Типы и характеристики оперативной памяти. Что такое DDR2 и DDR3 и в чем разница между ними

Вот и вышли процессоры Intel Haswell-E. сайт уже успела протестировать топовый 8-ядерник Core i7-5960X , а также материнскую плату ASUS X99-DELUXE . И, пожалуй, главной «фишкой» новой платформы стала поддержка стандарта оперативной памяти DDR4.

Начало новой эпохи, эпохи DDR4

О стандарте SDRAM и модулях памяти

Первые модули SDRAM появились еще в 1993 году. Их выпустила компания Samsung. А уже к 2000 году память SDRAM за счет производственных мощностей корейского гиганта полностью вытеснила с рынка стандарт DRAM.

Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory. Дословно это можно перевести как «синхронная динамическая память с произвольным доступом». Поясним значение каждой характеристики. Динамической память является потому, что в силу малой емкости конденсаторов она постоянно требует обновления. К слову, кроме динамической, также существует и статическая память, которая не требует постоянного обновления данных (SRAM). SRAM, например, лежит в основе кэш-памяти. Помимо динамической, память также является синхронной, в отличие от асинхронной DRAM. Синхронность заключается в том, что память выполняет каждую операцию известное число времени (или тактов). Например, при запросе каких-либо данных контроллер памяти точно знает, сколько времени они будут до него добираться. Свойство синхронности позволяет управлять потоком данных и выстраивать их в очередь. Ну и пару слов о «памяти с произвольным доступом» (RAM). Это означает, что единовременно можно получить доступ к любой ячейке по ее адресу на чтение или запись, причем всегда за одно и то же время вне зависимости от расположения.

Модуль памяти SDRAM

Если говорить непосредственно о конструкции памяти, то ее ячейками являются конденсаторы. Если заряд в конденсаторе есть, то процессор расценивает его как логическую единицу. Если заряда нет - как логический ноль. Такие ячейки памяти имеют плоскую структуру, а адрес каждой из них определяется как номер строки и столбца таблицы.

В каждом чипе находится несколько независимых массивов памяти, которые представляют собой таблицы. Их называют банками. В единицу времени можно работать только с одной ячейкой в банке, однако существует возможность работы сразу с несколькими банками. Записываемая информация необязательно должна храниться в одном массиве. Зачастую она разбивается на несколько частей и записывается в разные банки, причем процессор продолжает считать эти данные единым целым. Такой способ записи называется interleaving. В теории, чем больше в памяти таких банков, тем лучше. На практике модули с плотностью до 64 Мбит имеют два банка. С плотностью от 64 Мбит до 1 Гбит - четыре, а с плотностью 1 Гбит и выше - уже восемь.

Что такое банк памяти

И несколько слов о строении модуля памяти. Сам по себе модуль памяти представляет собой печатную плату с распаянными на ней чипами. Как правило, в продаже можно встретить устройства, выполненные в форм-факторах DIMM (Dual In-line Memory Module) или SO-DIMM (Small Outline Dual In-line Memory Module). Первый предназначается для использования в полноценных настольных компьютерах, а второй - для установки в ноутбуки. Несмотря на один и тот же форм-фактор, модули памяти разных поколений отличаются количеством контактов. Например, решение SDRAM имеет 144 пина для подключения к материнской плате, DDR - 184, DDR2 - 214 пинов, DDR3 - 240, а DDR4 - уже 288 штук. Конечно, речь в данном случае идет о DIMM-модулях. Устройства, выполненные в форм-факторе SO-DIMM, само собой имеют меньшее число контактов в силу своих меньших размеров. Например, модуль памяти DDR4 SO-DIMM подключается к «материнке» за счет 256 пинов.

Модуль DDR (внизу) имеет больше пинов, чем SDRAM (вверху)

Вполне очевидно и то, что объем каждого модуля памяти высчитывается как сумма емкостей каждого распаянного чипа. Чипы памяти, конечно, могут отличаться своей плотностью (или, проще говоря, объемом). К примеру, прошедшей весной компания Samsung наладила серийное производство чипов с плотностью 4 Гбит. Причем в обозримом будущем планируется выпуск памяти с плотностью 8 Гбит. Также модули памяти имеют свою шину. Минимальная ширина шины составляет 64 бит. Это означает, что за такт передается 8 байт информации. При этом нужно отметить, что также существуют 72-битные модули памяти, в которых «лишние» 8 бит отведены для технологии коррекции ошибок ECC (Error Checking & Correction). Кстати, ширина шины модуля памяти также является суммой ширин шин каждого отдельно взятого чипа памяти. То есть, если шина модуля памяти является 64-битной и на планке распаяно восемь чипов, то ширина шины памяти каждого чипа равна 64/8=8 бит.

Чтобы рассчитать теоретическую пропускную способность модуля памяти, можно воспользоваться следующей формулой: A*64/8=ПС, где «А» - это скорость передачи данных, а «ПС» - искомая пропускная способность. В качестве примера можно взять модуль памяти типа DDR3 с частотой 2400 МГц. В таком случае пропускная способность будет равняться 2400*64/8=19200 Мбайт/с. Именно это число имеется в виду в маркировке модуля PC3-19200.

Как же происходит непосредственно чтение информации из памяти? Сначала подается адресный сигнал в соответствующую строку (Row), а уже затем считывается информация из нужного столбца (Column). Информация считывается в так называемый усилитель (Sense Amplifiers) - механизм подзарядки конденсаторов. В большинстве случаев контроллер памяти считывает сразу целый пакет данных (Burst) с каждого бита шины. Соответственно, при записи каждые 64 бита (8 байт) делятся на несколько частей. К слову, существует такое понятие как длина пакета данных (Burst Length). Если эта длина равна 8, то за один раз передается сразу 8*64=512 бит.

Модули и чипы памяти также имеют такую характеристику, как геометрия, или организация (Memory Organization). Геометрия модуля показывает его ширину и глубину. Например, чип с плотностью 512 Мбит и разрядностью (шириной) 4 имеет глубину чипа 512/4=128М. В свою очередь, 128М=32М*4 банка. 32М - это матрица, содержащая 16000 строк и 2000 столбцов. Она может хранить 32 Мбит данных. Что касается самого модуля памяти, то почти всегда его разрядность составляет 64 бита. Глубина же легко высчитывается по следующей формуле: объем модуля умножается на 8 для перевода из байтов в биты, а затем делится на разрядность.

На маркировке без труда можно найти значения таймингов

Необходимо сказать несколько слов и о такой характеристике модулей памяти, как тайминги (задержки). В самом начале статьи мы говорили о том, что стандарт SDRAM предусматривает такой момент, что контроллер памяти всегда знает, сколько времени выполняется та или иная операция. Тайминги как раз и указывают время, требующееся на исполнение определенной команды. Это время измеряется в тактах шины памяти. Чем меньше это время, тем лучше. Самыми важными являются следующие задержки:

  • TRCD (RAS to CAS Delay) - время, которое необходимо для активации строки банка. Минимальное время между командой активации и командой чтения/записи;
  • CL (CAS Latency) - время между подачей команды чтения и началом передачи данных;
  • TRAS (Active to Precharge) - время активности строки. Минимальное время между активацией строки и командой закрытия строки;
  • TRP (Row Precharge) - время, необходимое для закрытия строки;
  • TRC (Row Cycle time, Activate to Activate/Refresh time) - время между активацией строк одного и того же банка;
  • TRPD (Active bank A to Active bank B) - время между командами активации для разных банков;
  • TWR (Write Recovery time) - время между окончанием записи и подачей команды закрытия строки банка;
  • TWTR (Internal Write to Read Command Delay) - время между окончанием записи и командой чтения.

Конечно, это далеко не все существующие в модулях памяти задержки. Можно перечислить еще добрый десяток всевозможных таймингов, но лишь указанные выше параметры существенно влияют на производительность памяти. Кстати, в маркировке модулей памяти и вовсе указываются только четыре задержки. Например, при параметрах 11-13-13-31 тайминг CL равен 11, TRCD и TRP - 13, а TRAS - 31 такту.

Со временем потенциал SDRAM достигла своего потолка, и производители столкнулись с проблемой повышения быстродействия оперативной памяти. Так на свет появился стандарт DDR.1

Пришествие DDR

Разработка стандарта DDR (Double Data Rate) началась еще в 1996 году и закончилась официальной презентацией в июне 2000 года. С приходом DDR уходящую в прошлое память SDRAM стали называть попросту SDR. Чем же стандарт DDR отличается от SDR?

После того как все ресурсы SDR были исчерпаны, у производителей памяти было несколько путей решения проблемы повышения производительности. Можно было бы просто наращивать число чипов памяти, тем самым увеличивая разрядность всего модуля. Однако это отрицательно сказалось бы на стоимости таких решений - уж очень дорого обходилась эта затея. Поэтому в ассоциации производителей JEDEC пошли иным путем. Было решено вдвое увеличить шину внутри чипа, а передачу данных осуществлять также на вдвое повышенной частоте. Кроме этого, в DDR предусматривалась передача информации по обоим фронтам тактового сигнала, то есть два раза за такт. Отсюда и берет свое начало аббревиатура DDR - Double Data Rate.

Модуль памяти DDR производства Kingston

С приходом стандарта DDR появились такие понятия, как реальная и эффективная частота памяти. К примеру, многие модули памяти DDR работали на скорости 200 МГц. Эта частота называется реальной. Но из-за того, что передача данных осуществлялась по обоим фронтам тактового сигнала, производители в маркетинговых целях умножали эту цифру на 2 и получали якобы эффективную частоту 400 МГц, которую и указывали в маркировке (в данном случае - DDR-400). При этом в спецификациях JEDEC указано, что использовать термин «мегагерц» для характеристики уровня производительности памяти и вовсе некорректно! Вместо него необходимо использовать «миллионы передач в секунду через один выход данных». Однако маркетинг - дело серьезное, указанные в стандарте JEDEC рекомендации мало кому были интересны. Поэтому новый термин так и не прижился.

Также в стандарте DDR впервые появился двухканальный режим работы памяти. Использовать его можно было при наличии четного числа модулей памяти в системе. Его суть заключается в создании виртуальной 128-битной шины за счет чередования модулей. В таком случае происходила выборка сразу 256 бит. На бумаге двухканальный режим может поднять производительность подсистемы памяти в два раза, однако на практике прирост скорости оказывается минимален и далеко не всегда заметен. Он зависит не только от модели оперативной памяти, но и от таймингов, чипсета, контроллера памяти и частоты.

Четыре модуля памяти работают в двухканальном режиме

Еще одним нововведением в DDR стало наличие сигнала QDS. Он располагается на печатной плате вместе с линиями данных. QDS был полезен при использовании двух и более модулей памяти. В таком случае данные приходят к контроллеру памяти с небольшой разницей во времени из-за разного расстояния до них. Это создает проблемы при выборе синхросигнала для считывания данных, которые успешно решает как раз QDS.

Как уже говорилось выше, модули памяти DDR выполнялись в форм-факторах DIMM и SO-DIMM. В случае DIMM количество пинов составляло 184 штуки. Для того чтобы модули DDR и SDRAM были физически несовместимы, у решений DDR ключ (разрез в области контактной площадки) располагался в ином месте. Кроме этого, модули памяти DDR работали с напряжением 2,5 В, тогда как устройства SDRAM использовали напряжение 3,3 В. Соответственно, DDR обладала меньшим энергопотреблением и тепловыделением в сравнении с предшественником. Максимальная частота модулей DDR составляла 350 МГц (DDR-700), хотя спецификациями JEDEC предусматривалась лишь частота 200 МГц (DDR-400).

Память DDR2 и DDR3

Первые модули типа DDR2 появились в продаже во втором квартале 2003 года. В сравнении с DDR, оперативная память второго поколения не получила существенных изменений. DDR2 использовала всю ту же архитектуру 2 n -prefetch. Если раньше внутренняя шина данных была вдвое больше, чем внешняя, то теперь она стала шире в четыре раза. При этом возросшую производительность чипа стали передавать по внешней шине с удвоенной частотой. Именно частотой, но не удвоенной скоростью передачи. В итоге мы получили, что если у DDR-400 чип работал на реальной частоте 200 МГц, то в случае DDR2-400 он функционировал со скоростью 100 МГц, но с вдвое большей внутренней шиной.

Также DDR2-модули получили большее количество контактов для присоединения к материнской плате, а ключ был перенесен в другое место для физической несовместимости с планками SDRAM и DDR. Вновь было снижено рабочее напряжение. Если модули DDR работали при напряжении 2,5 В, то решения DDR2 функционировали при разности потенциалов 1,8 В.

По большому счету, на этом все отличия DDR2 от DDR заканчиваются. Первое время модули DDR2 в отрицательную сторону отличались высокими задержками, из-за чего проигрывали в производительности планкам DDR с одинаковой частотой. Однако вскоре ситуация вернулась на круги своя: производители снижали задержки и выпускали более быстрые наборы оперативной памяти. Максимальная частота DDR2 достигала отметки эффективных 1300 МГц.

Различное положение ключа у модулей DDR, DDR2 и DDR3

При переходе от стандарта DDR2 к DDR3 использовался тот же самый подход, что и при переходе от DDR к DDR2. Само собой, сохранилась передача данных по обоим концам тактового сигнала, а теоретическая пропускная способность выросла в два раза. Модули DDR3 сохранили архитектуру 2 n -prefetch и получили 8-битную предвыборку (у DDR2 она была 4-битной). При этом внутренняя шина стала в восемь раз больше, чем внешняя. Из-за этого в очередной раз при смене поколений памяти увеличились ее тайминги. Номинальное рабочее напряжение для DDR3 было снижено до 1,5 В, что позволило сделать модули более энергоэффективными. Заметим, что, кроме DDR3, существует память типа DDR3L (буква L означает Low), которая работает с пониженным до 1,35 В напряжением. Также стоит отметить, что модули DDR3 оказались ни физически, ни электрически несовместимы с любым из предыдущих поколений памяти.

Конечно, чипы DDR3 получили поддержку некоторых новых технологий: например, автоматическую калибровку сигнала и динамическое терминирование сигналов. Однако в целом все изменения носят преимущественно количественный характер.

DDR4 - очередная эволюция

Наконец, мы добрались до совершенно новой памяти типа DDR4. Ассоциация JEDEC начала разработку стандарта еще в 2005 году, однако лишь весной этого года первые устройства появились в продаже. Как говорится в пресс-релизе JEDEC, при разработке инженеры пытались достичь наибольшей производительности и надежности, увеличив при этом энергоэффективность новых модулей. Что ж, такое мы слышим каждый раз. Давайте посмотрим, какие конкретно изменения получила память DDR4 в сравнении с DDR3.

На этой картинке можно проследить эволюцию технологии DDR: как менялись показатели напряжения, частоты и емкости

Один из первых прототипов DDR4. Как ни странно, это ноутбучные модули

В качестве примера рассмотрим 8-гигабайтный DDR4-чип с шиной данных шириной 4 бита. Такой девайс содержит 4 группы банков по 4 банка в каждой. Внутри каждого банка находятся 131 072 (2 17) строки емкостью 512 байт каждая. Для сравнения можно привести характеристики аналогичного DDR3-решения. Такой чип содержит 8 независимых банков. В каждом из банков находятся 65 536 (2 16) строк, а в каждой строке - 2048 байт. Как видите, длина каждой строки чипа DDR4 в четыре раза меньше длины строки DDR3. Это означает, что DDR4 осуществляет «просмотр» банков быстрее, нежели DDR3. При этом переключение между самими банками также происходит гораздо быстрее. Тут же отметим, что для каждой группы банков предусмотрен независимый выбор операций (активация, чтение, запись или регенерация), что позволяет повысить эффективность и пропускную способность памяти.

Основные преимущества DDR4: низкое энергопотребление, высокая частота, большой объем модулей памяти

  • Типы оперативной памяти
  • Оперативная память DDR3
  • Оперативная память DDR4
  • Частота оперативной памяти
  • Игровая память
  • Быстрая память
  • Оперативная память с радиаторами
  • Серверная память

Типы оперативной памяти

Оперативная память – один из наиболее важных компонентов системы, от которого напрямую зависит производительность компьютера. В каталоге можно выбрать и купить оперативную память подходящего типа объемом от 1 до 32 Гб, одиночные планки, а также модули памяти KIT по 2 и 4 планки в комплекте с одинаковыми характеристиками, подобранные для работы в паре (двухканальном режиме). Использование двухканального режима приводит к значительному увеличению пропускной способности, а, следовательно, к увеличению скорости работы приложений. Для компактных систем предусмотрены низкопрофильные модули памяти, отличающиеся от стандартных по высоте, но не по производительности. В то время как для устаревших платформ представлены обычные и серверные модули оперативной памяти стандартов Registered DDR, DDR2, Registered DDR2 и DDR2 FB-DIMM. Доступные цены на оперативную память этих стандартов делают выбор очевидным при поиске замены неисправной памяти или расширении имеющегося общего объема памяти в системе.

Оперативная память DDR3

На сегодняшний день, наиболее распространенным типом памяти для настольных ПК на базе Intel и AMD является оперативная память стандарта DDR3. Однако с пониженным напряжением (LV DDR3) поддерживается не всеми материнскими платами и процессорами.

Оперативная память DDR4

Для самых современных процессоров подходит . Ее отличает удвоенная до 3.2 Гбит/с максимальная скорость передачи данных, увеличенная до 4266 МГц максимальная частота и непревзойденная стабильность работы. Увеличенное число контактов делает модули DDR4 несовместимыми со старыми слотами.

Частота оперативной памяти

Чем выше тактовая частота, тем больше операций совершается в единицу времени, что позволяет более стабильно и быстро работать компьютерным играм и другим приложениям. Цены на оперативную память с высокой тактовой частотой, само собой разумеется, выше. Но прежде чем купить память обратите внимание на то, какая максимальная частота указана в описании процессора. Использование памяти с частотами больше заявленных значений заметного прироста производительности не даст.

Игровая память

Если вы собираете игровой компьютер, мощную рабочую станцию или планируете заниматься разгоном всех компонентов системы, то следует купить игровую память, которая отличается от стандартной повышенной частотой, повышенным напряжением и, по возможности, меньшими задержками. Цены на игровую память не самые низкие, но в этом случае производительность системы будет выше, чем при использовании стандартных планок памяти. Украшением любого геймерского ПК станет с подсветкой. Белая или многоцветная подсветка не оказывает влияния на показатели производительности, однако смотрится очень стильно и актуально для ПК такого класса.

Быстрая память

Быстрые модули памяти отличаются наличием профилей, расширяющих возможности SPD. К наиболее популярным на данный момент относится так называемый . Поддержка XMP позволяет выполнить разгон памяти DDR3 и DDR4 и тем самым достичь даже более высокой производительности и улучшить игровые функции без сложных изменений напряжения и частоты работы памяти.

Как правило, на модули памяти с высокой тактовой частотой для улучшения теплоотдачи устанавливают радиаторы. Однако они могут стать помехой при установке системы охлаждения процессора, поэтому при подборе оперативной памяти с радиаторами надо быть очень внимательными.

Оперативная память для серверов

И серьезных рабочих станций оснащаются либо отдельными микросхемами для исправления ошибок (ECC), либо микросхемами ECC и дополнительными микросхемами регистров для частичной буферизации (Registered). В прайс-листе представлена серверная память DDR3 ECC и DDR4 ECC, а также DDR3 Registered и DDR4 Registered.

Мое почтенье дорогие посетители сайта. В прошлой статье я писал о том, . Теперь, узнав что это такое и для чего и как оно служит, многие из Вас наверно подумываете о том, чтобы приобрести для своего компьютера более мощную и производительную оперативку. Ведь увеличение производительности компьютера с помощью дополнительного объёма памяти ОЗУ является самым простым и дешевым (в отличии например от видеокарты) методом модернизации вашего любимца.

И… Вот вы стоите у витрины с упаковками оперативок. Их много и все они разные. Встают вопросы: А какую оперативную память выбрать? Как правильно выбрать ОЗУ и не прогадать? А вдруг я куплю оперативку, а она потом не будет работать? Это вполне резонные вопросы. В этой статье я попробую ответить на все эти вопросы. Как вы уже поняли, эта статья займет свое достойное место в цикле статей, в которых я писал о том, как правильно выбирать отдельные компоненты компьютера т.е. железо. Если вы не забыли, туда входили статьи:



Этот цикл будет и дальше продолжен, и в конце вы сможете уже собрать для себя совершенный во всех смыслах супер компьютер 🙂 (если конечно финансы позволят:))
А пока учимся правильно выбирать для компьютера оперативную память .
Поехали!

Оперативная память и её основные характеристики.

При выборе оперативной памяти для своего компьютера нужно обязательно отталкиваться от вашей материнской платы и процессора потому что модули оперативки устанавливаются на материнку и она же поддерживает определенные типы оперативной памяти. Таким образом получается взаимосвязь между материнской платой, процессором и оперативной памятью.

Узнать о том, какую оперативную память поддерживает ваша материнка и процессор можно на сайте производителя, где необходимо найти модель своей материнской платы, а также узнать какие процессоры и оперативную память для них она поддерживает. Если этого не сделать, то получится, что вы купили супер современную оперативку, а она не совместима с вашей материнской платой и будет пылиться где нибудь у вас в шкафу. Теперь давайте перейдем непосредственно к основным техническим характеристикам ОЗУ, которые будут служить своеобразными критериями при выборе оперативной памяти. К ним относятся:

Вот я перечислил основные характеристики ОЗУ, на которые стоит обращать внимание в первую очередь при её покупке. Теперь раскроем каждый из ни по очереди.

Тип оперативной памяти.

На сегодняшний день в мире наиболее предпочтительным типом памяти являются модули памяти DDR (double data rate). Они различаются по времени выпуска и конечно же техническими параметрами.

  • DDR или DDR SDRAM (в переводе с англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Модули данного типа имеют на планке 184 контакта, питаются напряжением в 2,5 В и имеют тактовую частоту работы до 400 мегагерц. Данный тип оперативной памяти уже морально устарел и используется только в стареньких материнских платах.
  • DDR2 — широко распространенный на данное время тип памяти. Имеет на печатной плате 240 контактов (по 120 на каждой стороне). Потребление в отличие от DDR1 снижено до 1,8 В. Тактовая частота колеблется от 400 МГц до 800 МГц.
  • DDR3 — лидер по производительности на момент написания данной статьи. Распространен не менее чем DDR2 и потребляет напряжение на 30-40% меньше в отличии от своего предшественника (1,5 В). Имеет тактовую частоту до 1800 МГц.
  • DDR4 — новый, супер современный тип оперативной памяти, опережающий своих собратьев как по производительности (тактовой частоте) так и потреблением напряжения (а значит отличающийся меньшим тепловыделением). Анонсируется поддержка частот от 2133 до 4266 Мгц. На данный момент в массовое производство данные модули ещё не поступили (обещают выпустить в массовое производство в середине 2012 года). Официально, модули четвертого поколения, работающие в режиме DDR4-2133 при напряжении 1,2 В были представлены на выставке CES, компанией Samsung 04 января 2011 года.

Объём оперативной памяти.

Про объём памяти много писать не буду. Скажу лишь, что именно в этом случае размер имеет значение 🙂
Все несколько лет назад оперативная память объёмом в 256-512 МБ удовлетворяла все нужды даже крутых геймерских компьютеров. В настоящее же время для нормального функционирования отдельно лишь операционной системы windows 7 требуется 1 Гб памяти, не говоря уже о приложениях и играх. Лишней оперативка никогда не будет, но скажу Вам по секрету, что 32-х разрядная windows использует лишь 3,25 Гб ОЗУ, если даже вы установите все 8 Гб ОЗУ. Подробнее об этом вы можете прочитать .

Габариты планок или так называемый Форм — фактор.

Form — factor — это стандартные размеры модулей оперативки, тип конструкции самих планок ОЗУ.
DIMM (Dual InLine Memory Module — двухсторонний тип модулей с контактами на обоих сторонах) — в основном предназначены для настольных стационарных компьютеров, а SO-DIMM используются в ноутбуках.

Тактовая частота.

Это довольно таки важный технический параметр оперативной памяти. Но тактовая частота есть и у материнской платы и важно знать рабочую частоту шины этой платы, так как если вы купили например модуль ОЗУ DDR3-1800 , а слот (разъём) материнской платы поддерживает максимальную тактовую частоту DDR3-1600 , то и модуль оперативной памяти в результате будет работать на тактовой частоте в 1600 МГц . При этом возможны всяческие сбои, ошибки в работе системы и .

Примечание: Частота шины памяти и частота процессора — совершенно разные понятия.

Из приведенных таблиц можно понять, что частота шины, умноженная на 2, дает эффективную частоту памяти (указанную в графе «чип»), т.е. выдает нам скорость передачи данных. Об этом же нам говорит и название DDR (Double Data Rate) — что означает удвоенная скорость передачи данных.
Приведу для наглядности пример расшифровки в названии модуля оперативной памяти — Kingston/PC2-9600/DDR3(DIMM)/2Gb/1200MHz , где:
— Kingston — производитель;
— PC2-9600 — название модуля и его пропускная способность;
— DDR3(DIMM) — тип памяти (форм фактор в котором выполнен модуль);
— 2Gb — объем модуля;
— 1200MHz — эффективная частота, 1200 МГц.

Пропускная способность.

Пропускная способность — характеристика памяти, от которой зависит производительность системы. Выражается она как произведение частоты системной шины на объём данных передаваемых за один такт. Пропускная способность (пиковый показатель скорости передачи данных) – это комплексный показатель возможности RAM , в нем учитывается частота передачи данных , разрядность шины и количество каналов памяти. Частота указывает потенциал шины памяти за такт – при большей частоте можно передать больше данных.
Пиковый показатель вычисляется по формуле: B = f * c , где:
В — пропускная способность, f — частота передачи, с — разрядность шины. Если Вы используете два канала для передачи данных, все полученное умножаем на 2. Чтобы получить цифру в байтах/c, Вам необходимо полученный результат поделить на 8 (т.к. в 1 байте 8 бит).
Для лучшей производительности пропускная способность шины оперативной памяти и пропускная способность шины процессора должны совпадать. К примеру, для процессора Intel core 2 duo E6850 с системной шиной 1333 MHz и пропускной способностью 10600 Mb/s , можно установить два модуля с пропускной способностью 5300 Mb/s каждый (PC2-5300 ), в сумме они будут иметь пропускную способность системной шины (FSB ) равную 10600 Mb/s .
Частоту шины и пропускную способность обозначают следующим образом: «DDR2-XXXX » и «PC2-YYYY «. Здесь «XXXX » обозначает эффективную частоту памяти, а «YYYY » пиковую пропускную способность.

Тайминги (латентность).

Тайминги (или латентность) — это временные задержки сигнала, которые, в технической характеристике ОЗУ записываются в виде «2-2-2 » или «3-3-3 » и т.д. Каждая цифра здесь выражает параметр. По порядку это всегда «CAS Latency » (время рабочего цикла), «RAS to CAS Delay » (время полного доступа) и «RAS Precharge Time » (время предварительного заряда).

Примечание

Чтобы вы могли лучше усвоить понятие тайминги, представьте себе книгу, она будет у нас оперативной памятью, к которой мы обращаемся. Информация (данные) в книге (оперативной памяти) распределены по главам, а главы состоят из страниц, которые в свою очередь содержат таблицы с ячейками (как например в таблицах Excel). Каждая ячейка с данными на странице имеет свои координаты по вертикали (столбцы) и горизонтали (строки). Для выбора строки используется сигнал RAS (Raw Address Strobe) , а для считывания слова (данных) из выбранной строки (т.е. для выбора столбца) — сигнал CAS (Column Address Strobe) . Полный цикл считывания начинается с открытия «страницы» и заканчивается её закрытием и перезарядкой, т.к. иначе ячейки разрядятся и данные пропадут.Вот так выглядит алгоритм считывания данных из памяти:

  1. выбранная «страница» активируется подачей сигнала RAS ;
  2. данные из выбранной строки на странице передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS );
  3. подается сигнал CAS для выбора (столбца) слова из этой строки;
  4. данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency );
  5. следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
  6. после завершения обращения к строке происходит закрытие страницы, данные возвращаются в ячейки и страница перезаряжается (задержка называется RAS Precharge ).

Каждая цифра в обозначении указывает, на какое количество тактов шины будет задержан сигнал. Тайминги измеряются в нано-секундах. Цифры могут иметь значения от 2 до 9 . Но иногда к трем этим параметрам добавляется и четвертый (например: 2-3-3-8 ), называющийся «DRAM Cycle Time Tras/Trc ” (характеризует быстродействие всей микросхемы памяти в целом).
Случается, что иногда хитрый производитель указывает в характеристике оперативки лишь одно значение, например «CL2 » (CAS Latency ), первый тайминг равный двум тактам. Но первый параметр не обязательно должен быть равен всем таймингам, а может быть и меньше других, так что имейте это в виду и не попадайтесь на маркетинговый ход производителя.
Пример для наглядности влияния таймингов на производительность: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц , но с задержками 3-3-3 . Другими словами, в зависимости от задержек, разница в производительности может достигать 10 % .
Итак, при выборе лучше покупать память с наименьшими таймингами, а если Вы хотите добавить модуль к уже установленному, то тайминги у покупаемой памяти должны совпадать с таймингами установленной памяти.

Режимы работы памяти.

Оперативная память может работать в нескольких режимах, если конечно такие режимы поддерживаются материнской платой. Это одноканальный , двухканальный , трехканальный и даже четырехканальный режимы. Поэтому при выборе оперативной памяти стоит обратить внимание и на этот параметр модулей.
Теоретически скорость работы подсистемы памяти при двухканальном режиме увеличивается в 2 раза, трехканальном – в 3 раза соответственно и т.д., но на практике при двухканальном режиме прирост производительности в отличии от одноканального составляет 10-70%.
Рассмотрим подробнее типы режимов:

  • Single chanell mode (одноканальный или асимметричный) – этот режим включается, когда в системе установлен только один модуль памяти или все модули отличаются друг от друга по объему памяти, частоте работы или производителю. Здесь неважно, в какие разъемы и какую память устанавливать. Вся память будет работать со скоростью самой медленной из установленной памяти.
  • Dual Mode (двухканальный или симметричный) – в каждом канале устанавливается одинаковый объем оперативной памяти (и теоретически происходит удвоение максимальной скорости передачи данных). В двухканальном режиме модули памяти работают попарно 1-ый с 3-им и 2-ой с 4-ым.
  • Triple Mode (трехканальный) – в каждом из трех каналов устанавливается одинаковый объем оперативной памяти. Модули подбираются по скорости и объему. Для включения этого режима модули должны быть установлены в 1, 3 и 5/или 2, 4 и 6 слоты. На практике, кстати говоря, такой режим не всегда оказывается производительнее двухканального, а иногда даже и проигрывает ему в скорости передачи данных.
  • Flex Mode (гибкий) – позволяет увеличить производительность оперативной памяти при установке двух модулей различного объема, но одинаковых по частоте работы. Как и в двухканальном режиме платы памяти устанавливаются в одноименные разъемы разных каналов.

Обычно наиболее распространенным вариантом является двухканальный режим памяти.
Для работы в многоканальных режимах существуют специальные наборы модулей памяти — так называемая Kit-память (Kit-набор) — в этот набор входит два (три) модуля, одного производителя, с одинаковой частотой, таймингами и типом памяти.
Внешний вид KIT-наборов:
для двухканального режима

для трехканального режима

Но самое главное, что такие модули тщательно подобраны и протестированы, самим производителем, для работы парами (тройками) в двух-(трёх-) канальных режимах и не предполагают никаких сюрпризов в работе и настройке.

Производитель модулей.

Сейчас на рынке ОЗУ хорошо себя зарекомендовали такие производители, как: Hynix , amsung , Corsair , Kingmax , Transcend , Kingston , OCZ
У каждой фирмы к каждому продукту имеется свой маркировочный номер , по которому, если его правильно расшифровать, можно узнать для себя много полезной информации о продукте. Давайте для примера попробуем расшифровать маркировку модуля Kingston семейства ValueRAM (смотрите изображение):

Расшифровка:

  • KVR – Kingston ValueRAM т.е. производитель
  • 1066/1333 – рабочая/эффективная частота (Mhz)
  • D3 — тип памяти (DDR3 )
  • D (Dual) – rank/ранг . Двухранговый модуль – это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом (нужен для достижения максимального объёма оперативной памяти при ограниченном количестве слотов)
  • 4 – 4 чипа памяти DRAM
  • R – Registered , указывает на стабильное функционирование без сбоев и ошибок в течение как можно большего непрерывного промежутка времени
  • 7 – задержка сигнала (CAS=7 )
  • S – термодатчик на модуле
  • K2 – набор (кит) из двух модулей
  • 4G – суммарный объем кита (обеих планок) равен 4 GB.

Приведу еще один пример маркировки CM2X1024-6400C5 :
Из маркировки видно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5 .
Марки OCZ , Kingston и Corsair рекомендуют для оверклокинга, т.е. имеют потенциал для разгона. Они будут с небольшими таймингами и запасом тактовой частоты, плюс ко всему они снабжены радиаторами, а некоторые даже кулерами для отвода тепла, т.к. при разгоне количество тепла значительно увеличивается. Цена на них естественно будет гораздо выше.
Советую не забывать про подделки (их на прилавках очень много) и покупать модули оперативной памяти только в серьезных магазинах, которые дадут Вам гарантию.

Напоследок:
На этом все. С помощью данной статьи, думаю, вы уже не ошибетесь при выборе оперативной памяти для своего компьютера. Теперь вы сможете правильно выбрать оперативку для системы и повысить её производительность без каких либо проблем. Ну, а тем кто купит оперативную память (или уже купил), я посвящу следующую статью, в которой я подробно опишу как правильно устанавливать оперативную память в систему. Не пропустите…

Как известно, DDR2 и DDR3, принадлежат к совершенно разным поколениям оперативной памяти и тех аспектов, которые их между собой отличают, существует огромное количество. Несмотря на их наличие, до сих пор не утихают споры, касательно того, имеет ли смысл переплачивать за DDR3, учитывая то, что DDR2., вернее ее характеристики, являются практически теми же.

Что собой представляют DDR2 и DDR3?

Появление DDR2, вызвало огромный фурор не только у представителей крупных ИТ-компаний, но также и у пользователей, которые просто не захотели отказываться от стандартной разновидности DDR. Если сравнивать вторую версию оперативной памяти со стандартной, то следовало бы отметить то, что DDR 2, способно передавать данные по обоим срезам. Кроме этого, их разница сводится к тому, что DDR 2, имеет возможность похвастаться наличием намного более быстрой шиной. Кстати говоря, процедура передачи данных на них, может совершаться одновременно, причем сразу-же из четырех мест. Ввиду вышесказанного, мы и можем уверенно говорить о том, что скорость передачи данных DDR 2, будет в несколько раз превосходить ту, которая имеет место быть в случае с предыдущим поколением.

Кроме этого, такую оперативную память характеризуют относительно небольшим энергопотреблением и достаточно быстрым охлаждением. DDR 2 казался максимально эффективным, вплоть к тому времени, пока не стало известно об существование DDR3.

В случае с такой оперативной памятью, имеет место быть снижение напряжения питания ячеек. Создателям DDR 3, каким-то невероятным образом удалось снизить энергопотребление на целых 15 процентов . Помимо стандартных разновидностей DDR 3, на современном рынке предусмотрены и слегка модифицированные их версии. Их помечают буквой «L», которая означает, что эта модель оперативной памяти, имеет возможность похвастаться наличием еще большего показателя энергосбережения. Пропускная способность у DDR 3, значительно превышает те показатели, которые предусмотрены в случае с какими либо-предыдущими моделями оперативной памяти. Впрочем, уже сейчас DDR 3 — не может больше называться максимально эффективной разновидностью оперативной памяти, поскольку относительно недавно, о себе заявила DDR 4, которая согласно официальному заявлению компании-производителя, должна превзойти все предыдущие поколения.

Думаю, вы сами догадываетесь, что DDR 3 и DDR 4, представляют собой такие стандарты оперативной памяти, которые, к огромному сожалению, не могут быть взаимозаменяемыми, ну или совместимыми. Кроме этого, отличаются они скоростью осуществления собственной работы, а также некоторыми показателями частоты. Так, в том случае, если максимальная частота обыкновенной DDR 2, составляет всего 800 МГц, то в случае с DDR 3, этот показатель увеличивается к 1600 МГц.

Не рекомендуется ставить DDR 2 и DDR 3 на одну и ту же материнскую плату, поскольку они являются совершенно несовместимыми. Отличаются два этих стандарта памяти также и тем, что DDR3 расходует гораздо меньше электроэнергии, а также гораздо быстрее охлаждается. Кстати говоря, в настоящий момент времени, в продаже находятся так называемые гибридные материнские платы, главной особенностью которых, является то, что у них имеются разъемы сразу-же под обе разновидности ОЗУ. Однако, следовало бы учесть то, что пользоваться ими можно только отдельно друг от друга.

DDR 2 и DDR 3

Основные отличия DDR 2 и DDR 3, сводятся к следующему:

  • Главной отличительной особенностью двух этих стандартов памяти, является то, что они имеют совершенно разные слоты и ввиду их наличия, является невозможным совместить их друг с другом.
  • DDR 3, располагает намного большей тактовой частотой. В новой версии она составляет 1600 МГц, а в предыдущей — всего 800 МГ.
  • В отличие от своей предыдущей версии, DDR3, имеет возможность похвастаться наличием намного большей пропускной способностью и гораздо меньшим энергопотреблением.

Действительно, в некоторых ситуациях совершенно не уместно заменять старенький DDR2, ведь в преимущественном большинстве случаев, особенно учитывая то, как значимая часть пользователей ПК, проводит свой досуг, хватит и его. В то самое время, не следовало бы забывать о том, что DDR2 и DDR3 — это совершенно разные типы оперативной памяти и ввиду наличия настолько большого количества отличительных особенностей, совершенно глупо путать их между собой. Кстати говоря, сейчас появился стандарт памяти DDR4, который также, как и все его былые аналоги, будет иметь целый перечень всевозможных отличий. При этом, стоить он будет гораздо дороже!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: