны несколько методов создания и проверки цифровых подписей. Наиболее известным является алгоритм RSA.

Криптографические хэш-функции

Криптографические хэш-функции используются обычно для генерации дайджеста сообщения при создании цифровой подписи. Хэш-функции отображают сообщение в имеющее фиксированный размер хэш-значение (hash value ) таким образом, что все множество возможных сообщений распределяется равномерно по множеству хэш-значений. При этом криптографическая хэш-функция делает это таким образом, что практически невозможно подогнать документ к заданному хэш-значению.

Криптографические хэш-функции обычно производят значения длиной в 128 и более бит. Это число значительно больше, чем количество собщений, которые когда-либо будут существовать в мире.

Много хороших криптографических хэш-функций доступно бесплатно. Широко известные включают MD5 и SHA.

Криптографические генераторы случайных чисел

Криптографические генераторы случайных чисел производят случайные числа, которые используются в криптографических приложениях, например - для генерации ключей. Обычные генераторы случайных чисел, имеющиеся во многих языках программирования и программных средах, не подходят для нужд криптографии (они создавались с целью получить статистически случайное распределение, криптоаналитики могут предсказать поведение таких случайных генераторов).

В идеале случайные числа должны основываться на настоящем физическом источнике случайной информации, которую невозможно предсказать. Примеры таких источников включают шумящие полупроводниковые приборы, младшие биты оцифрованного звука, интервалы между прерываниями устройств или нажатиями клавиш. Полученный от физического источника шум затем "дистиллируется" криптографической хэш-функцией так, чтобы каждый бит зависел от каждого бита. Достаточно часто для хранения случайной информации используется довольно большой пул (несколько тысяч бит) и каждый бит пула делается зависимым от каждого бита шумовой информаци и каждого другого бита пула криптографически надежным (strong ) способом.

Когда нет настоящего физического источника шума, приходится пользоваться псевдослучайными числами. Такая ситуация нежелательна, но часто возникает на компьютерах общего назначения. Всегда желательно получить некий шум окружения --- скажем от величины задержек в устройствах, цифры статистики использования ресурсов, сетевой статистики, прерываний от клавиатуры или чего-то иного. Задачей является получить данные, непредсказуемые для внешнего наблюдателя. Для достижения этого случайный пул должен содержать как минимум 128 бит настоящей энтропии.

Криптографические генераторы псевдослучайных чисел обычно используют большой пул (seed-значение), содержащий случайную информацию. Биты генерируется путем выборки из пула с возможным прогоном через криптографическую хэш-функцию, чтобы спрятать содержимое пула от внешнего наблюдателя. Когда требуется новая порция бит, пул перемешивается путем шифровки со случайным ключом (его можно взять из неиспользованной пока части пула) так, чтобы каждый бит пула зависел от каждого другого бита. Новый шум окружения должен добавляться к пулу перед перемешиваниям, дабы сделать предсказание новых значений пула еще более сложным.

Несмотря на то, что при аккуратном проектировании криптографически надежный генератор случайных чисел реализовать не так уж и трудно, этот вопрос часто упускают из вида. Таким образом, следует подчеркнуть важность криптографического генератора случайных чисел --- если он сделан плохо, он может легко стать самым уязвимым элементом системы.

Доступны несколько примеров криптографических генераторов случайных чисел.

Обеспечиваемая шифром степень защиты

Хорошие криптографические системы создаются таким образом, чтобы сделать их вскрытие как можно более трудным делом. Можно построить системы, которые на практике невозможно вскрыть (хотя доказать сей факт обычно нельзя). При этом не требуется очень больших усилий для реализации. Единственное, что требуется --- это аккуратность и базовые знания. Нет прощения разработчику, если он оставил возможность для вскрытия системы. Все механизмы, которые могут использоваться для взлома системы надо задокументировать и довести до сведения конечных пользователей.

Теоретически, любой шифровальный алгоритм с использованием ключа может быть вскрыт методом перебора всех значений ключа. Если ключ подбирается методом грубой силы (brute force ), требуемая мощность компьютера растет экспоненциально с увеличением длины ключа. Ключ длиной в 32 бита требует 2^32 (около 10^9) шагов. Такая задача под силу любому дилетанту и решается на домашнем компьютере. Системы с 40-битным ключом (например, экспортный американский вариант алгоритма RC4) требуют 2^40 шагов --- такие компьютерные мощности имеются в большинстве университетов и даже в небольших компаниях. Системы с 56-битными ключами (DES) требуют для вскрытия заметных усилий, однако могут быть легко вскрыты с помощью специальной аппаратуры. Стоимость такой аппаратуры значительна, но доступна для мафии, крупных компаний и правительств. Ключи длиной 64 бита в настоящий момент, возможно, могут быть вскрыты крупными государствами и уже в ближайшие несколько лет будут доступны для вскрытия преступными организацими, крупными компаниями и небольшими государствами. Ключи длиной 80 бит могут в будущем стать уязвимыми. Ключи длиной 128 бит вероятно останутся недоступными для вскрытия методом грубой силы в обозримом будущем. Можно использовать и более длинные ключи. В пределе нетрудно добиться того, чтобы энергия, требуемая для вскрытия (считая, что на один шаг затрачивается минимальный квантовомеханический квант энергии) превзойдет массу солнца или вселенной.

Однако, длина ключа это еще не все. Многие шифры можно вскрыть и не перебирая всех возможных комбинаций. Вообще говоря, очень трудно придумать шифр, который нельзя было бы вскрыть другим более эффективным способом. Разработка собственных шифров может стать приятным занятием, но для реальных приложений использовать самодельные шифры не рекомендуется если вы не являетесь экспертом и не уверены на 100 процентов в том, что делаете.

Вообще говоря, следует держаться в стороне от неопубликованных или секретных алгоритмов. Часто разработчик такого алгоритма не уверен в его надежности, или же надежность зависит от секретности самого алгоритма. Вообще говоря, ни один алгоритм, секретность которого зависит от секретности самого алгоритма не явяется надежным. В частности, имея шифрующую программу, можно нанять прграммиста, который дизассемблирует ее и восстановит алгоритм методом обратной инженерии. Опыт показывает, что большинство секретных алгоритмов, ставших впоследствии достоянием общественности, оказались до смешного ненадежными.

Длины ключей, используемых в криптографии с открытым ключом обычно значительно больше, чем в симметричных алгоритмах. Здесь проблема заключается не в подборе ключа, а в воссоздании секретного ключа по открытому. В случае RSA проблема эквивалентна разложению на множители большого целого числа, которое является произведением пары неизвестных простых чисел. В случае некоторых других криптосистем, проблема эквивалентна вычислению дискретного логарифма по модулю большого целого числа (такая задача считается примерно аналогичной по трудности задаче разложения на множители). Имеются криптосистемы, которые используют другие проблемы.

Чтобы дать представление о степени сложности вскрытия RSA, скажем, что модули длиной 256 бит легко факторизуются обычными программистами. Ключи в 384 бита могут быть вскрыты исследовательской группой университета или компании. 512-битные ключи находятся в пределах досягаемости крупных государств. Ключи длиной в 768 бит вероятно не будут надежны продолжительное время. Ключи длиной в 1024 бит могут считаться безопасными до тех пор, пока не будет существенного прогресса в алгоритме факторизации; ключи длиной в 2048 большинство считает надежными на десятилетия. Более подробную информацию о длинах ключей RSA можно почерпнуть из статьи Брюса Шнайера (Bruce Scheier).

Важно подчеркнуть, что степень надежности криптографической системы определяется ее слабейшим звеном . Нельзя упускать из вида ни одного аспекта разработки системы --- от выбора алгоритма до политики использования и распространения ключей.

Криптоанализ и атаки на криптосистемы

Криптоанализ - это наука о дешифровке закодированных сообщений не зная ключей. Имеется много криптоаналитических подходов. Некоторые из наиболее важных для разработчиков приведены ниже.

  • Атака со знанием лишь шифрованного текста (ciphertext-only attack ): Это ситуация, когда атакующий не знает ничего о содержании сообщения, и ему приходтся работать лишь с самим шифрованным текстом. На практике, часто можно сделать правдоподобные предположения о структуре текста, поскольку многие сообщения имеют стандартные заголовки. Даже обычные письма и документы начинаются с легко предсказумой информации. Также часто можно предположить, что некоторый блок информации содержит заданное слово.
  • Атака со знанием содержимого шифровки (known-plaintext attack ): Атакующий знает или может угадать содержимое всего или части зашифрованного текста. Задача заключается в расшифровке остального сообщения. Это можно сделать либо путем вычисления ключа шифровки, либо минуя это.
  • Атака с заданным текстом (chosen-plaintext attack ): Атакующий имеет возможнот получить шифрованный документ для любого нужного ему текста, но не знает ключа. Задачей является нахождение ключа. Некоторые методы шифрования и, в частности, RSA, весьма уязвимы для атак этого типа. При использовании таких алгоритмов надо тщательно следить, чтобы атакующий не мог зашифровать заданный им текст.
  • Атака с подставкой (Man-in-the-middle attack ): Атака направлена на обмен шифрованными сообщениями и, в особенности, на протокол обмена ключами. Идея заключается в том, что когда две стороны обмениваются ключами для секретной коммуникации (например, используя шифр Диффи-Хелмана, Diffie-Hellman), противник внедряется между ними на линии обмена сообщениями. Далее противник выдает каждой стороне свои ключи. В результате, каждая из сторон будет иметь разные ключи, каждый из которых известен противнику. Теперь противник будет расшифровывать каждое сообщение своим ключом и затем зашифровывать его с помощью другого ключа перед отправкой адресату. Стороны будут иметь иллюзию секретной переписки, в то время как на самом деле противник читает все сообщения.

Одним из способов предотвратить такой тип атак заключается в том, что стороны при обмене ключами вычисляют криптографическую хэш-функцию значения протокола обмена (или по меньшей мере значения ключей), подписывают ее алгоритмом цифровой подписи и посылают подпись другой стороне. Получатель проверит подпись и то, что значение хэш-функции совпадает с вычисленным значением. Такой метод используется, в частности, в системе Фотурис (Photuris).

    Атака с помощью таймера (timing attack ): Этот новый тип атак основан на последовательном измерении времен, затрачиваемых на выполнение операции возведения в стенень по модулю целого числа. Ей подвержены по крайней мере следующие шифры: RSA, Диффи-Хеллман и метод эллиптических кривых. В статье Пола Кочера подробно рассмотрен этот метод.

Имеется множество других криптографических атак и криптоаналитических подходов. Однако приведенные выше являются, по-видимому, наиболее важными для практической разработки систем. Если кто-либо собирается создавать свой алгоритм шифрования, ему необходимо понимать данные вопросы значительно глубже. Одно из мест, где можно начать систематическое изучение информации --- это замечательная книга Брюса Шнейера "Прикладная криптография" (Bruce Schneier, Applied Cryptography).

Перевод статьи Tatu Ylonen "Introduction to Cryptography"

Обычная криптография

В традиционной криптографии, также называемой шифрованием тайным , или симметричным , ключом, один и тот же ключ используется как для зашифрования, так и для расшифрования данных. Data Encryption Standart (DES) - пример симметричного алгоритма, широко применявшегося на Западе с 70-х годов в банковской и коммерческой сферах. В настоящее время его сменяет Advanced Encryption Standard (AES). Рисунок 2 иллюстрирует процесс симметричного шифрования.

Из книги Секреты и ложь. Безопасность данных в цифровом мире автора Шнайер Брюс

Глава 6 Криптография Криптография весьма загадочна. С одной стороны – это набор сложных математических выражений. Шифровальщики вечно изобретают сложные математические преобразования, а им вечно противостоят криптоаналитики, находя все более оригинальные способы

Из книги Журнал «Компьютерра» N 31 от 29 августа 2006 года автора Журнал «Компьютерра»

Глава 7 Криптография в контексте Если криптография так надежна, то почему же происходят сбои в системах защиты? Почему существуют электронные кражи, мошенничество, нарушения конфиденциальности и все прочие проблемы безопасности, которые обсуждались в предыдущих главах?

Из книги Криптоанархия, кибергосударства и пиратские утопии автора Ладлоу Питер

Наука: Эллиптическая криптография Автор: Сергей Николенко But the security of cryptosystems based on elliptic curves is not well understood, due in large part to the abstruse nature of elliptic curves. Few cryptographers understand elliptic curves, so there is not the same widespread understanding and consensus concerning the security of elliptic curves that RSA enjoys. Over time, this may change, but for now trying to get an evaluation of the

Из книги Разработка приложений в среде Linux. Второе издание автора Джонсон Майкл К.

Криптоанархия и виртуальные сообщества Современная криптография Тимоти Мэй За два прошедших десятилетия в криптографии (сокращенно крип-то), науке создания шифров и кодов, произошла революция. Помимо обычных шифров, полезных, главным образом, для сохранения

Из книги PGP: Кодирование и шифрование информации с открытым ключом. автора Левин Максим

Из книги Защита от хакеров корпоративных сетей автора Автор неизвестен

Как работает криптография открытого ключа. В системах с открытым ключом каждый человек имеет два ключа, взаимно дополняющих друг друга; один является открытым ключом, а другой закрытым.Открытый ключ может и должен быть свободно доступным, так как он является именно тем

Из книги Введение в криптографию автора Циммерманн Филипп

Глава 6 Криптография В этой главе обсуждаются следующие темы: Концепции криптографии Стандарты алгоритмов шифрования «Грубая сила» Неверное использование алгоритмов шифрования Любительская криптография · Резюме · Конспект · Часто задаваемые вопросы

Из книги Реконизм. Как информационные технологии делают репутацию сильнее власти, а открытость - безопаснее приватности автора Сименко Илья Александрович

Любительская криптография Если данные не защищены современным криптографическим алгоритмом, ранее рассмотренным в этой главе или ему аналогичным, то скорее всего данные в опасности. В этой секции будет показано, как простые методы шифрования могут быть взломаны в

Из книги Анонимность и безопасность в Интернете. От «чайника» к пользователю автора Колисниченко Денис Николаевич

Что такое криптография Криптография- это наука об использовании математики для зашифрования и расшифрования данных. Криптография позволяет хранить важную информацию или передавать её по ненадёжным каналам связи (таким как Интернет) так, что она не может быть прочитана

Из книги Криптография и свобода автора Масленников Михаил

Стойкая криптография «В мире различают два типа критографии: криптография, которая помешает вашей младшей сестре читать ваши файлы, и криптография, которая помешает читать ваши файлы правительствам могучих держав. Эта книга посвящена криптографии второго типа» - Брюс

Из книги автора

Как действует криптография Криптографический алгоритм, или шифр, - это математическая формула, описывающая процессы зашифрования и расшифрования. Чтобы зашифровать открытый текст, криптоалгоритм работает в сочетании с ключом- словом, числом или фразой. Одно и то же

Из книги автора

Криптография с открытым ключом Проблема управления ключами была решена криптографией с открытым, или асимметричным, ключом, концепция которой была предложена Уитфилдом Диффи и Мартином Хеллманом в 1975 году.Криптография с открытым ключом - это асимметричная схема, в

Из книги автора

Из книги автора

5.1.3. Способ 3: криптография с открытым ключом Если первые два способа практически не требовали во что-либо вникать: указал параметры прокси-сервера, изменил настройки почтовой программы, и на этом все, то здесь начинается высшая математика. Еще бы – сейчас мы рассмотрим

Из книги автора

5.4. Криптография с открытым ключом на практике Настало время реализовать теорию, изложенную ранее, на практике. Первым делом вам нужно сгенерировать пару ключей. В каждом почтовом клиенте это действие осуществляется по-разному (а в некоторых вообще нет поддержки

Из книги автора

Глава 8. Криптография Слово «криптография» впервые было произнесено перед нами только на 2 курсе. До этого – ни-ни, никаких упоминаний о будущей специальности. Полная секретность, все в точности так, как завещал товарищ Сталин: никому ни слова, ни жена, ни мать, ни отец –

Исторический процесс развития средств и методов защиты информации выработал три основных способа защиты.

Первый способ защиты информации – физическая защита от противника материального носителя информации (пергамента, бумаги, магнитной ленты и т.д.), например, передача информации специальным курьером с охраной, перстень с контейнером для тайного послания и т.п.

Второй способ защиты информации – стеганография. Применение стеганографии обеспечивает сокрытие от противника самого факта передачи информации. Стеганографическая защита информации обеспечивается различными способами, например:

Использованием «невидимых» носителей информации (микропленок);

Применением симпатических чернил, которые становятся видимыми при соответствующей химической обработки носителя информации;

Маскированием секретной информации обычным посланием и т.д.

В современной стеганографии имеется достаточно широкий спектр методов защиты информации .

Третий, наиболее надежный и распространенный способ защиты информации – криптографический. Именно криптографическим методам защиты информации и посвящено данное учебное пособие.

1.1. Основные понятия и определения криптографии

Рассмотрим основные понятия, принятые в криптографии , и вначале определим, что такое криптография.

Криптография - это раздел прикладной математики (криптологии), изучающий модели, методы, алгоритмы, программные и аппаратные средства преобразования информации (шифрования) в целях сокрытия ее содержания, предотвращения видоизменения или несанкционированного использования. На решение взаимообратных задач нацелен криптоанализ. Криптоанализ - это раздел прикладной математики (криптологии), изучающий модели, методы, алгоритмы, программные и аппаратные средства анализа криптосистем или их входных и выходных сигналов с целью извлечения конфиденциальных параметров, включая открытый текст. Таким образом, криптография и криптоанализ составляют единое целое и образуют науку - криптологию , которая с самого начала развивалась как двуединая наука.

Исторически центральным понятием криптографии является понятие шифра. Шифром называется совокупность обратимых криптографических преобразований множества открытых текстов на множество зашифрованных текстов, проводимых с целью их защиты. Конкретный вид криптографического преобразования открытого текста определяется с помощью ключа шифрования. Открытым текстом называют исходное сообщение, которое подлежит зашифрованию. Под зашифрованием понимается процесс применения обратимого криптографического преобразования к открытому тексту, а результат этого преобразования называется шифртекстом или криптограммой . Соответственно, процесс обратного криптографического преобразования криптограммы в открытый текст называется расшифрованием .



Расшифрование нельзя путать с дешифрованием. Дешифрование (дешифровка , взлом ) - процесс извлечения открытого текста без знания криптографического ключа на основе перехваченных криптограмм. Таким образом, расшифрование проводится законным пользователем, знающим ключ шифра, а дешифрование - криптоаналитиком.

Криптографическая система - семейство преобразований шифра и совокупность ключей. Само по себе описание криптографического алгоритма не является криптосистемой. Только дополненное схемами распределения и управления ключами оно становится системой.

Классификация криптосистем представлена на рис. 1.1.

Рис. 1.1. Классификация криптосистем

Более полная классификация криптосистем приведена, например в .

Симметричные криптосистемы (криптосистемы с секретным ключом ) построены на принципе сохранения в тайне ключа шифрования. На рис. 1.2 представлена упрощенная структурная схема симметричной криптосистемы. Перед использованием симметричной криптосистемы пользователи должны получить общий секретный ключ и исключить доступ к нему злоумышленника. Открытое сообщение подвергается криптографическому преобразованию и полученная криптограмма по открытому каналу связи передается получателю, где осуществляется обратное преобразование с целью выделения исходного открытого сообщения .

Рис. 1.2. Упрощенная структурная схема симметричной криптосистемы

Симметричные криптосистемы классифицируются по различным признакам : по виду криптографического преобразования; по конструктивным принципам; по виду защищаемой информации; по криптографической стойкости и т.д. Чаще всего используются первые два признака классификации. В связи с этим множество симметричных криптосистем делится:

По виду криптографического преобразования – на шифры перестановки, шифры замены и композиционные шифры;

По конструктивным принципам – на поточные криптосистемы и блочные криптосистемы.

Под шифром перестановки понимается переупорядочение букв исходного сообщения, в результате которого он становиться нечитаемым. Под шифром замены понимается преобразование, которое заключается в замене букв исходного сообщения на другие буквы по более или менее сложному правилу. Композиционные шифры строятся на основе шифров замены и перестановки. Блочные симметричные криптосистемы (БСК) представляют собой семейство обратимых криптографических преобразований блоков исходного сообщения. Поточные криптосистемы (ПСК) преобразуют посимвольно исходное сообщение в криптограмму.

Отличительной особенностьюасимметричных криптосистем (криптосистем с открытым ключом ) является то, что для зашифрования и расшифрования информации используются разные ключи. На рис. 1.3 представлена упрощенная структурная схема асимметричной криптосистемы. Криптосистема с открытым ключом определяется тремя алгоритмами: генерации ключей, шифрования и расшифрования. Алгоритм генерации ключей позволяет получить пару ключей , причем . Один из ключей публикуется, он называется открытым , а второй , называется закрытым (или секретным) и храниться в тайне. Алгоритмы шифрования и расшифрования таковы, что для любого открытого текста выполняется равенство .

Рис. 1.3. Упрощенная структурная схема асимметричной криптосистемы

1.2. Из истории криптографии

По мнению ряда специалистов, криптография по возрасту – ровесник египетских пирамид. В документах древних цивилизаций (Индии, Египта, Месопотамии) есть сведения о системах и способах составления шифрованных писем.

В криптографии с древних времен использовались два вида шифров: замены (подстановки) и перестановки. Историческим примером шифра замены является шифр Цезаря (I век до н.э.), описанный историком Древнего Рима Светонием. Гай Юлий Цезарь использовал в своей переписке шифр собственного изобретения. Применительно к русскому языку он состоит в следующем. Выписывается алфавит, а затем под ним выписывается тот же алфавит, но с циклическим сдвигом на три буквы влево:

А Б В Г Д Е Э Ю Я
Г Д Е Ё Ж З А Б В

Зашифрование заключается в выборе буквы из первой строки и замену ее на букву второй строки, расшифрование представляет собой обратную операцию. Например, РИМ – УЛП. Ключом шифра Цезаря является величина циклического сдвига. Гай Юлий Цезарь всю жизнь использовал один и тот же ключ – сдвиг на 3 буквы. Приемник Юлия Цезаря – Цезарь Август использовал тот же шифр, но со сдвигом на одну букву. Светоний не приводит фактов дешифрования шифра Цезаря, однако в те времена, когда царила всеобщая неграмотность, даже обычное открытое послание могло остаться непрочитанным.

Одним из первых физических приборов, реализующих шифр перестановки является скитала . Он был изобретен в древней Спарте (V век до н.э.). Кроме Древней Греции прибор скитала использовался широко и в Древнем Риме. Скитала (в переводе - «жезл») представляет собой цилиндр заданного диаметра. На цилиндр наматывался ремень из пергамента, на который наносился текст сообщения вдоль оси цилиндра. Затем ремень сматывался и отправлялся получателю сообщения. Последний, имея аналогичный цилиндр, расшифровывал сообщение. Ключом шифра является диаметр скитала. Изобретение дешифровального устройства приписывается Аристотелю. Он предложил использовать для дешифрования конусообразное «копье», на которое наматывался перехваченный ремень, до тех пор, пока не появлялся осмысленный текст.

Одним из первых исторических имен, которое упоминается в связи с криптографией, это имя Энея - легендарного полководца, защитника Трои. В области тайнописи Энею принадлежат два изобретения. Первое из них – так называемый диск Энея . Его принцип прост. На диске размером 10-15 см и толщиной 1-2 см высверливались отверстия по числу букв алфавита. В центре диска закреплена катушка с нитью. При зашифровании нитка последовательно протягивалась через отверстия соответствующие буквам послания. Диск отсылался получателю, который вытягивал нитку из отверстий и получал сообщение в обратном порядке. Другим устройством является линейка Энея . Здесь вместо диска использовалась линейка с числом отверстий, равным числу букв в алфавите. Буквы по отверстиям располагались в произвольном порядке. К линейке прикреплялась катушка с нитью. При шифровании нить протягивалась через отверстие, соответствующее букве шифруемого послания, при этом на нити в месте прохождения отверстия завязывался узелок. Таким образом, зашифрованное послание представляло собой нить с узелками, в которой каждой букве ставилось в соответствие расстояние между узелками нити. Ключом шифра являлся порядок следования букв по отверстиям линейки. Аналогичное линейке Энея кипу (узелковое письмо) получило широкое распространение у индейцев Центральной Америки.

Еще оно изобретение древних греков – квадрат Полибия (Полибий – греческий государственный деятель, полководец, историк III века до н.э):

A B C D E
A A B C D E
B F G H I,J K
C L M N O P
D Q R S T U
E V W X Y Z

Применительно к современному латинскому алфавиту шифрование по этому квадрату заключалось в следующем. Шифруемая буква заменялась на координаты квадрата, в котором она записана. Так буква R заменяется на DB. При расшифровании каждая пара букв определяет соответствующую букву сообщения. Например, TABLE – DDAAABCAAE. Ключом этого шифра является сам квадрат. Усложненный вариант квадрата Полибия заключается в произвольном порядке записи букв в квадрате. При этом для запоминания такого произвольного порядка использовался лозунг, который представлял собой слово, записываемое без повтора букв в квадрат, а оставшиеся клетки квадрата заполнялись по порядку их следования остальными буквами алфавита. Например, THE APPLE соответствует THEAPL.

Интересно отметить, что в несколько измененном виде квадрат Полибия дошел до наших дней и получил название «тюремный шифр». Для его использования достаточно знать только естественный порядок букв в алфавите. Стороны квадрата обозначаются не буквами, а цифрами. Каждая цифра кодируется определенным количеством стуков. При передаче сообщения сначала «отстукивается» номер строки, а затем номер столбца. «Тюремный шифр» строго говоря, не является шифром, это способ кодировки сообщения с целью его приведения к виду удобному для передачи по каналу связи (тюремная стена).

Во времена средневековья европейская криптография приобрела сомнительную славу, отголоски которой слышаться и в наши дни. Дело в том, что криптографию стали отождествлять с черной магией, астрологией, алхимией, к шифрованию призывались мистические силы. Для шифрования сообщений рекомендовалось использовать «магические квадраты» . Магия этих квадратов заключалась в том, что сумма чисел по строкам, столбцам и полным диагоналям равнялась одному числу. Шифрование по «магическому квадрату» заключалось в следующем. Буквы сообщения вписывались в квадрат согласно записанным в них числам, а в пустые клетки вставлялись произвольные буквы. Шифртекст выписывался в оговоренном заранее порядке. Например, сообщение ПРИЕЗЖАЮ СЕГОДНЯ зашифрованное с помощь «магического квадрата»:

16У 13Д
10Е 11Г
12О
15Я 14Н

имеет вид УИРДЗЕГЮСЖАОЕЯНП. Данный шифр – обычный шифр перестановки, однако считалось, что особую стойкость ему придает волшебство «магического квадрата».

В XV веке аббат Тритемий сделал два новаторских предложения в области криптографии: он предложил шифр «Аве Мария» и шифр, основанный на периодически сдвигаемом ключе. Наиболее серьезное предложение Тритемия, дошедшее до наших дней, заключается в придуманной им таблице:

A B C D W X Y Z
B C D E X Y Z A
C D E F Y Z A B
Y Z A B U V W X
Z A B C V W X Y

Первая буква текста шифруется по первой строке, вторая буква по второй строке и так далее. Первая строка одновременно является строкой букв открытого текста. Например, FIGHT – FJIKX. В первоначальном варианте в шифре Тритемия отсутствовал ключ. Секретом являлся сам способ шифрования. Дальнейшее усложнение шифра шло двумя путями: введением произвольного порядка расположения букв в таблице; усложнением порядка выбора строк таблицы при шифровании. Следует сказать, что шифр Цезаря является частным случаем шифра Тритемия.

Шифр «Аве Мария» основан на принципе замены букв шифруемого текста на целые слова, из которых составлялись внешне невинные сообщения. Например, Н – «Я», «ЗДЕСЬ»; Е – «ЖДУ», «БУДУ»; Т – «ДОМА», «ВЕЧЕРОМ». Тогда открытому сообщению НЕТ могут соответствовать послания «Я ЖДУ ДОМА», «ЗДЕСЬ БУДУ ВЕЧЕРОМ».

В XVII веке английский философ и ученый лорд-канцлер Френсис Бэкон выдвинул главные требования к шифрам: «Они не должны поддаваться дешифрованию, не должны требовать много времени для написания и чтения, не должны возбуждать никаких подозрений». Эти требования актуальны и сегодня.

Широко использовали шифры и братства «вольных каменщиков» (масонов). Шифр «вольных каменщиков» является шифром замены и вопреки распространенному мнению не является стойким, но представляет определенный интерес. Шифрование заключается в замене букв открытого текста символами по правилу:

А: B: C: J. K. L. S T U
D: E: F: M. N. O. V W X
G: H: I: P. Q. R. Y Z

Например, APPLE соответствует криптограмме вида:

: . . . :

При походе на Россию Наполеон использовал шифр «вольных каменщиков» в низших звеньях своей связи, однако шифр достаточно быстро был раскрыт русскими дешифровальщиками.

В XVI веке итальянец Альберти впервые выдвинул идею двойного шифрования, т.е. текст после первого шифрования подвергался повторному шифрованию. Альберти также принадлежит шифр, который он называл «шифром, достойным королей». Реализация шифра осуществлялась с помощью шифровального диска. На внешний неподвижный диск наносились буквы и цифры под которыми располагались буквы и цифры внутреннего подвижного диска. Процесс шифрования прост – буквам и цифрам открытого текста ставились в соответствие буквы и цифры внутреннего диска. После зашифровывания слова послания внутренний диск сдвигался на один шаг. Начальное положение дисков заранее оговаривалось. Диск Альберти с незначительными изменениями использовался вплоть до начала XX века.

В XVI веке заметный вклад в развитие криптографии внесли Матео Ардженти, Жовани Батиста Белазо, Джовани Батиста Порта, Кордано и др. Матео Ардженти был криптографом папы римского, именно ему принадлежит идея использования слова-лозунга для придания алфавиту легко запоминаемого смешанного вида. Ардженти также предложил вставлять в шифртекст большое количество букв «пустышек», устранять пунктуацию, не вставлять в шифртекст открытые слова («клер»), заменять буквы шифртекста на цифры. Белазо и Порта развили идеи Ардженти в своих трудах «Шифр сеньора Белазо» и «О тайной переписке».

Существенный вклад в развитие криптографии внес математик, врач и философ Кордано. Предложенный им шифр вошел в историю под названием «решетка Кордано». «Решетка Кордано» - это шифр перестановки, суть которого заключается в следующем. Брался лист плотного материала (картон, пергамент), представляющий собой квадрат в котором вырезаны «окна». При шифровании квадрат накладывался на лист бумаги и сообщение вписывалось в «окна», затем квадрат поворачивался на 90 градусов и сообщение продолжали записывать в «окна» повернутого квадрата. Такая процедура продолжалась до полного поворота квадрата на 360 градусов. Главное требование «решетки Кордано» - при всех поворотах «окна» не должны попадать на дно и тоже место, а при полном повороте квадрата все места в шифртексте оказываются занятыми. Шифртекст считывался по строкам из полученной таблицы. Предложенный Кордано шифр лежит в основе знаменитого шифра Ришелье , в котором шифрованный текст внешне имел вид обычного послания. Накладывая на лист с таким посланием прямоугольник прорезанными с окнами можно было прочесть сообщение. Шифр Ришелье не относиться ни к шифрам замены, ни к шифрам перестановки, он представлял собой стеганографический способ защиты информации. Такого рода шифром пользовался русский писатель и государственный деятель А.С. Грибоедов будучи послом в Персии.

Кордано выдвинул, но не успел целиком реализовать идею «самоключа». Суть ее заключается в использовании в качестве ключа части открытого сообщения.

Познакомившись в трудами Тритемия, Белазо, Кордано и Альберти французский государственный деятель Блез де Виженер разработал собственный шифр, который получил название шифр Виженера . Суть шифра заключалась в том, что выбирался секретное слово, которое являлось ключом шифра. Это слово выписывалось под открытым сообщением периодически. Верхняя буква открытого текста соответствовала столбцу таблицы Тритемия, а нижняя буква ключа – строке таблицы Тритемия, буква, стоящая на пересечение строки и столбца являлась буквой шифртекста. Шифр Виженера представляет собой шифр замены. В последующем этот шифр был несколько упрощен для практического использования начальником первого в Германии государственного дешифровального отдела графом Гронсфельдом. Шифр Виженера и шифр Гронсфельда являются по сути дела родоначальниками широко используемого в настоящее время шифра гаммирования. Шифр Виженера использовался в различных вариантах вплоть до XIX века. Одним из наиболее известных модификаций шифра Виженера является шифр английского адмирала Бофора. Достоинство шифра Бофора заключается в том, что правило зашифрования сообщений и их расшифрования совпадают.

Широкое развитие криптографии в XVI веке было связано в развитие естественных наук, математики. В это же время в Европе появляются первые специальные органы дипломатической службы, которые занимались вопросами шифрования собственной корреспонденции и дешифрования перехваченной корреспонденции. XVII-XVIII века вошли в историю криптографии как эра «черных кабинетов». «Черные кабинеты» - специальный государственный орган по перехвату, перлюстрации и дешифрованию переписки, в первую очередь дипломатической. В штат «черных кабинетов» входили дешифровальщики, агенты по перехвату почты, писцы-копировальщики, переводчики, специалисты по подделке печатей, химики, специалисты по подделке почерков и т.д. Эти специалисты ценились весьма высоко и находились под особым покровительством властей, предательство очень сурово наказывалось.

В XIX веке появляются первые механические шифровальные устройства. Наиболее известными являются изобретения полковника американской армии Д. Уодсворта и английского инженера Ч. Уитстона. Устройство Уодсворта (1817 г.) представляло механический шифратор основными элементами которого были два шифровальных диска, на торце дного располагались буквы английского алфавита, а на торце второго буквы и цифры от 2 до 8. Литеры на втором диске били съемные, что позволяло менять алфавит шифрованного текста. Диски помещались в футляр с прорезанными в нем окнами. При вращении первого диска в верхнем окне выставлялась буква открытого сообщения. Диски были соединены шестеренчатой передачей, поэтому в нижнем окне появлялась соответствующая буква шифртекста. Устройство было снабжено специальной кнопкой для разъединения дисков. Это требовалось для того, чтобы обеспечивать установку устройства в заданное начальное положение. В устройстве Уодсворта просматриваются идеи Альберти, Тритемия, Виженера. Несмотря на то, что устройство было достаточно громоздким, к тому же в это время господствовали «ручные» шифры, которые не требовали специальных приспособлений, оно послужило толчком к развитию механических устройств для шифрования и расшифрования сообщений.

Интересное предложение по созданию механического устройства шифрования сделал Ч. Уитстон во второй половине XX века. В устройстве Уитстона просматриваются идеи Альберти, а также Уодсворта. Внешне устройство Уитстона напоминает диск Альберти, однако в нем реализована парадоксальная идея – алфавит открытого текста содержит большее количество знаков, чем шифрованного. Проблема неоднозначности в определении букв открытого сообщения решена Уитстоном блестяще. На рис. 1.4 представлен внешний вид устройства Уитстона.

Внешний диск, диск алфавита открытого текста, состоял из 27 знаков (26 букв английского алфавита и специального знака "+", означающего пробел). Внутренний алфавит определяет алфавит открытого текста и состоит из обычных 26 букв, расположенных в произвольном ключевом порядке. На той же оси, что и диски (алфавиты) устройства, соединенные шестернями размером 27×26 соответственно, расположены две стрелки, как в современных часах.

Рис. 1.4. Внешний вид устройства Ч. Уитстона

В начале шифрования большая (длинная) стрелка указывает на знак "+". Малая стрелка, связанная с большой резьбовой шестеренкой, ставилась в то же положение, т.е. "часы" показывали "12.00". Набор букв открытого текста производился поворотом большой стрелки по направлению движения часовой. После такого поворота малая стрелка указывает знак шифрованного текста. Таким образом, при полном повороте большого диска малый диск смещался на единицу по отношению к исходному взаимному состоянию двух дисков, что приводило к сдвиговому изменению алфавита шифрованного текста по отношению к алфавиту открытого текста. По окончании каждого слова большая стрелка становилась на знак "+", буква, на которую при этом указывала короткая стрелка, записывалась как знак шифрованного текста. Во избежание неоднозначности расшифрования, удвоение букв в открытом тексте не допускается. Повторную букву следует либо пропустить, либо ставить вместо нее какую-нибудь редкую букву, например Q. Например, слово THE APPLE при шифровании записывается как +THE+APLE+ или +THE+APQLE+.

Изобретение Уитстона, также как и Уодсворта, не нашло широкого применения. Однако судьба другого его предложения в области криптографии - шифра биграммной замены - сложилась лучше, хотя шифр несправедливо был назван именем друга изобретателя барона Плейфера. Вместе с тем, сам Плейфер вел себя весьма корректно: популяризируя изобретение, он всегда указывал имя автора – Уитстона, но история распорядилась иначе: шифру было присвоено имя не изобретателя, а популяризатора. Шифр Плейфера будет подробно рассмотрен в следующем разделе.

В начале XX века значительный вклад в развитие криптографии внес американец Г. Вернам. В 1917 году он, будучи сотрудником телеграфной компании, предложил идею автоматического шифрования телеграфных сообщений, суть которой заключается в следующем. Открытый текст представляется в коде Бодо (в виде пятизначных "импульсных комбинаций"). В этом коде, например, буква "А" имела вид (+ + - - -). На бумаге знак "+" означал отверстие, а знак "-" - его отсутствие. При считывании с ленты пятерка металлических щупов "опознавала" отверстия (при наличии отверстия щуп замыкал электрическую цепь). В линию связи посылались импульсы тока. Вернам предложил электромеханически покоординатно складировать импульсы знаков секретного текста с импульсами секретного ключа, представляющего из себя хаотический набор букв того же самого алфавита. Сложение, по современной терминологии, осуществлялось по модулю 2. Г. Вернам создал устройство, производящее операции шифрования автоматически, без участия шифровальщика, тем самым было положено начало так называемому "линейному шифрованию", когда процессы шифрования и передачи сообщения происходят одновременно. До той поры шифрование было предварительным, поэтому линейное шифрование существенно повышало оперативность связи. Шифр Вернама обладает исключительной криптографической стойкостью. В то же время очевиден и недостаток этой системы шифрования - ключ должна иметь ту же длину, что и открытый текст. Для расшифрования на приемном конце связи туда нужно передать (по тайным, защищенным каналам) ключ достаточной длины. При практической реализации это порождает проблемы, причем весьма существенные, что и предопределило скромное распространение шифров Вернама. Сам Вернам не был математиком-криптографом, тем не менее, он настаивал на том, что ключ шифра не должен повторяться при шифровании, и в этом, как показала история криптографии, он был прав. Его идеи породили новые подходы к надежной защите информации при передаче больших объемов сообщений.

Первая половина XX века стала «золотым веком» электромеханических шифровальных машин . Наибольшую известность получило семейство немецких электромеханических шифровальных машин Enigma. Различные модификации этой шифровальной машины использовались германскими войсками с конца 1923 года вплоть до 1945 года. В 1943 году союзникам по антигитлеровской коалиции удалось «взломать» машину Enigma, что сыграло большую роль в победе во Второй мировой войне. Для передачи наиболее секретных сообщений во время Второй мировой войне немцами использовалась шифровальная машина Lorenz. В американской армии с 1923 по 1943 год использовалась механическое устройство для шифрования М-94. В основу этого устройства положен диск Альберти. Для защиты дипломатической переписки в США использовалась машина Хеберна MarkII. Шведский криптограф Б. Хагелин разработал для французской секретной полиции шифровальное устройство СD-57, а для французских спецслужб – шифровальную машину М-209. Модификация этой машины использовалась также и американскими военными во Второй мировой войне. С 1939 года по 1952 год японцы использовали шифровальную машину для защиты дипломатической переписки под названием «Тип 97» и ее модификацию. В США эти машины получили красочное обозначение «Пурпурный код» и «Красный код». В СССР перед войной и в годы Великой Отечественной войны широко использовалась малогабаритная дисковая кодировочная машина К-37 «Кристалл». Только в 1940 году было выпущено 100 комплектов этой машины. После войны были подведены итоги эксплуатации К-37 и проводилась работа по ее дальнейшему совершенствованию.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: