Что такое сокет

Последнее обновление: 31.10.2015

В основе межсетевых взаимодействий по протоколам TCP и UDP лежат сокеты. В.NET сокеты представлены классом System.NET.Sockets.Socket , который предоставляет низкоуровневый интерфейс для приема и отправки сообщений по сети.

Рассмотрим основные свойства данного класса:

    AddressFamily: возвращает все адреса, используемые сокетом. Данное свойство представляет одно из значений, определенных в одноименном перечислении AddressFamily . Перечисление содержит 18 различных значений, наиболее используемые:

    • InterNetwork: адрес по протоколу IPv4

      InterNetworkV6: адрес по протоколу IPv6

      Ipx: адрес IPX или SPX

      NetBios: адрес NetBios

    Available: возвращает объем данных, которые доступны для чтения

    Connected: возвращает true, если сокет подключен к удаленному хосту

    LocalEndPoint: возвращает локальную точку, по которой запущен сокет и по которой он принимает данные

    ProtocolType: возвращает одно из значений перечисления ProtocolType , представляющее используемый сокетом протокол. Есть следующие возможные значения:

    • IPSecAuthenticationHeader (Заголовок IPv6 AH)

      IPSecEncapsulatingSecurityPayload (Заголовок IPv6 ESP)

      IPv6DestinationOptions (Заголовок IPv6 Destination Options)

      IPv6FragmentHeader (Заголовок IPv6 Fragment)

      IPv6HopByHopOptions (Заголовок IPv6 Hop by Hop Options)

      IPv6NoNextHeader (Заголовок IPv6 No next)

      IPv6RoutingHeader (Заголовок IPv6 Routing)

      Unknown (неизвестный протокол)

      Unspecified (неуказанный протокол)

    Каждое значение представляет соответствующий протокол, но наиболее используемыми являются Tcp и Udp.

    RemoteEndPoint: возвращает адрес удаленного хоста, к которому подключен сокет

    SocketType: возвращает тип сокета. Представляет одно из значений из перечисления SocketType :

    • Dgram: сокет будет получать и отправлять дейтаграммы по протоколу Udp. Данный тип сокета работает в связке с типом протокола - Udp и значением AddressFamily.InterNetwork

      Raw: сокет имеет доступ к нижележащему протоколу транспортного уровня и может использовать для передачи сообщений такие протоколы, как ICMP и IGMP

      Rdm: сокет может взаимодействовать с удаленными хостами без установки постоянного подключения. В случае, если отправленные сокетом сообщения невозможно доставить, то сокет получит об этом уведомление

      Seqpacket: обеспечивает надежную двустороннюю передачу данных с установкой постоянного подключения

      Stream: обеспечивает надежную двустороннюю передачу данных с установкой постоянного подключения. Для связи используется протокол TCP, поэтому этот тип сокета используется в паре с типом протокола Tcp и значением AddressFamily.InterNetwork

      Unknown: адрес NetBios

Для создания объекта сокета можно использовать один из его конструкторов. Например, сокет, использующий протокол Tcp:

Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

Или сокет, использующий протокол Udp:

Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

Таким образом, при создании сокета мы можем указывать разные комбинации протоколов, типов сокета, значений из перечисления AddressFamily. Однако в то же время не все комбинации являются корректными. Так, для работы через протокол Tcp, нам надо обязательно указать параметры: AddressFamily.InterNetwork, SocketType.Stream и ProtocolType.Tcp. Для Udp набор параметров будет другим: AddressFamily.InterNetwork, SocketType.Dgram и ProtocolType.Udp. Для других протоколов набор значений будет отличаться. Поэтому использование сокетов может потребовать некоторого знания принципов работы отдельных протоколов. Хотя в отношении Tcp и Udp все относительно просто.

Общий принцип работы сокетов

При работе с сокетами вне зависимости от выбранных протоколов мы будем опираться на методы класса Socket:

    Accept() : создает новый объект Socket для обработки входящего подключения

    Bind() : связывает объект Socket с локальной конечной точкой

    Close() : закрывает сокет

    Connect() : устанавливает соединение с удаленным хостом

    Listen() : начинает прослушивание входящих запросов

    Poll() : определяет состояние сокета

    Receive() : получает данные

    Send() : отправляет данные

    Shutdown() : блокирует на сокете прием и отправку данных

В зависимости от применяемого протокола (TCP, UDP и т.д.) общий принцип работы с сокетами будет немного различаться.

При применении протокола, который требует установление соединения, например, TCP, сервер должен вызвать метод Bind для установки точки для прослушивания входящих подключений и затем запустить прослушивание подключений с помощью метода Listen. Далее с помощью метода Accept можно получить входящие запросы на подключение в виде объекта Socket, который используется для взаимодействия с удаленным узла. У полученного объекта Socket вызываются методы Send и Receive соответственно для отправки и получения данных. Если необходимо подключиться к серверу, то вызывается метод Connect. Для обмена данными с сервером также применяются методы Send или Receive.

Если применяется протокол, для которого не требуется установление соединения, например, UDP, то после вызова метода Bind не надо вызывать метод Listen. И в этом случае для приема данных используется метод ReceiveFrom, а для отправки данных - метод SendTo.

интерфейс сетевых системных вызовов ( socket() , bind() , recvfrom() , sendto() и т. д.) в операционной системе UNIX может применяться и для других стеков протоколов (и для протоколов, лежащих ниже транспортного уровня ).

При создании сокета необходимо точно специфицировать его тип. Эта спецификация производится с помощью трех параметров вызова socket() . Первый параметр указывает, к какому семейству протоколов относится создаваемый сокет , а второй и третий параметры определяют конкретный протокол внутри данного семейства.

Второй параметр служит для задания вида интерфейса работы с сокетом – будет это потоковый сокет , сокет для работы с датаграммами или какой-либо иной. Третий параметр указывает протокол для заданного типа интерфейса. В стеке протоколов TCP/IP существует только один протокол для потоковых сокетов – TCP и только один протокол для датаграммных сокетов – UDP , поэтому для транспортных протоколов TCP/IP третий параметр игнорируется.

В других стеках протоколов может быть несколько протоколов с одинаковым видом интерфейса, например, датаграммных, различающихся по степени надежности.

Для транспортных протоколов TCP/IP мы всегда в качестве первого параметра будем указывать предопределенную константу AF_INET (Address family – Internet ) или ее синоним PF_INET ( Protocol family – Internet ).

Второй параметр будет принимать предопределенные значения SOCK_STREAM для потоковых сокетов и SOCK_DGRAM – для датаграммных.

Поскольку третий параметр в нашем случае не учитывается, в него мы будем подставлять значение 0 .

Ссылка на информацию о созданном сокете помещается в таблицу открытых файлов процесса подобно тому, как это делалось для pip ’ов и FIFO (см. семинар 5). Системный вызов возвращает пользователю файловый дескриптор , соответствующий заполненному элементу таблицы, который далее мы будем называть дескриптором сокета . Такой способ хранения информации о сокете позволяет, во-первых, процессам-детям наследовать ее от процессов-родителей, а, во-вторых, использовать для сокетов часть системных вызовов, которые уже знакомы нам по работе с pip ’ами и FIFO : close() , read() , write() .

Системный вызов для создания сокета

Прототип системного вызова

#include #include int socket(int domain, int type, int protocol);

Описание системного вызова

Системный вызов socket служит для создания виртуального коммуникационного узла в операционной системе. Данное описание не является полным описанием системного вызова, а предназначено только для использования в нашем курсе. За полной информацией обращайтесь к UNIX Manual.

Параметр domain определяет семейство протоколов, в рамках которого будет осуществляться передача информации. Мы рассмотрим только два таких семейства из нескольких существующих. Для них имеются предопределенные значения параметра:

  • PF_INET – для семейства протоколов TCP/IP ;
  • PF_UNIX – для семейства внутренних протоколов UNIX, иначе называемого еще UNIX domain.

Параметр type определяет семантику обмена информацией: будет ли осуществляться связь через сообщения (datagrams), с помощью установления виртуального соединения или еще каким-либо способом. Мы будем пользоваться только двумя способами обмена информацией с предопределенными значениями для параметра type :

  • SOCK_STREAM – для связи с помощью установления виртуального соединения ;
  • SOCK_DGRAM – для обмена информацией через сообщения.

Параметр protocol специфицирует конкретный протокол для выбранного семейства протоколов и способа обмена информацией. Он имеет значение только в том случае, когда таких протоколов существует несколько. В нашем случае семейство протоколов и тип обмена информацией определяют протокол однозначно. Поэтому данный параметр мы будем полагать равным 0 .

Возвращаемое значение

В случае успешного завершения системный вызов возвращает файловый дескриптор (значение большее или равное 0 ), который будет использоваться как ссылка на созданный коммуникационный узел при всех дальнейших сетевых вызовах. При возникновении какой-либо ошибки возвращается отрицательное значение.

Адреса сокетов. Настройка адреса сокета. Системный вызов bind()

Когда сокет создан, необходимо настроить его адрес . Для этого используется системный вызов bind() . Первый параметр вызова должен содержать дескриптор сокета , для которого производится настройка адреса. Второй и третий параметры задают этот адрес .

Во втором параметре должен быть указатель на структуру struct sockaddr , содержащую удаленную и локальные части полного адреса.

Указатели типа struct sockaddr * встречаются во многих сетевых системных вызовах; они используются для передачи информации о том, к какому адресу привязан или должен быть привязан сокет . Рассмотрим этот тип данных подробнее. Структура struct sockaddr описана в файле следующим образом:

struct sockaddr { short sa_family; char sa_data; };

Такой состав структуры обусловлен тем, что сетевые системные вызовы могут применяться для различных семейств протоколов, которые по -разному определяют адресные пространства для удаленных и локальных адресов сокета . По сути дела, этот тип данных представляет собой лишь общий шаблон для передачи системным вызовам структур данных, специфических для каждого семейства протоколов. Общим элементом этих структур остается только поле short sa_family (которое в разных структурах, естественно, может иметь разные имена, важно лишь, чтобы все они были одного типа и были первыми элементами своих структур) для описания семейства протоколов. Содержимое этого поля системный вызов анализирует для точного определения состава поступившей информации.

Для работы с семейством протоколов TCP/IP мы будем использовать адрес сокета следующего вида, описанного в файле :

struct sockaddr _in{ short sin_family; /* Избранное семейство протоколов – всегда AF_INET */ unsigned short sin_port; /* 16-битовый номер порта в сетевом порядке байт */ struct in_addr sin_addr; /* Адрес сетевого интерфейса */ char sin_zero; /* Это поле не используется, но должно всегда быть заполнено нулями */ };

Первый элемент структуры – sin_family задает семейство протоколов . В него мы будем заносить уже известную нам предопределенную константу AF_INET (см. предыдущий раздел).

Удаленная часть полного адреса – IP-адрес – содержится в структуре типа struct in_addr , с которой мы встречались в разделе "Функции преобразования IP-адресов inet_ntoa() , inet_aton() " .

Для указания номера порта предназначен элемент структуры sin_port , в котором номер порта должен храниться в сетевом порядке байт . Существует два варианта задания номера порта : фиксированный порт по желанию пользователя и порт , который произвольно назначает операционная система . Первый вариант требует указания в качестве номера порта положительного заранее известного числа и для протокола UDP обычно используется при настройке адресов сокетов и при передаче информации с помощью системного вызова sendto() (см. следующий раздел). Второй вариант требует указания в качестве номера порта значения 0. В этом случае операционная система сама привязывает сокет к свободному номеру порта . Этот способ обычно используется при настройке сокетов программ клиентов, когда заранее точно знать номер порта программисту необязательно.

Какой номер порта может задействовать пользователь при фиксированной настройке? Номера портов с 1 по 1023 могут назначать сокетам только процессы, работающие с привилегиями системного администратора. Как правило, эти номера закреплены за системными сетевыми службами независимо от вида используемой операционной системы, для того чтобы пользовательские клиентские программы могли запрашивать обслуживание всегда по одним и тем же локальным адресам. Существует также ряд широко применяемых сетевых программ, которые запускают процессы с полномочиями обычных пользователей (например, X-Windows). Для таких программ корпорацией Internet по присвоению имен и номеров (

Мне очень нравится весь цикл статей, плюс всегда хотелось попробовать себя в качестве переводчика. Возможно, опытным разработчикам статья покажется слишком очевидной, но, как мне кажется, польза от нее в любом случае будет.
Первая статья - http://habrahabr.ru/post/209144/

Прием и передача пакетов данных

Введение
Привет, меня зовут Гленн Фидлер и я приветствую вас в своей второй статье из цикла “Сетевое программирование для разработчиков игр”.

В предыдущей статье мы обсудили различные способы передачи данных между компьютерами по сети, и в конце решили использовать протокол UDP, а не TCP. UDP мы решили использовать для того, чтобы иметь возможность пересылать данные без задержек, связанных с ожиданием повторной пересылки пакетов.

А сейчас я собираюсь рассказать вам, как на практике использовать UDP для отправки и приема пакетов.

BSD сокеты
В большинстве современных ОС имеется какая-нибудь реализация сокетов, основанная на BSD сокетах (сокетах Беркли).

Сокеты BSD оперируют простыми функциями, такими, как “socket”, “bind”, “sendto” и “recvfrom”. Конечно, вы можете обращаться к этим функциями напрямую, но в таком случае ваш код будет зависим от платформы, так как их реализации в разных ОС могут немного отличаться.

Поэтому, хоть я далее и приведу первый простой пример взаимодействия с BSD сокетами, в дальнейшем мы не будем использовать их напрямую. Вместо этого, после освоения базового функционала, мы напишем несколько классов, которые абстрагируют всю работу с сокетами, чтобы в дальнейшем наш код был платформонезависимым.

Особенности разных ОС
Для начала напишем код, который будет определять текущую ОС, чтобы мы могли учесть различия в работе сокетов:

// platform detection #define PLATFORM_WINDOWS 1 #define PLATFORM_MAC 2 #define PLATFORM_UNIX 3 #if defined(_WIN32) #define PLATFORM PLATFORM_WINDOWS #elif defined(__APPLE__) #define PLATFORM PLATFORM_MAC #else #define PLATFORM PLATFORM_UNIX #endif
Теперь подключим заголовочные файлы, нужные для работы с сокетами. Так как набор необходимых заголовочных файлов зависит от текущей ОС, здесь мы используем код #define, написанный выше, чтобы определить, какие файлы нужно подключать.

#if PLATFORM == PLATFORM_WINDOWS #include #elif PLATFORM == PLATFORM_MAC || PLATFORM == PLATFORM_UNIX #include #include #include #endif
В UNIX системах функции работы с сокетами входят в стандартные системные библиотеки, поэтому никакие сторонние библиотеки нам в этом случае не нужны. Однако в Windows для этих целей нам нужно подключить библиотеку winsock.

Вот небольшая хитрость, как можно это сделать без изменения проекта или makefile’а:

#if PLATFORM == PLATFORM_WINDOWS #pragma comment(lib, "wsock32.lib") #endif
Мне нравится этот прием потому, что я ленивый. Вы, конечно, можете подключить библиотеку в проект или в makefile.

Инициализация сокетов
В большинстве unix-like операционных систем (включая macosx) не требуется никаких особых действий для инициализации функционала работы с сокетами, но в Windows нужно сначала сделать пару па - нужно вызвать функцию “WSAStartup” перед использованием любых функций работы с сокетами, а после окончания работы - вызвать “WSACleanup”.

Давайте добавим две новые функции:

Inline bool InitializeSockets() { #if PLATFORM == PLATFORM_WINDOWS WSADATA WsaData; return WSAStartup(MAKEWORD(2,2), &WsaData) == NO_ERROR; #else return true; #endif } inline void ShutdownSockets() { #if PLATFORM == PLATFORM_WINDOWS WSACleanup(); #endif }
Теперь мы имеем независимый от платформы код инициализации и завершения работы с сокетами. На платформах, которые не требуют инициализации, данный код просто не делает ничего.

Создаем сокет
Теперь мы можем создать UDP сокет. Это делается так:

Int handle = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (handle <= 0) { printf("failed to create socket\n"); return false; }
Далее мы должны привязать сокет к определенному номеру порта (к примеру, 30000). У каждого сокета должен быть свой уникальный порт, так как, когда приходит новый пакет, номер порта определяет, какому сокету его передать. Не используйте номера портов меньшие, чем 1024 - они зарезервированы системой.

Если вам все равно, какой номер порта использовать для сокета, вы можете просто передать в функцию “0”, и тогда система сама выделит вам какой-нибудь незанятый порт.

Sockaddr_in address; address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons((unsigned short) port); if (bind(handle, (const sockaddr*) &address, sizeof(sockaddr_in)) < 0) { printf("failed to bind socket\n"); return false; }
Теперь наш сокет готов для передачи и приема пакетов данных.

Но что это за таинственная функция “htons” вызывается в коде? Это просто небольшая вспомогательная функция, которая переводит порядок следования байтов в 16-битном целом числе - из текущего (little- или big-endian) в big-endian, который используется при сетевом взаимодействии. Ее нужно вызывать каждый раз, когда вы используете целые числа при работе с сокетами напрямую.

Вы встретите функцию “htons” и ее 32-битного двойника - “htonl” в этой статье еще несколько раз, так что будьте внимательны.

Перевод сокета в неблокирующий режим
По умолчанию сокеты находится в так называемом “блокирующем режиме”. Это означает, что если вы попытаетесь прочитать из него данные с помощью “recvfrom”, функция не вернет значение, пока не сокет не получит пакет с данными, которые можно прочитать. Такое поведение нам совсем не подходит. Игры - это приложения, работающие в реальном времени, со скоростью от 30 до 60 кадров в секунду, и игра не может просто остановиться и ждать, пока не придет пакет с данными!

Решить эту проблему можно переведя сокет в “неблокирующий режим” после его создания. В этом режиме функция “recvfrom”, если отсутствуют данные для чтения из сокета, сразу возвращает определенное значение, показывающее, что нужно будет вызвать ее еще раз, когда в сокете появятся данные.

Перевести сокет в неблокирующий режим можно следующим образом:

#if PLATFORM == PLATFORM_MAC || PLATFORM == PLATFORM_UNIX int nonBlocking = 1; if (fcntl(handle, F_SETFL, O_NONBLOCK, nonBlocking) == -1) { printf("failed to set non-blocking socket\n"); return false; } #elif PLATFORM == PLATFORM_WINDOWS DWORD nonBlocking = 1; if (ioctlsocket(handle, FIONBIO, &nonBlocking) != 0) { printf("failed to set non-blocking socket\n"); return false; } #endif
Как вы можете видеть, в Windows нет функции “fcntl”, поэтому вместе нее мы используем “ioctlsocket”.

Отправка пакетов
UDP - это протокол без поддержки соединений, поэтому при каждой отправке пакета нам нужно указывать адрес получателя. Можно использовать один и тот же UDP сокет для отправки пакетов на разные IP адреса - на другом конце сокета не обязательно должен быть один компьютер.

Переслать пакет на определенный адрес можно следующим образом:

Int sent_bytes = sendto(handle, (const char*)packet_data, packet_size, 0, (sockaddr*)&address, sizeof(sockaddr_in)); if (sent_bytes != packet_size) { printf("failed to send packet: return value = %d\n", sent_bytes); return false; }
Обратите внимание - возвращаемое функцией “sendto” значение показывает только, был ли пакет успешно отправлен с локального компьютера. Но оно не показывает, был ли пакет принят адресатом! В UDP нет средств для определения, дошел ли пакет по назначению или нет.

В коде, приведенном выше, мы передаем структуру “sockaddr_in” в качестве адреса назначения. Как нам получить эту структуру?

Допустим, мы хотим отправить пакет по адресу 207.45.186.98:30000.

Запишем адрес в следующей форме:

Unsigned int a = 207; unsigned int b = 45; unsigned int c = 186; unsigned int d = 98; unsigned short port = 30000;
И нужно сделать еще пару преобразований, чтобы привести его к форме, которую понимает “sendto”:

Unsigned int destination_address = (a << 24) | (b << 16) | (c << 8) | d; unsigned short destination_port = port; sockaddr_in address; address.sin_family = AF_INET; address.sin_addr.s_addr = htonl(destination_address); address.sin_port = htons(destination_port);
Как видно, сначала мы объединяем числа a, b, c, d (которые лежат в диапазоне ) в одно целое число, в котором каждый байт - это одно из исходных чисел. Затем мы инициализируем структуру “sockaddr_in” нашими адресом назначения и портом, при этом не забыв конвертировать порядок байтов с помощью функций “htonl” и “htons”.

Отдельно стоит выделить случай, когда нужно передать пакет самому себе: при этом не нужно выяснять IP адрес локальной машины, а можно просто использовать 127.0.0.1 в качестве адреса (адрес локальной петли), и пакет будет отправлен на локальный компьютер.

Прием пакетов
После того, как мы привязали UDP сокет к порту, все UDP пакеты, приходящие на IP адрес и порт нашего сокета, будут ставиться в очередь. Поэтому для приема пакетов мы просто в цикле вызываем “recvfrom”, пока он не выдаст ошибку, означающую, что пакетов для чтения в очерели не осталось.

Так как протокол UDP не поддерживает соединения, пакеты могут приходить с множества различных компьютеров сети. Каждый раз, когда мы принимаем пакет, функция “recvfrom” выдает нам IP адрес и порт отправителя, и поэтому мы знаем, кто отправил этот пакет.

Код приема пакетов в цикле:

While (true) { unsigned char packet_data; unsigned int maximum_packet_size = sizeof(packet_data); #if PLATFORM == PLATFORM_WINDOWS typedef int socklen_t; #endif sockaddr_in from; socklen_t fromLength = sizeof(from); int received_bytes = recvfrom(socket, (char*)packet_data, maximum_packet_size, 0, (sockaddr*)&from, &fromLength); if (received_bytes <= 0) break; unsigned int from_address = ntohl(from.sin_addr.s_addr); unsigned int from_port = ntohs(from.sin_port); // process received packet }
Пакеты, размер которых больше, чем размер буфера приема, будут просто втихую удалены из очереди. Так что, если вы используете буфер размером 256 байтов, как в примере выше, и кто-то присылает вам пакет в 300 байт, он будет отброшен. Вы не получите просто первые 256 байтов из пакета.

Но, поскольку мы пишем свой собственный протокол, для нас это не станет проблемой. Просто всегда будьте внимательны и проверяете, чтобы размер буфера приема был достаточно большим, и мог вместить самый большой пакет, который вам могут прислать.

Закрытие сокета
На большинстве unix-like систем, сокеты представляют собой файловые дескрипторы, поэтому для того, чтобы закрыть сокеты после использования, можно использовать стандартную функцию “close”. Однако, Windows, как всегда, выделяется, и в ней нам нужно использовать “closesocket”.

#if PLATFORM == PLATFORM_MAC || PLATFORM == PLATFORM_UNIX close(socket); #elif PLATFORM == PLATFORM_WINDOWS closesocket(socket); #endif
Так держать, Windows!

Класс сокета
Итак, мы разобрались со всеми основными операциями: создание сокета, привязка его к порту, перевод в неблокирующий режим, отправка и прием пакетов, и, в конце, закрытие сокета.

Но, как вы могли заметить, все эти операции немного отличаются от платформы к платформе, и, конечно, трудно каждый раз при работе с сокетами вспоминать особенности разных платформ и писать все эти #ifdef.

Поэтому мы сделаем класс-обертку “Socket” для всех этих операций. Также мы создадим класс “Address”, чтобы было проще работать с IP адресами. Он позволит не проводить все манипуляции с “sockaddr_in” каждый раз, когда мы захотим отправить или принять пакет.

Итак, наш класс Socket:

Class Socket { public: Socket(); ~Socket(); bool Open(unsigned short port); void Close(); bool IsOpen() const; bool Send(const Address & destination, const void * data, int size); int Receive(Address & sender, void * data, int size); private: int handle; };
И класс Address:

Class Address { public: Address(); Address(unsigned char a, unsigned char b, unsigned char c, unsigned char d, unsigned short port); Address(unsigned int address, unsigned short port); unsigned int GetAddress() const; unsigned char GetA() const; unsigned char GetB() const; unsigned char GetC() const; unsigned char GetD() const; unsigned short GetPort() const; bool operator == (const Address & other) const; bool operator != (const Address & other) const; private: unsigned int address; unsigned short port; };
Использовать их для приема и передачи нужно следующим образом:

// create socket const int port = 30000; Socket socket; if (!socket.Open(port)) { printf("failed to create socket!\n"); return false; } // send a packet const char data = "hello world!"; socket.Send(Address(127,0,0,1,port), data, sizeof(data)); // receive packets while (true) { Address sender; unsigned char buffer; int bytes_read = socket.Receive(sender, buffer, sizeof(buffer)); if (!bytes_read) break; // process packet }
Как видите, это намного проще, чем работать с BSD сокетами напрямую. И также этот код будет одинаков для всех ОС, потому весь платформозависимый функционал находится внутри классов Socket и Address.

Заключение
Теперь у нас есть независимый от платформы инструмент для отправки и према UDP пакетов.

UDP не поддерживает соединения, и мне хотелось сделать пример, который бы четко это показал. Поэтому я написал небольшую программу , которая считывает список IP адресов из текстового файла и рассылает им пакеты, по одному в секунду. Каждый раз, когда программа принимает пакет, она выводит в консоль адрес и порт компьютера-отправителя и размер принятого пакета.

Вы можете легко настроить программу так, чтобы даже на локальной машине получить несколько узлов, обменивающихся пакетами друг с другом. Для этого просто разным экземплярам программы задайте разные порты, например:

> Node 30000
> Node 30001
> Node 30002
И т.д…

Каждый из узлов будет пересылать пакеты всем остальным узлам, образуя нечто вроде мини peer-to-peer системы.

Я разрабатывал эту программу на MacOSX, но она должна компилироваться на любой unix-like ОС и на Windows, однако если вам для этого потребуется делать какие-либо доработки, сообщите мне.

Теги: Добавить метки

Вы хотите разработать сетевую программу на Джаве – игрушку, чат, или то и другое вместе… Вы нашли правильную статью – здесь вы сможете ознакомиться с захватывающим миром сокетов в Java. Прочитав эту статью, вам будет виден свет в конце туннеля – станет очевидным предназначение сокетов и то, как разработать простую программу с использованием сокетов на языке программирования Джава.

Что такое сокет?

На сегодняшний день использование клиентов служб мгновенного обмена сообщениями (instant messanger) стало незаменимым средством для всех пользователей Интернета. Существует множество различных протоколов и клиентов (MSN, ICQ, Skype и т. д.), о которых каждый слышал и которые мы все ежедневно используем. Но не все знают, что положено в основу их роботы – собственно для этого статья и написана. Предположим, вы установили один из клиентов служб мгновенного обмена сообщениями на ваш компьютер. После его запуска и введения имени и пароля вашего пользователя, программа пытается подключиться к серверу. Что именно означает слово "подключиться"?

Каждый компьютер в сети имеет IP-адрес. Этот адрес похож на ваш домашний адрес – он однозначно идентифицирует ваш компьютер и позволяет другим общаться с вашим компьютером. Не будем вдаваться в подробности IP-адреса, так как эта статья не о них, хочу только отметить что IP-адрес это набор номеров разделенных точками (например, 64.104.137.158). Хотя существует и другой способ идентификации компьютеров в сети – доменное имя, которое более удобное и нагляднее идентифицирует компьютер, чем простой набор чисел (например, www.сайт). В Интернете существуют специальные компьютеры, которые осуществляют преобразование доменного имени в IP-адрес и наоборот.

На одном компьютере может параллельно исполняется несколько программ. Предположим, что вы запустили 10 программ на своем компьютере, и все они ожидают, чтоб другие компьютеры связались с ними. Можете представить себе это так: вас 10 человек в большом офисе с 1 телефоном и все ждут звонков от их собственных клиентов. Как вы это решите? Можно конечно назначить ответственного работника, и он будет приносить телефон соответственному человеку, которому звонят, но тогда другие клиенты не смогут дозвониться к другим людям. Кроме того, это очень трудно и нелепо иметь ответственного работника за маршрутизацию звонков к нужным людям. Вы должно быть, уже догадались, к чему я веду – если все эти программы, исполняющиеся на одном компьютере, с гордостью просят своих клиентов связаться с ними по определенному IP-адресу, то их клиенты не будут довольны. Идея состоит в следующем … иметь отдельный IP-адрес для каждой программы, верно? НЕ ВЕРНО! Суть вопроса не правильная – это также как спрашивать об отдельном офисе для каждого из вас. Ну, тогда … может отдельных телефонных номеров будет достаточно? ДА! На сетевом жаргоне "отдельные телефонные номера" имеют название порты. Порт – это просто число и каждая из программ, которая исполняется на определенном компьютере, может выбрать уникальное число порта, чтоб определить себя для внешнего мира. ЗАПОМНИТЕ – эти порты вы не сможете найти среди аппаратных средств компьютера (даже не старайтесь их искать). Эти числа – логические. Теперь все прояснилось: существует IP-адрес, с помощью которого другие компьютеры могут распознавать определенный компьютер в сети, и порт-число, которое определяет некую программу, работающую на компьютере. Также становиться понятным и то, что две программы на разных компьютерах могут использовать один и тот же порт (два дома на разных улицах тоже могут иметь один и тот самый номер, или нет?). Ну что же, мы практически у цели, только чтоб немного вас попугать, давайте выведем формулу:

IP-адрес = уникально определяет компьютер в сети.
Порт-число = уникально определяет программу, которая исполняется на соответствующем компьютере.

Если сложить вместе выше описанные уравнения, то получим:

IP-адрес + порт-число = _____

Другими словами:

Уникально определяет программу в сети. Если вы догадались до этого сами – значит мои усилия не пропали зря. Если нет, тогда прочитайте еще раз все сначала или воспользуйтесь Google для поиска лучшей статьи. _____ – это и есть … СОКЕТ!

Подведем итог, сокет – это комбинация IP-адреса и порта. Сокет адрес надает возможность другим компьютерам в сети находить определенную программу, которая исполняется на определенном компьютере. Вы можете отображать сокет адрес вот так 64.104.137.58:80, где 64.104.137.58 – IP-адрес и 80 – порт.

Как программировать с использованием сокетов?

Достаточно о теории, давайте перейдем к действиям. Разработаем очень простой и наглядный код на Java, который продемонстрирует возможности использования сокетов. Попробуем реализовать следующий список действий:

1) Одна Джава программа будет пытаться связаться с другой Java программой (которая отчаянно ждет кого-то, чтоб с ней связался). Назовем первую программу Клиентом, а вторую Сервером.

2) После успешного связывания с сервером, клиент ждет ввода данных от вас и отсылает текст серверу.

3) Серверная программа отсылает клиенту назад тот;t текст (для того чтоб показать, что она умеет делать даже такое полезное действие).

4) Полученный от сервера текст, клиент показывает вам, чтоб показать вам мнение сервера о вас. Приготовились приступить к разработке? Начнем. Отмечу только, что я не буду учить вас программированию на Java с чистого листа, а только объясню код, который относится к сокетам. Создайте 2 новых Джава программы и назовите их Server.java и Client.java. Я привел код ниже, только не пугайтесь, я все объясню.


import java.net.*;
import java.io.*;
public class Server {
int port = 6666; // случайный порт (может быть любое число от 1025 до 65535)
try {
ServerSocket ss = new ServerSocket(port); // создаем сокет сервера и привязываем его к вышеуказанному порту
System.out.println("Waiting for a client...");

Socket socket = ss.accept(); // заставляем сервер ждать подключений и выводим сообщение когда кто-то связался с сервером
System.out.println("Got a client:) ... Finally, someone saw me through all the cover!");
System.out.println();

// Берем входной и выходной потоки сокета, теперь можем получать и отсылать данные клиенту.


String line = null;
while(true) {
line = in.readUTF(); // ожидаем пока клиент пришлет строку текста.
System.out.println("The dumb client just sent me this line: " + line);
System.out.println("I"m sending it back...");
out.writeUTF(line); // отсылаем клиенту обратно ту самую строку текста.
System.out.println("Waiting for the next line...");
System.out.println();
}
} catch(Exception x) { x.printStackTrace(); }
}
}

Import java.net.*;
import java.io.*;

public class Client {
public static void main(String ar) {
int serverPort = 6666; // здесь обязательно нужно указать порт к которому привязывается сервер.
String address = "127.0.0.1"; // это IP-адрес компьютера, где исполняется наша серверная программа.
// Здесь указан адрес того самого компьютера где будет исполняться и клиент.

Try {
InetAddress ipAddress = InetAddress.getByName(address); // создаем объект который отображает вышеописанный IP-адрес.
System.out.println("Any of you heard of a socket with IP address " + address + " and port " + serverPort + "?");
Socket socket = new Socket(ipAddress, serverPort); // создаем сокет используя IP-адрес и порт сервера.
System.out.println("Yes! I just got hold of the program.");

// Берем входной и выходной потоки сокета, теперь можем получать и отсылать данные клиентом.
InputStream sin = socket.getInputStream();
OutputStream sout = socket.getOutputStream();

// Конвертируем потоки в другой тип, чтоб легче обрабатывать текстовые сообщения.
DataInputStream in = new DataInputStream(sin);
DataOutputStream out = new DataOutputStream(sout);

// Создаем поток для чтения с клавиатуры.
BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in));
String line = null;
System.out.println("Type in something and press enter. Will send it to the server and tell ya what it thinks.");
System.out.println();

While (true) {
line = keyboard.readLine(); // ждем пока пользователь введет что-то и нажмет кнопку Enter.
System.out.println("Sending this line to the server...");
out.writeUTF(line); // отсылаем введенную строку текста серверу.
out.flush(); // заставляем поток закончить передачу данных.
line = in.readUTF(); // ждем пока сервер отошлет строку текста.
System.out.println("The server was very polite. It sent me this: " + line);
System.out.println("Looks like the server is pleased with us. Go ahead and enter more lines.");
System.out.println();
}
} catch (Exception x) {
x.printStackTrace();
}
}
}

Теперь скомпилируем код:

Javac Server.java Client.java

Откроем два командных окна (DOS). В одном окне введем:

Java Server

а в другом:

Java Client

Обязательно в таком порядке.

Теперь введите строку текста в окне, где запущен клиент, и нажмите кнопку Enter. Наблюдайте за двумя окнами и увидите что случиься. В конце, нажмите Ctrl-C для того чтоб остановить программы.

Объяснение кода работы с сокетами

Углубимся теперь немного в код. Вы уже уловили некоторые идеи, прочитав комментарии, но давайте проанализируем несколько критических строк кода.

Рассмотрим следующую часть кода сервера:

ServerSocket ss = new ServerSocket(port);
Socket socket = ss.accept();

Класс ServerSocket немного отличается от класса Socket. Класс Socket – это и есть сокет. Главное отличие ServerSocket заключается в том, что он умеет заставлять программу ждать подключений от клиентов. Когда вы его создаете, нужно указывать порт, с которым он будет работать, и вызвать его метод accept(). Этот метод заставляет программу ждать подключений по указанному порту. Исполнение программы зависает в этом месте, пока клиент не подключится. После успешного подключения клиентом, создается нормальный Socket объект, который вы можете использовать для выполнения все существующий операций с сокетом. Заметим также, что этот Socket объект отображает другой конец соединения. Если вы хотите отослать данные клиенту, то вы не можете использовать для этого ваш собственный сокет.

Следующим рассмотрим Socket класс. Вы можете создать Socket объект, указав IP-адрес и порт. Вы можете использовать InetAddress класс для отображения IP-адреса (этот способ более предпочтительный). Для создания InetAddress объекта используйте следующий метод:

InetAddress ipAddress = InetAddress.getByName(address);

Заметим, что в нашей программе мы использовали адрес 127.0.0.1. Это специальный адрес называется адрес замыкания – он просто отображает локальный компьютер. Если вы намерены запустить клиент и сервер на разных компьютерах, тогда нужно использовать соответственный IP-адрес сервера.

После того как мы создали InetAddress, то можно создать Socket:

Socket socket = new Socket(ipAddress, serverPort);

После создания Socket объекта, можно взять входной и выходной потоки сокета. Входной поток позволит вам читать с сокета, а выходной поток дает возможность писать в сокет.

InputStream sin = socket.getInputStream();
OutputStream sout = socket.getOutputStream();

Следующие строки просто конвертируют потоки в другие типы потоков. После этого нам легче будет работать с String объектами. Этот код ничего не делает с сетью.

DataInputStream in = new DataInputStream(sin);
DataOutputStream out = new DataOutputStream(sout);

Все остальное очень просто – простые манипуляции с объектами потоков (никаких сокетов). Вы можете использовать ваши любимые потоки, вызывать ваши любимые методы, и удостоверяться в передаче данных во второй конец. Если вы не очень осведомлены в использовании потоков, рекомендую вам найти статью о них и прочесть.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: