Компьютерное моделирование в физике. Понятие компьютерного моделирования

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).
В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

Свойство 1. Целостность и членимость.

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаи-модействующих между собой элементов.
У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

Свойство 2. Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней сре-дой).
Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

Свойство 3. Организация.

Свойство характеризуется наличием определенной организации – формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

  • сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;
  • наличие управления, разветвленной информационной сети и интенсивных потоков информации;
  • наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

Свойство 4. Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, кото-рые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства систе-мы хотя и зависят от свойств элементов, но не определяются ими полностью.
Примеры СС в экономической сфере многочисленны: организационно – производственная система, предприятие; социально – экономическая система, например регион; и др.
Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа – компьютерное моделирование .
Имитационное моделирование является наиболее эффективным и универ-сальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель , которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Исследование современных СС предполагает различные классы моделей . Развитие информационных технологий можно интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения, например, информационные системы, системы распознавания образов, системы искусственного интеллекта, системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования :

  • концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;
  • физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических процессов и явлений;
  • структурно – функциональное моделирование – моделями являются схемы (графы, блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
  • математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;
  • имитационное (программное) моделирование – в этом случае логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все перечисленные виды моделирования или отдельные приемы). Так, например, имитационное моделирование включает в себя концептуальное (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) моделирование для описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (экспериментального натурного или лабораторного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования трактуется шире традиционного понятия “моделирование на ЭВМ” . Приведем его.

Компьютерное моделирование – это метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерное моделирование можно рассматривать как:

  • математическое моделирование;
  • имитационное моделирование;
  • стохастическое моделирование.

Под термином “компьютерная модель” понимают условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели, описанные с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, будем называть математическими. Компьютерные модели, описанные с помощью взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта, будем называть структурно-функциональными ;

Компьютерные модели (отдельную программу, совокупность программ, программный комплекс), позволяющие, с помощью последовательности вычислений и графического отображения результатов ее работы, воспроизводить (имитировать) процессы функционирования объекта (системы объектов) при условии воздействия на объект различных, как правило, случайных факторов, будем называть имитационными .

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального . Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем), в котором доминирующая роль отводится системным аналитикам. В отличие от математического моделирования на ЭВМ, где методологической основой являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и др.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы . Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование предлагает совокупность методологических подходов и технологических средств, используемых для подготовки и принятия решений в различных областях исследования.

Выбор метода моделирования для решения постановленной задачи или исследования системы является актуальной задачей, с которой системный аналитик должен уметь справляться.

С этой целью уточним место имитационных моделей и их специфику среди моделей других классов. Кроме того, уточним некоторые понятия и определения, с которыми имеет дело системный аналитик в процессе моделирования. С этой целью рассмотрим процедурно-технологическую схему построения и исследования моделей сложных систем . Эта схема (приведенная на стр.6) включает, характерные для любого метода моделирования, следующие этапы определения:

  1. Системы (предметная, проблемная область);
  2. Объекта моделирования;
  3. Целевого назначения моделей;
  4. Требований к моделям;
  5. Формы представления;
  6. Вида описания модели;
  7. Характера реализации модели;
  8. Метода исследования модели.

Первые три этапа характеризуют объект и цель исследования и практически определяют следующие этапы моделирования. При этом большое значение приобретает корректное описание объекта и формулировка цели моделирования из предметной области исследования.

Предметная (проблемная) область . Исследование различных систем: математических, экономических, производственных, социальных, систем массового обслуживания, вычислительных, информационных и многих других.

Модель должна строиться целенаправленно. Целенаправленная модель представляет собой замену действительности с той степенью абстракции, которая необходима для поставленной цели. То есть, модель, прежде всего, должна отражать те существенные свойства и те стороны моделируемого объекта, которые определены задачей. При этом важно правильно обозначить и сформулировать проблему, четко определить цельисследования, проводимого с помощью моделирования.

Требования к моделям . Моделирование связано с решением реальных задач и необходимо быть уверенным, что результаты моделирования с достаточной степенью точности отражают истинное положение вещей, т.е. модель адекватна реальной действительности.

Хорошая модель должна удовлетворять некоторым общепринятым требованиям. Такая модель должна быть:

  • адекватной;
  • надежной;
  • простой и понятной пользователю;
  • целенаправленной;
  • удобной в управлении и обращении;
  • функционально полной с точки зрения возможностей решения главных задач;
  • адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные;
  • допускающей изменения (в процессе эксплуатации она может усложняться).

В зависимости от целевой направленности модели, для нее задаются специальные требования. Наиболее характерными являются: целостность, отражение информационных свойств, многоуровневость, множественность (многомодельность), расширяемость, универсальность, осуществимость (реальная возможность построения самой модели и ее исследования), реализуемость (например, на ЭВМ, возможность материализации модели в виде реальной системы в задачах проектирования), эффективность (затраты временных, трудовых, материальных и других видов ресурсов на построение моделей и проведение экспериментов находятся в допустимых пределах или оправданы). Значимость или приоритетность требований к модели непосредственно вытекают из назначения модели. Например, в исследовательских задачах, задачах управления, планирования и описания важным требованием является адекватность модели объективной реальности. В задачах проектирования и синтеза уникальных систем важным требованием является реализуемость модели, например в САПР или систему поддержки принятия решений (СППР).

Цель моделирования и задание требований к модели определяют форму представления модели.

Любая модель (прежде чем стать объективно существующим предметом) должна существовать в мысленной форме, быть конструктивно разработанной, переведена в знаковую форму и материализована. Таким образом, можно выделить три формы представления моделей:

  • мысленные (образы);
  • знаковые (структурные схемы, описания в виде устного и письменного изложения, логические, математические, логико-математические конструкции);
  • материальные (лабораторные и действующие макеты, опытные образцы).

Особое место в моделировании занимают знаковые , в частности логические, математические, логико-математические модели, а также модели, воссозданные на основе описания, составленного экспертами. Знаковые модели используются для моделирования разнообразных систем. Это направление связано с развитием вычислительных систем. Ограничимся ими в дальнейшем рассмотрении.

Следующий этап процедурной схемы – это выбор вида описания и
построения модели.
Для знаковых форм такими описаниями могут быть:

  • отношение и исчисление предикатов, семантические сети, фреймы, методы искусственного интеллекта и др. - для логических форм .
  • алгебраические, дифференциальные, интегральные, интегрально-дифференциальные уравнения и др. - для математических форм .

Характер реализации знаковых моделей бывает :

  • аналитический (например, система дифференциальных уравнений может быть решена математиком на листе бумаги);
  • машинный (аналоговый или цифровой);
  • физический (автоматный).

В каждом из них, в зависимости от сложности модели, цели моделирования, степени неопределенности характеристик модели, могут иметь место различные по характеру способы проведения исследований (экспериментов), т.е., методы исследования. Например, при аналитическом исследовании применяются различные математические методы. При физическом или натурном моделировании применяется экспериментальный метод исследования.

Анализ применяемых и перспективных методов машинного экспериментирования позволяет выделить расчетный, статистический, имитационный и самоорганизующийся методы исследований.

Расчетное (математическое) моделирование применяется при исследовании математических моделей и сводится к их машинной реализации при различных числовых исходных данных. Результаты этих реализаций (расчетов) выдаются в графической или табличной формах. Например, классической схемой является машинная реализация математической модели, представленной в виде системы дифференциальных уравнений, основанная на применении численных методов, с помощью которых математическая модель приводится к алгоритмическому виду, программно реализуется на ЭВМ, для получения результатов проводится расчет.

Имитационное моделирование отличается высокой степенью общности, создает предпосылки к созданию унифицированной модели, легко адаптируемой к широкому классу задач, выступает средством для интеграции моделей различных классов.

Пособие предназначено для обучения студентов физических специальностей моделированию физических явлений на компьютере. Приведены определения различных типов моделей, дана их классификация. На примерах явлений, как распространенных в природе, так и наблюдаемых в физическом эксперименте, показывается, как составляют и анализируют модели. Рассматриваются системы, имеющие хаотический или аналитически непредсказуемый характер: прохождение потока частиц в кристаллах, случайные блуждания, перколяции, модели кинетического роста, клеточные автоматы, модель Изинга. Теоретическое изложение дополняется примерами готовых программ или программными блоками, из которых обучаемый может составить программу самостоятельно.

Материальное и идеальное моделирование.
Все существующие в настоящее время приемы моделирования можно (условно) разделить на материальные и идеальные.

Материальное моделирование - это моделирование, при котором исследование объекта выполняется с использованием его материального аналога (от греческого analogia - соответствие, соразмерность), воспроизводящего основные физические, геометрические, динамические и функциональные характеристики данного объекта. К таким моделям, например, можно отнести макеты в архитектуре, модели и экспериментальные образцы различных транспортных средств.

Идеальное моделирование отличается от материального тем. что оно основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой, и всегда носит теоретический характер.

Вопрос: можно ли обойтись в технике без применения тех или иных видов моделей? Очевидный ответ - нет! Конечно, можно построить новый самолет «из головы» (без предварительных расчетов, чертежей, экспериментальных образцов, т.е. используя единственную «идеальную модель», существующую в «голове» конструктора). Однако едва ли это будет достаточно эффективная и надежная конструкция. Единственным ее достоинством можно считать ее уникальность. Ведь даже автор не сможет повторно изготовить точно такой же самолет, так как в результате изготовления первого экземпляра будет получен некоторый опыт, который обязательно изменит «идеальную» модель «в голове» самого конструктора.

ОГЛАВЛЕНИЕ
Глава 1. ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ
1.1. Что такое модель?
1.2. Материальное и идеальное моделирование
1.3. Определение модели
1.4. Свойства моделей
1.5. Цели моделирования
1.6. Классификация моделей
Глава 2. МЕТОД МОНТЕ-КАРЛО
2.1 Общее представление о методе
2.2. Случайные величины
2.3. Применение метода Монте-Карло
Глава 3. ПОТОК ЗАРЯЖЕННЫХ ЧАСТИЦ В КРИСТАЛЛЕ
3.1. Эффект каналирования
3.2. Источник ионов
3.3. Кристаллическая структура
3.4. Рассеяние
Глава 4. СЛУЧАЙНОЕ БЛУЖДАНИЕ
4.1. Одномерное случайное блуждание
4.2. Случайное блуждание в нескольких измерениях
4.3. Случайные блуждания без самопересечений
4.4. Истинное блуждание без самопересечений
Глава 5. ТЕОРИЯ ПЕРКОЛЯЦИИ
5.1. Перкаляционные процессы в природе и технологиях
5.2. Типы перколяций
5.3. Порог перколяции
5.4. Алгоритм Хошена - Копельмана
5.5. Критические показатели и масштабная инвариантность
5.6. Ренорм-группа
Глава 6. АККРЕЦИЯ САМОПОДОБНЫХ СТРУКТУР
6.1. Фрактальная размерность
6.2. Регулярные фракталы и самоподобие
6.3. Процессы роста фракталов
Глава 7. КЛЕТОЧНЫЕ АВТОМАТЫ
7.1. Особенности моделей клеточных автоматов
7.2. Игра «Жизнь»
Глава 8. МОДЕЛЬ ИЗИНГА
8.1. Микроканонический ансамбль
8.2. Фазовые взаимодействия
8.3. Канонический ансамбль
8.4. Алгоритм Метрополиса
8.5. Другие применения модели Изинга
ЛИТЕРАТУРА
ОГЛАВЛЕНИЕ.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Компьютерное моделирование физических явлений, Малютин В.М., Склярова Е.А., 2004 - fileskachat.com, быстрое и бесплатное скачивание.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

2.2. Задача 2. Моделирование автоволновых процессов

Заключение

Список литературы

Введение

Моделирование в научных исследованиях стало использоваться еще в глубокой древности и постепенно захватывало все новые области научных знаний. У каждого физика возникло желание «увидеть невидимое», то есть заглянуть в протекание физического явления и увидеть механизм, даже тогда когда он скрыт от непосредственного восприятия. И вот тут на помощь пришли компьютерные технологии, а именно компьютерное моделирование, позволяющее создать и увидеть «виртуальные» эксперименты, модели.

Методы компьютерного моделирования появились в физике в конце 50-х - начале 60-х годов. Главные из них - динамический метод и метод Монте -Карло. Развитие методов машинного моделирования оказало сильное влияние на физику, так как впервые появилась возможность теоретически исследовать системы с достаточно сложным взаимодействием частиц друг с другом. Сегодня эти методы успешно применяют в физике твердого тела, в физике фазовых переходов. При помощи этих методов исследуют свойства жидкостей, плотной плазмы, поверхностные явления, прохождения излучения через вещество и другие процессы. Все это привело к тому, что в настоящее время принято подразделять физику на экспериментальную, теоретическую, вычислительную. Вычислительная физика занимает промежуточное положение между экспериментальной и теоретической: объект ее изучения с одной стороны - не реальный эксперимент, с другой стороны - не совсем теория, так как модели вычислительной физики содержат мало приближений, и является весьма реалистическими. Поэтому в этой связи часто говорят о виртуальном или компьютерном эксперименте. Вплоть до конца 80-х методы машинного моделирования были доступны не многим, компьютерный эксперимент был достаточно дорог, он требовал больших затрат машинного времени кроме того, быстродействие ЭВМ и их оперативная память были сравнительно малы, что сильно ограничили их графические возможности полноценного диалога между машиной и пользователем. Но компьютерный бум произошедший за последнее десятилетие, породил серию дешевых и доступных компьютеров. Резкое увеличение их быстродействия сделало актуальным применение методов машинного моделирования и в образовании, причем не только для обучения будущих специалистов по этим вопросам, но и для создания учебных физических моделей, которые могли применяться любыми пользователями с любой компьютерной поддержкой.

Актуальность курсовой работы. В связи с массовым оборудованием компьютерами школ по общероссийской программе компьютеризации, углубился интерес к использованию компьютеров в предметном обучении. Компьютер как техническое средство открывает большие возможности для улучшения учебного процесса. Однако, применение компьютера в обучении по предметам, в частности, физике не получило широкого распространения и носит ограниченный характер. С одной стороны, это связано с недостаточной методической разработкой программных средств и обучающих программ. Выявление данной проблематики наблюдается в диссертационных исследованиях A.M. Короткова, Л.Ю. Кравченко, Е.А. Локтюшиной, Н.А. Гомулиной, А.С. Каменева, Ш.Д. Махмудовой. С другой стороны, что предлагаемые разработчиками компьютерные программы по физике, в большем количестве являются закрытыми для пользователя: включают готовый банк задач, тестов, теорию и демонстрации, которые не всегда сочетаются с методикой преподавания учителя и зачастую не увязаны с учебным процессом ни организационно, ни методически. Программы же, позволяющие достичь открытости для пользователя обычно не поддерживают решение физических задач или достаточно громоздки в обучении, требуют знания языков программирования - Pascal, C++, Delphi или численных методов - Mathcad, Excel. Поэтому остается актуальным поиск общих подходов и методов, повышающих эффективность обучения физике с помощью компьютера. В частности, актуальна проблема создания такой среды, в которой органично сочетаются традиционные и компьютерные методы обучения. Одним из эффективных методов обучения решению физических задач, является метод компьютерного моделирования, который интегрирует дидактические возможности в обучении решению задач и является средством развития умственных и творческих способностей учащихся. А внедрение новых образовательных технологий в учебный процесс позволяет наряду с традиционными методами решения задач применить моделирование.

Целью курсовой работы изучение и исследование особенностей компьютерного моделирования в области физики.

Исходя из цели, поставлены следующие задачи курсовой работы: изучить основные понятия о компьютерном моделировании; систематизировать материал по компьютерному моделированию в области физики; рассмотреть компьютерное моделирование на примере решения конкретных задач.

Структура курсовой работы. Курсовая работа состоит из содержания, введения, двух глав, заключения и списка литературы.

1. Теоретическая часть. Компьютерное моделирование

1.1 Понятие о компьютерном моделировании

С развитием вычислительной техники все важнее становится роль компьютерного моделирования в решении прикладных и научных задач. Для проведения компьютерных экспериментов создается подходящая математическая модель и подбираются соответствующие средства разработки программного обеспечения. Выбор языка программирования оказывает огромное влияние на осуществление полученной модели.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть крайне полезен, за исключением разве физического моделирования, где компьютер вообще-то тоже может использоваться, но, скорее, для целей управления процессом моделирования. Например, при математическом моделировании выполнение одного из основных этапов - построение математических моделей по экспериментальным данным - в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие приобрело компьютерное, структурно-функциональное моделирование. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта.

Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.

Начнем с термина «компьютерная модель».

В настоящее время под компьютерной моделью чаще всего понимают :

§ условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

§ отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных, факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе применения ее компьютерной модели.

Суть компьютерного моделирования заключена в приобретении количественных и качественных результатов по имеющейся модели. Качественные выводы, приобретаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Основные функции компьютера при моделировании:

§ выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;

§ выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

§ выполнять роль средства конструирования компьютерных обучающе-моделирующих сред;

§ выполнять роль средства моделирования для получения новых знаний;

§ выполнять роль «обучения» новых моделей (самообучающиеся модели).

Одним из видов компьютерного моделирования является вычислительный эксперимент.

Компьютерная модель - это модель реального процесса или явления, реализованная компьютерными средствами. Если состояние системы меняется со временем, то модели называют динамическими, в противном случае - статическими .

Процессы в системе могут протекать по-разному в зависимости от условий, в которых находится система. Наблюдать за поведением реальной системы при различных условиях бывает трудно, а иногда и невозможно. В таких случаях, построив модель, можно многократно возвращаться к начальному состоянию и наблюдать за ее поведением. Этот метод исследования систем называется имитационным моделированием.

Примером имитационного моделирование может являться вычисление числа =3,1415922653... методом Монте-Карло. Этот метод позволяет находить площади и объемы фигур (тел), которые сложно вычислить другими методами. Предположим, что требуется определить площадь круга. Опишем вокруг него квадрат (площадь которого, как известно, равна квадрату его стороны) и будем случайным образом бросать в квадрат точки, проверяя каждый раз, попала ли точка в круг или нет. При большом числе точек отношение площади круга к площади квадрата будет стремиться к отношению числа точек, попавших в круг, к общему числу брошенных точек.

Теоретическая основа этого метода была известна давно, однако до появления компьютеров этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную - очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами, ибо одним из механических приборов для получения случайных величин является рулетка.

Следует заметить, что данный метод вычисления площади круга будет давать корректный результат, только если точки будут не просто случайно, но еще и равномерно разбросанными по всему квадрату. Для моделирования равномерно распределенных в интервале от 0 до 1 случайных чисел используется датчик случайных чисел - специальная компьютерная программа. На самом деле эти числа определяются по некоторому алгоритму и уже в силу этого они не являются вполне случайными. Получаемые таким способом числа часто называют псевдослучайными. Вопрос о качестве датчиков случайных чисел весьма непрост, однако для решения не слишком сложных задач обычно достаточно возможностей датчиков, встроенных в большинство систем программирования и электронных таблиц.

Заметим, что располагая датчиком равномерно распределенных случайных чисел, генерирующим числа r из интервала в массив xxii[i] и вычисляют скорости элементов в момент времени t+Дt:

зi(t+Дt)=зi(t)+ v2[(оi+1-2оi +оi-1)/h2]Дt.

записывая их в массив о[i].

5. В цикле перебираются все элементы и вычисляются их смещения по формуле:

оi(t+Дt)=оi(t)+ зi(t+Дt)Дt.

6. В цикле перебирают все элементы, стирают их предыдущие изображения и рисуют новые.

7. Возвращение к операции 2. Если цикл по t закончился, - выход из цикла.

4. Компьютерная программа. Предлагаемая программа моделирует прохождение и отражение импульса от "границы раздела двух сред".

program PROGRAMMA1;

uses crt, graph;

const n=200; h=1; dt=0.05;

var i, j, DriverVar,

ModeVar, ErrorCode: integer;

eta,xi,xxii: array of real;

Procedure Graph_Init;

begin {- Инициализация графики -}

DriverVar:=Detect;

InitGraph(DriverVar,ModeVar,"c:\bp\bgi");

ErrorCode:=GraphResult;

if ErrorCode<>grOK then Halt(1);

Procedure Raschet; {Расчет смещения}

begin for i:=2 to N-1 do

if i

eta[i]:=eta[i]+vv*(xi-2*xi[i]+xi)/(h*h)*dt;

for i:=2 to N-1 do xi[i]:=xi[i]+eta[i]*dt;

xi[N]:=0; {Конец закреплен}

{ xi[N]:=xi;}{ незакрепленный}

begin {- Вывод на экран -}

setcolor(black);

line(i*3-3,240-round(xxii*50),i*3,240-round(xxii[i]*50));

setcolor(white);

line(i*3-3,240-round(xi*50),i*3,240-round(xi[i]*50));

BEGIN {- Основная программа -}

if t<6.28 then xi:=2*sin(t) else xi:=0;

Raschet; For i:=1 to N do Draw;

until KeyPressed; CloseGraph;

Рассмотренная выше компьютерная модель позволяет выполнить серию численных экспериментов и изучить следующие явления: 1) распространение и отражение волны (одиночного импульса, цуга) от закрепленного и незакрепленного конца упругой среды; 2) интерференция волн (одиночных импульсов, цугов), возникающая в результате отражения падающей волны либо излучения двух когерентных волн; 3) отражение и прохождение волны (одиночного импульса, цуга) через границу раздела двух сред; 4) изучение зависимости длины волны от частоты и скорости распространения; 5) наблюдение изменения фазы отраженной волны на р при отражении от среды, в которой скорость волны меньше.

2.2 Задача 2. Моделирование автоволновых процессов

1. Задача: Имеется двумерная активная среда, состоящая из элементов, каждый из которых может находиться в трех различных состояниях: покое, возбуждении и рефрактерности. При отсутствии внешнего воздействия, элемент находится в состоянии покоя. В результате воздействия элемент переходит в возбужденное состояние, приобретая способность возбуждать соседние элементы. Через некоторое время после возбуждения элемент переключается в состояние рефрактерности, находясь в котором он не может быть возбужден. Затем элемент сам возвращается в исходное состояние покоя, то есть снова приобретает способность переходить в возбужденное состояние. Необходимо промоделировать процессы, происходящие в двумерной активной среде при различных параметрах среды и начальном распределении возбужденных элементов.

2. Теория. Рассмотрим обобщенную модель Винера-Розенблюта. Мысленно разобьем экран компьютера на элементы, определяемые индексами i, j и образующими двумерную сеть. Пусть состояние каждого элемента описывается фазой yi,j (t), и концентрацией активатора uij (t), где t - дискретный момент времени.

Если элемент находится в покое, то будем считать, что yi,j (t) = 0. Если вследствие близости возбужденных элементов концентрация активатора uij (t) достигает порогового значения h, то элемент возбуждается и переходит в состояние 1. Затем на следующем шаге он переключается в состояние 2, затем - в состояние 3 и т.д., оставаясь при этом возбужденным. Достигнув состояния r, элемент переходит в состояние рефрактерности. Через (s - r) шагов после возбуждения элемент возвращается в состояние покоя.

Будем считать, что при переходе из состояния s в состояние покоя 0 концентрация активатора становится равной 0. При наличии соседнего элемента, находящегося в возбужденном состоянии, она увеличивается на 1. Если p ближайших соседей возбуждены, то на соответствующем шаге к предыдущему значению концентрации активатора прибавляется число возбужденных соседей:

uij (t + Дt) = uij (t) + p.

Можно ограничиться учетом ближайших восьми соседних элементов.

3. Алгоритм. Для моделирования автоволновых процессов в активной среде необходимо составить цикл по времени, в котором вычисляются фазы элементов среды в последующие моменты времени и концентрация активатора, стирается предыдущее распределение возбужденных элементов и строится новое. Алгоритм модели представлен ниже.

1. Задают число элементов активной среды, ее параметры s, r, h, начальное распределение возбужденных элементов.

2. Начало цикла по t. Дают приращение по времени: переменной t присваивают значение t + Дt.

3. Перебирают все элементы активной среды, определяя их фазы yi,j (t + Дt) и концентрацию активатора ui,j (t + Дt) в момент t + Дt.

4. Очищают экран и строят возбужденные элементы активной среды.

5. Возвращение к операции 2. Если цикл по t закончился - выход из цикла.

4. Компьютерная программа. Ниже представлена программа, моделирующая активную среду и происходящие в ней процессы. В программе заданы начальные значения фазы yi,j (t + Дt) всех элементов активной среды, а также имеется цикл по времени, в котором рассчитываются значения yi,j (t + Дt) в следующий момент t + Дt и осуществляется графический вывод результатов на экран. Параметры среды r = 6, s = 13, h = 5, то есть каждый элемент кроме состояния покоя может находиться в 6 возбужденных состояниях и 7 состояниях рефрактерности. Пороговое значение концентрации активатора равно 5. Программа строит однорукавную волну, осциллятор и препятствие.

Program PROGRAMMA2;

uses dos, crt, graph;

Const N=110; M=90; s=13; r=6; h=5;

Var y, yy, u: array of integer;

ii, jj, j, k, Gd, Gm: integer; i: Longint;

Gd:= Detect; InitGraph(Gd, Gm, "c:\bp\bgi");

If GraphResult <> grOk then Halt(1);

setcolor(8); setbkcolor(15);

(* y:=1; { Одиночная волна } *)

For j:=1 to 45 do { Однорукавная волна }

For i:=1 to 13 do y:=i;

(* For j:=1 to M do { Двурукавная волна }

For i:=1 to 13 do begin y:=i;

If j>40 then y:=14-i; end; *)

If k=round(k/20)*20 then y:=1; {Осциллятор 1}

(* If k=round(k/30)*30 then y:=1; {Осциллятор 2} *)

For i:=2 to N-1 do For j:=2 to M-1 do begin

If (y>0) and (y

If y=s then begin yy:=0; u:=0; end;

If y <> 0 then goto met;

For ii:=i-1 to i+1 do For jj:=j-1 to j+1 do begin

If (y>0) and (y<=r) then u:=u+1;

If u>=h then yy:=1; end;

met: end; Delay(2000); {Задержка}

For i:=21 to 70 do begin

yy:=0; yy:=0; {Препятствие}

circle(6*i-10,500-6*60,3); circle(6*i-10,500-6*61,3); end;

For i:=1 to N do For j:=1 to M do

begin y:=yy; setcolor(12);

If (y>=1) and (y<=r) then circle(6*i-10,500-6*j,3);

If (y>6) and (y<=s) then circle(6*i-10,500-6*j,2);

until KeyPressed;

Заключение

Практически во всех естественных и социальных науках построение и использование моделей является мощным орудием исследований. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения оказывается построение модели, отображающей лишь какую-то часть реальности и потому многократно более простой, чем эта реальность. Предметом исследования и разработки информатики является методология информационного моделирования, связанная с использованием компьютерной техники и технологий. В этом смысле говорят о компьютерном моделировании. Межпредметное значение информатики в значительной степени проявляется именно через внедрение компьютерного моделирования в различные научные и прикладные области: физику и технику, биологию и медицину, экономику, управление и многие другие.

В настоящее время, с развитием компьютерной техники и подорожанием составляющих экспериментальных установок, роль компьютерного моделирования в физике значительно возрастает. Не вызывает сомнения необходимость наглядной демонстрации исследуемых в процессе обучения зависимостей для их лучшего понимания и запоминания. Также актуальным является обучение учащихся в образовательных учреждениях основам компьютерной грамотности и компьютерного моделирования. На современном этапе компьютерное моделирование в области физики является очень популярной формой образования.

Список литературы

1. Боев В.Д., Сыпченко Р.П., Компьютерное моделирование. - ИНТУИТ.РУ, 2010. - 349 с.

2. Булавин Л.А., Выгорницкий Н.В., Лебовка Н.И. Компьютерное моделирование физических систем. - Долгопрудный: Издательский Дом «Интеллект», 2011. - 352 c.

3. Гулд Х., Тобочник Я. Компьютерное моделирование в физике: В 2-х частях. Часть первая. - М.: Мир, 2003. - 400 с.

4. Десненко С.И., Десненко М.А. Моделирование в физике: Учебно-

методическое пособие: В 2 ч. - Чита: Изд-во ЗабГПУ, 2003. - Ч I. - 53 с.

5. Кузнецова Ю.В. Спецкурс «Компьютерное моделирование в физике» / Ю.В. Кузнецова // Физика в шк. - 2008. - №6. - 41 с.

6. Лычкина Н.Н. Современные тенденции в имитационном моделировании. - Вестник университета, серия Информационные системы управления №2 - М., ГУУ., 2000. - 136 с.

7. Максвелл Дж. К. Статьи и речи. М.: Наука, 2008. - 422 с.

8. Новик И.Б. Моделирование и его роль в естествознании и технике. - М., 2004.-364 с.

9. Ньютон И. Математические начала натуральной философии/ Пер. А.Н. Крылова, 2006. - 23 с.

10. Разумовская Н.В. Компьютер на уроках физики / Н.В. Разумовская // Физика в шк. - 2004. - №3. - с. 51-56

11. Разумовская Н.В. Компьютерное моделирование в учебном процессе: Автореф. дис. канд. пед. наук/Н.В. Разумовская-СПб., 2002. - 19 с.

12. Тарасевич Ю.Ю. Математическое и компьютерное моделирование. АСТ-Пресс, 2004. - 211 с.

13. Толстик А. М. Роль компьютерного эксперимента в физическом образовании. Физическое образование в вузах, т.8, №2, 2002, с. 94-102

Размещено на Allbest.ru

Подобные документы

    Общие сведения о математических моделях и компьютерном моделировании. Неформальный переход от рассматриваемого технического объекта к его расчетной схеме. Примеры компьютерного моделирования простейших типовых биотехнологических процессов и систем.

    реферат , добавлен 24.03.2015

    Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.

    курсовая работа , добавлен 21.12.2013

    Значение компьютерного моделирования, прогнозирования событий, связанных с объектом моделирования. Совокупность взаимосвязанных элементов, важных для целей моделирования. Особенности моделирования, знакомство со средой программирования Турбо Паскаль.

    курсовая работа , добавлен 17.05.2011

    Введение в интернет-технологии и компьютерное моделирование. Создание WEB страниц с использованием HTML. Создание динамических WEB страниц с использованием JavaScript. Работа с графикой в Adobe Photoshop и Flash CS. Основы компьютерного моделирования.

    презентация , добавлен 25.09.2013

    Моделирование термодинамической системы с распределенными параметрами, случайных процессов и систем. Статистическое (имитационное) моделирование физических процессов, его результаты. Компьютерное моделирование систем управления с помощью пакета VisSim.

    методичка , добавлен 24.10.2012

    Создание Web-страниц с использованием HTML, с использованием JavaScript и PHP. Работа с графикой в Adobe Photoshop и Flash CS. Базы данных и PHP. Пример реализации "Эконометрической модели экономики России" под web. Основы компьютерного моделирования.

    презентация , добавлен 25.09.2013

    Основные понятия компьютерного моделирования. Функциональная схема робота. Системы компьютерной математики. Исследование поведения одного звена робота с использованием системы MathCAD. Влияние значений изменяемого параметра на амплитуду угла поворота.

    курсовая работа , добавлен 26.03.2013

    Понятия структурного программирования и алгоритма решения задачи. Краткая история развития языков программирования от машинных до языков ассемблера и языков высокого уровня. Процедурное программирование на C#. Методы и программы для моделирования.

    учебное пособие , добавлен 26.10.2010

    Исследование метода математического моделирования чрезвычайной ситуации. Модели макрокинетики трансформации веществ и потоков энергии. Имитационное моделирование. Процесс построения математической модели. Структура моделирования происшествий в техносфере.

    реферат , добавлен 05.03.2017

    Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.

Метод моделирования в качестве научного исследования стал применяться еще в глубокой древности и постепенно захватывал все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, информационные технологии. Методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента:

1) субъект (исследователь),

2) объект исследования,

3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала .

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Рис. 1 – Этапы компьютерного моделирования

Этапы компьютерного моделирования можно представить в виде схемы (рис. 1).

Моделирование начинается с объекта изучения. На первом этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В то же время постановка задачи уточняется по мере изучения объекта. Таким образом, на первом этапе процессы целенаправленного изучения объекта и уточнения задачи происходят параллельно и независимо друг от друга. Также на этом этапе информация об объекте подготавливается к обработке на компьютере. Строится так называемая формальная модель явления, которая содержит:

    набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части, называемые статистическими или постоянными параметрами модели;

    набор переменных величин, меняя значение которых можно управлять поведением модели, называемых динамическим или управляющими параметрами;

    формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;

    формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.

На втором этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства для этого, строиться алгоритм решения проблемы, пишется программа, реализующая этот алгоритм, затем написанная программа отлаживается и тестируется на специально подготовленных тестовых моделях . Тестирование - это процесс исполнения программы с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования. Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.

На третьем этапе, работая с компьютерной моделью, мы осуществляем непосредственно вычислительный эксперимент. Исследуем, как поведет себя наша модель в том или ином случае, при тех или иных наборах динамических параметров, пытаемся прогнозировать или оптимизировать что-либо в зависимости от поставленной задачи.

Результатом компьютерного эксперимента будет являться информационная модель явления, в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сегодня невозможно решение крупных научных задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом. Вычислительный эксперимент применяется практически во всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в таких сугубо гуманитарных науках как психология, лингвистика и филология. Проведение вычислительного эксперимента имеет ряд преимуществ перед так называемым натурным экспериментом:

    для вычислительного эксперимента не требуется сложного лабораторного оборудования;

    существенное сокращение временных затрат на эксперимент;

    возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им нереальных, неправдоподобных значений;

    возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен из-за удаленности исследуемого явления в пространстве (астрономия) либо из-за его значительной растянутости во времени (биология), либо из-за возможности внесения необратимых изменений в изучаемый процесс.

В этих случаях и используется компьютерное моделирование. Также широко используется компьютерное моделирование в образовательных и учебных целях. Компьютерное моделирование - наиболее адекватный подход при изучении предметов естественнонаучного цикла, изучение компьютерного моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными. Учитель может использовать на уроке готовые компьютерные модели для демонстрации изучаемого явления, будь это движение астрономических объектов или движение атомов или модель молекулы или рост микробов и т.д.. Также учитель может озадачить учащихся разработкой конкретных моделей, моделируя конкретное явление, студент не только освоит конкретный учебный материал, но и приобретет умение ставить проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, использовать компьютер для решения задач, проводить анализ вычислительных экспериментов. Таким образом, применение компьютерного моделирования в образовании позволяет сблизить методологию учебной деятельности с методологией научно-исследовательской работы.

Понятие моделирования - это очень широкое понятие, оно не ограничивается только математическим моделированием. Истоки моделирования обнаруживаются в далеком прошлом. Наскальные изображения мамонта, пронзенного копьем, на стене пещеры можно рассматривать как модель удачной охоты, созданную древним художником.

Элементы моделирования часто присутствуют в детских играх, любимое занятие детей - моделировать подручными средствами предметы и отношения из жизни взрослых. Взрослеют дети, взрослеет человечество. Человечество познает окружающий мир, модели становятся более абстрактными, теряют внешнее сходство с реальными объектами. В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Если мы заменяем реальный объект математическими формулами - допустим, согласно Второму закону Ньютона, опишем движение некоторого тела системой нелинейных уравнений, или, согласно закону теплопроводности опишем процесс распространения тепла дифференциальным уравнение второго порядка, - то говорят о математическом моделировании, если реальный объект заменяем компьютерной программой - о компьютерном моделировании.

Но что бы ни выступало в роли модели, постоянно прослеживается процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Это процесс и называется моделированием. Замещаемый объект называется оригиналом, замещающий – моделью (рис. 2).

Рис. 2 – Элементы моделирования

КОМПЬЮ́ТЕРНОЕ МОДЕЛИ́РОВАНИЕ (англ. computational simulation), построение с помощью компьютеров и компьютерных устройств (3D-сканеров, 3D-принтеров и др.) символьных [см. Символьное моделирование (s-моделирование)] и физических моделей объектов, изучаемых в науке (физике, химии и др.), создаваемых в технике (напр., в авиастроении, робототехнике), медицине (напр., в имплантологии, томографии ), искусстве (напр., в архитектуре , музыке) и др. областях деятельности людей.

К. м. позволяет многократно сократить затраты на разработку моделей по сравнению с некомпьютерными методами моделирования и проведением натурных испытаний. Оно делает возможным построение символьных компьютерных моделей объектов, для которых невозможно построить физические модели (напр., моделей объектов, изучаемых в климатологии ). Служит эффективным средством моделирования сложных систем в технике, экономике и др. областях деятельности. Является технологической основой систем автоматизированного проектирования (САПР).

Физические компьютерные модели изготавливаются на основе символьных моделей и являются прототипами моделируемых объектов (деталей и узлов машин, строительных конструкций и др.). Для изготовления прототипов могут быть применены 3D-принтеры, реализующие технологии послойного формирования неплоских объектов. Символьные модели прототипов могут быть разработаны с помощью САПРов, 3D-сканеров или цифровых камер и фотограмметрического программного обеспечения.

Система К. м. – это человеко-машинный комплекс, в котором построение моделей осуществляется с помощью компьютерных программ, реализующих математические (см. Моделирование математическое ) и экспертные (напр., имитационные) методы моделирования. В режиме вычислительного эксперимента исследователь имеет возможность, изменяя исходные данные, за относительно короткое время получить и сохранить в системе компьютерного моделирования большое число вариантов модели объекта.

Уточнение представлений об исследуемом объекте и совершенствование методов его моделирования могут сделать необходимым изменение программных средств системы компьютерного моделирования, а аппаратные средства при этом могут остаться без изменений.

Высокая результативность компьютерного моделирования в науке, технике и др. областях деятельности стимулирует развитие аппаратных средств (включая суперкомпьютеры) и программного обеспечения [в т. ч. инструментальных систем (см. Инструментальная система в информатике ) разработки параллельных программ для суперкомпьютеров].

В наши дни компьютерные модели – быстро растущая часть арсенала



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: