Процессоры. Долгожданный Ivy Bridge. Успех или провал

Интеловский принцип «тик-так», описывающий идеологию попеременного ввода новых микроархитектур и внедрения более тонких техпроцессов, продолжает действовать. Изначально компания обещала выдавать новые продукты каждый год, и, надо сказать, в целом она придерживается этого плана. В прошлом году нам преподнесли микроархитектуру Sandy Bridge, существенно увеличившую быстродействие современных компьютеров, а теперь Intel запускает проект Ivy Bridge — усовершенствованный процессорный дизайн, предполагающий использование новой производственной технологии с 22-нм нормами и инновационными трёхмерными транзисторами.

Однако ослабление конкуренции на рынке высокопроизводительных процессоров всё же не может не сказываться на темпах прогресса. Маятник интеловской концепции постепенно замедляет свой ход, и если Sandy Bridge были представлены в самом начале 2011 года, то анонса Ivy Bridge нам пришлось ждать до конца апреля. Впрочем, у Intel есть неплохое оправдание: новое поколение процессоров — это не простая косметическая переделка старого ядра с учётом новых технологических норм. Инженеры внесли целый ряд существенных изменений в микроархитектуру, поэтому Ivy Bridge предлагается считать не за один «тик», а за «тик» и ещё «полтака» в придачу.

Можно ли принять такое объяснение возникшей задержки? Всё зависит от того, с каких позиций оценивать современные процессоры вообще. Большинство изменений, произошедших в дизайне Ivy Bridge, касается не вычислительных ядер, а графического ядра. Поэтому для традиционных CPU это — явный «тик». Однако если считать, что предложенная AMD парадигма гетерогенных процессоров оказалась очередным пророчеством (они, в отличие от микроархитектур, AMD явно удаются), то Ivy Bridge может потянуть и на полноценный «так».

Так вот и получается, что новый интеловский продукт — очень многогранная и противоречивая вещь. Приверженцы десктопов, которые видят в Ivy Bridge возможный стимул к модернизации своих систем, новинкой будут, скорее всего, разочарованы. Для них в ней нет ничего особенно привлекательного, так как простой переход на новую технологию производства сам по себе ничего особенного не привносит. Тем более что «утончение» техпроцесса уже давно выливается не в увеличение тактовых частот CPU, а в снижение их тепловыделения.

Зато для пользователей разного рода мобильных или компактных систем Ivy Bridge сулит очень хороший гешефт. Наконец-то о представителях серий Intel Core можно будет думать как о полноценных гибридных процессорах — APU, которые обеспечивают неплохую 3D-производительность, совместимы с DirectX 11 и способны к выполнению GPGPU-вычислений. Недаром именно с выходом Ivy Bridge компания Intel напрямую связывает расцвет ультрабуков — новинки вписываются в этот класс компьютеров практически идеально.

Впрочем, в этом материале мы будем позиционировать себя как энтузиастов старой закалки. Всякие ультракомпактные компьютеры — это детские игрушки, нам подавай традиционные вычислительные системы, внушающие уважение как своим внешним видом, так и уровнем производительности. Может ли Ivy Bridge органично вписаться и в такую экосистему? Попробуем на этот вопрос ответить.

⇡ Микроархитектура Ivy Bridge: краткий обзор

Хотя мы и сказали о том, что микроархитектура Ivy Bridge имеет значительные отличия от своей предшественницы, Sandy Bridge, узреть близкое родство между ними — проще простого. На самом верхнем уровне, в общей структуре новых процессоров не изменилось ровным счётом ничего, все сделанные усовершенствования — в деталях. Подробное описание нововведений можно найти в специальном материале , здесь же мы приведём краткий обзор ключевых моментов.

Начать, пожалуй, следует с того, что появление новых процессоров Ivy Bridge не означает смены платформы. Эти CPU используют тот же самый процессорный разъём LGA1155, что и их предшественники, и полностью совместимы с имеющимся парком материнских плат. К выпуску Ivy Bridge компания Intel приурочила появление семейства наборов логики седьмой серии во главе с Z77 , однако применение плат на его основе вместе с новыми процессорами не является необходимостью. Для соединения Ivy Bridge с набором системной логики используется та же самая, что и в случае с Sandy Bridge, шина DMI 2.0 с пропускной способностью 20 Гбит/с. Поэтому новые процессоры превосходно работают в любых материнских платах с разъёмом LGA1155.

Как и Sandy Bridge, процессоры семейства Ivy Bridge состоят из того же самого набора функциональных узлов. Они содержат два или четыре вычислительных ядра, оборудованных индивидуальным L2-кешем объёмом 256 Кбайт; графическое ядро; разделяемую кеш-память третьего уровня объёмом до 8 Мбайт; двухканальный контроллер памяти с поддержкой DDR3 SDRAM; контроллер графической шины PCI Express; а также системный агент, отвечающий за работу технологии Turbo и реализующий вспомогательные интерфейсы. Все составные части Ivy Bridge соединяются посредством кольцевой шины Ring Bus — тут тоже нет ничего нового.

Если же говорить об отличиях Ivy Bridge от её предшественников, то это в первую очередь — новая 22-нм производственная технология, применённая производителем для изготовления полупроводниковых кристаллов. Причём новизна в данном случае заключается не только в «утончённых» нормах, но и в принципиальном изменении внутренней конструкции транзисторов. Intel характеризует новые транзисторы как имеющие трёхмерную конструкцию (Tri-Gate), что на практике выливается в установку на кремниевой подложке высокого покрытого High-K диэлектриком вертикального ребра, врезающегося в затвор.

Учитывая, что одной из главных целей выпуска Ivy Bridge является их массированное проникновение в ультра-мобильные компьютеры, такое улучшение экономичности отнюдь не лишнее. К тому же разработчики Intel усилили достигнутый эффект внедрением новых энергосберегающих технологий: более глубоких состояний сна, возможности отключения от линий питания контроллера памяти и поддержки DDR3L SDRAM с пониженным напряжением. Появилось и такое понятие, как конфигурируемый TDP. В результате, в числе различных модификаций Ivy Bridge возникает целый класс ULV-продуктов с 17-Вт тепловым пакетом, снижаемым при необходимости до 14 Вт.

Ввод в строй свежей производственной технологии автоматически означает и уменьшение размеров полупроводниковых кристаллов. Так, кристалл четырёхъядерного Ivy Bridge имеет площадь 160 кв. мм — это на 35% меньше площади Sandy Bridge.

При этом сложность нового процессора значительно выросла, он состоит из 1,4 млрд транзисторов, в то время как количество транзисторов в процессорах-предшественниках аналогичного класса составляло 995 млн штук.

Процессор Техпроцесс Количество ядер Кеш L3 Число транзисторов Площадь ядра
AMD Bulldozer 32 нм 8 8 Мбайт 1,2 млрд 315 кв. мм
AMD Llano 32 нм 4 + GPU Нет 1,45 млрд 228 кв. мм
Intel Ivy Bridge 22 нм 4 + GPU 8 Мбайт 1,4 млрд 160 кв. мм
Intel Sandy Bridge E (6C) 32 нм 6 15 Мбайт 2,27 млрд 435 кв. мм
Intel Sandy Bridge E (4C) 32 нм 4 10 Мбайт 1,27 млрд 294 кв. мм
Intel Sandy Bridge 32 нм 4 + GPU 8 Мбайт 995 млн 216 кв. мм

Наиболее привычный путь задействования дополнительного транзисторного бюджета — это наращивание объёмов кеш-памяти. Однако в Ivy Bridge ничего такого нет, эти процессоры располагают точно такими же по ёмкости и схеме работы L1-, L2- и L3-кешами, что и Sandy Bridge. Дополнительные же транзисторы в большинстве своём ушли во встроенное графическое ядро — оно в Ivy Bridge отличается от графики предыдущего поколения, Intel HD Graphics 3000/2000, чуть менее чем полностью.

Новое видеоядро, получившее название HD Graphics 4000, наконец-то можно именовать современным во всех смыслах этого слова. Главное достижение разработчиков в том, что с новой версией графики они смогли добиться соответствия требованиям DirectX 11 вместе с DirectCompute и Shader Model 5.0, а также открыли возможность GPGPU-вычислений через интерфейс OpenCL 1.1. В дополнение к этому у HD Graphics 4000 появилась поддержка трёх независимых мониторов, а уровень производительности существенно увеличился благодаря добавлению дополнительных исполнительных устройств: теперь их 16 вместо 12. Поэтому Intel считает, что число систем, использующих процессоры компании без внешней видеокарты, существенно увеличится, однако произойдёт это, главным образом, в мобильном рыночном сегменте.

Но для пользователей настольных систем графическое ядро не слишком интересно. Гораздо сильнее они ожидают улучшений микроархитектуры вычислительной части, способных сказаться на производительности. А тут-то новым процессорам поколения Ivy Bridge похвастать особенно нечем. Возможный прирост в быстродействии при работе Ivy Bridge и Sandy Bridge на одинаковой тактовой частоте, даже по самым оптимистичным официальным данным, не превосходит и 5 %. Дело в том, что вычислительные ядра в новых процессорах не перерабатывались, а место имеют лишь незначительные улучшения косметического характера. Так, в Ivy Bridge ускорена работа команд целочисленного и вещественного деления, с учётом использования регистрового файла оптимизировано исполнение инструкций пересылки данных между регистрами, кроме того, реализовано динамическое, а не статическое распределение ресурсов внутренних буферов между потоками при использовании технологии Hyper-Threading.

Чтобы оценить практический эффект этих изменений, мы воспользовались синтетическими бенчмарками из пакета SiSoft Sandra, которые реализуют простые алгоритмы, позволяющие оценить производительность процессоров при выполнении разнообразных операций. В рамках данного предварительного теста мы сравнили между собой скорость работы четырёхъядерных Sandy Bridge и Ivy Bridge, функционирующих на одинаковой частоте 4,0 ГГц без использования технологии Hyper-Threading.

Sandy Bridge
4С/4T 4,0 ГГц
Ivy Bridge
4С/4T 4,0 ГГц
Преимущество
новой микроархитектуры
Processor Arithmetic
Dhrystone SSE4.2 100,82 100,86 0,0%
Whetstone SSE3 58,2 59,92 +3,0%
Processor Multi-Media
Integer x16 AVX 195,13 195,82 +0,4%
Float x16 AVX 235,87 239,11 +1,4%
Double x8 AVX 135,07 136,07 +0,7%
Float/Double x8 AVX 178,49 180,38 +1,1%
Cryptography
AES-256-ECB AES 08,4 08,7 +0,4%
SHA2-256 AVX 01,1 1,24 +12,7%

Результаты и впрямь не слишком обнадёживающие. Улучшения микроархитектуры вычислительных ядер в Ivy Bridge выливаются в практически неуловимый прирост производительности.

Поэтому гораздо более интересными для пользователей настольных систем нам представляются те изменения, которые коснулись работы смежных внутрипроцессорных интерфейсов — памяти и шины PCI Express. Так, встроенный в Ivy Bridge контроллер PCI Express получил поддержку третьей версии этой спецификации, что автоматически (при условии применения совместимых оконечных устройств) означает увеличение пропускной способности шины по сравнению с PCI Express 2.0 почти вдвое — до 8 гигатранзакций в секунду.

При этом поддерживаемые Ivy Bridge шестнадцать линий PCI Express могут дробиться на две или на три части — по схеме 8x + 8x или 8x + 4x + 4x. Последний вариант может быть интересен для систем с тремя видеокартами, тем более что PCI Express 3.0 вполне способна обеспечить приемлемую для видеокарт пропускную способность даже в случае использования только четырёх линий.

Что же касается контроллера памяти Ivy Bridge, то его базовые характеристики по сравнению с тем, что мы видели в Sandy Bridge, не изменились. Он точно также может работать с двухканальной DDR3 SDRAM. Но в то же время интеловские инженеры сделали определенные шаги в сторону производителей оверклокерской памяти и добавили в процессор возможность более гибкой настройки частотного режима. Во-первых, максимальной поддерживаемой частотой теперь является DDR3-2800 SDRAM. Во-вторых, для изменения частоты работы памяти теперь можно использовать два режима тактования — с шагом 200 или 266 МГц.

Практическая скорость работы контроллера памяти при этом тоже немного изменилась. Это подтверждают в том числе и бенчмарки. Например, ниже мы приводим показатели AIDA64 Cache & Memory Benchmark, снятые в системе с процессорами Sandy Bridge и Ivy Bridge, работающими на частоте 4,0 ГГц.

Sandy Bridge 4,0 ГГц, DDR3-1867 (9-11-9-30-1T)

Ivy Bridge 4,0 ГГц, DDR3-1867 (9-11-9-30-1T)

Процессор поколения Ivy Bridge обеспечивает немного меньшую практическую латентность подсистемы памяти, но это преимущество минимально. При этом тест выявляет и другую интересную деталь: L3-кеш у новых процессоров якобы стал заметно быстрее. Однако вынуждены разочаровать — в данном случае различие в показателях AIDA64 Cache & Memory Benchmark вызвано не улучшением скоростных характеристик L3-кеша, а изменениями в темпе исполнения инструкций, фигурирующих в алгоритме теста. На самом же деле латентность L3-кеша Ivy Bridge составляет 24 цикла — и это на один цикл больше латентности кеша третьего уровня процессоров Sandy Bridge. Иными словами, кеш в новых процессорах стал работать даже чуть медленнее, чем раньше, но в практических задачах это незаметно.

⇡ Процессоры Ivy Bridge для десктопов, первый заход

Проблемы производственного характера, возникающие почти каждый раз, когда дело касается внедрения каких-либо принципиальных нововведений, пока не позволили Intel завалить рынок разномастными модификациями Ivy Bridge. Поэтому внедрение нового дизайна происходит поэтапно: сегодня анонсируются лишь четырёхъядерные модификации новых процессоров, относящиеся к семействам Core i7 и Core i5.

Моделей для настольных систем из них всего пять, следующая таблица раскрывает их спецификации.

Честно говоря, знакомство с приведёнными характеристиками особого оптимизма по поводу новых процессоров не добавляет. По сравнению с Sandy Bridge мы не видим прогресса ни в числе ядер, ни в тактовых частотах, ни в размерах кеш-памяти. А так как новая микроархитектура практически не увеличивает число обрабатываемых за такт инструкций, становится понятно: по традиционно-процессорным понятиям модельный ряд Ivy Bridge — это ординарное эволюционное обновление Sandy Bridge. Положительных моментов лишь два: привлекательное для отдельных категорий пользователей графическое ядро и снизившееся тепловыделение.


Кстати, с характеристикой TDP связан весьма забавный казус. Хотя в официальной документации типичное тепловыделение новых процессоров указывается как 77 Вт, на коробках с реальными продуктами Intel пишет «95 Вт». Такая нестыковка уже породила массу нелепых суждений, но на самом деле объяснение очень простое. Реально наблюдаемое тепловыделение не выходит за 77-ваттную границу, однако такая величина TDP в употреблении ранее не была, поэтому Intel решила не осложнять жизнь пользователям, производителям компонентов и сборщикам систем и будет указывать на коробках хорошо знакомое всем число. Кроме того, как нам удалось выяснить у представителей компании, в перспективе возможен выпуск более скоростных моделей Ivy Bridge, которые приведут реальное и формальное TDP к единому знаменателю.

Принципиальных изменений нет и в общей структуре предложений. Старшие LGA1155-процессоры новой формации нацеливаются на продвинутых пользователей и имеют литеру «K» в своём индексе. Такие предложения имеют свободный множитель и открыты для оверклокерских экспериментов. Прочие же модели Core i7 и Core i5, как и раньше, не дают повышать коэффициент умножения более чем на четыре единицы.

Отсутствие ярких революционных изменений в вычислительной производительности новых процессоров не удержало Intel от присвоения им номеров из трёхтысячной серии. Таким образом, в структуре интеловских предложений Ivy Bridge для LGA1155-систем становятся под процессоры Sandy Bridge-E для LGA 2011 и вытесняют собой двухтысячные Sandy Bridge. На это указывают и цены. Новинки не дороже Core годичной давности, так что привычное течение процессорной жизни, когда поколения интеловских CPU последовательно сменяют друг друга, не нарушатся и на этот раз.

Для проведения тестирования компания Intel предоставила нам образцы старших процессоров в обновлённых линейках Core третьего поколения: Core i7-3770K и Core i5-3570K.

Обратите внимание, 22-нм производственная технология хорошо проглядывается сквозь практические аспекты эксплуатации новинок. Их рабочее напряжение понизилось относительно Sandy Bridge примерно на 15-20 процентов и находится теперь в районе 1,0 В. Это — одна из основных причин более низкого тепловыделения.

Благодаря работе технологий энергосбережения Enhanced Intel SpeedStep и C1E в состоянии простоя напряжение Ivy Bridge падает до примерно 0,9 В, а частота снижается до 1,6 ГГц.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.

На сегодняшний день компания Intel является лидером мирового рынка процессоров для персональных компьютеров. Этот бренд выпускает широкий ассортимент микрочипов в различных технологических сегментах и ценовых категориях. К наиболее примечательным решениям, представленным американской корпорацией, можно отнести микропроцессоры Intel Core i7 3770.


Эти чипы в частности реализованы на основе высокотехнологической микроархитектуры Ivy Bridge. Традиционно микропроцессоры линейки Intel Core i7 относят к высокопроизводительным устройствам для компьютерных игр. Также микросхемы данного типа неплохо поддаются разгону, причем они достаточно стабильно работают в данном режиме. Характерны ли данные особенности для процессора Intel Core i7 3770? Какие достоинства и недостатки присущи данной микросхеме?

Intel Core i7 3770: основные сведения

Функционирует процессор Intel Core i7 3770 на частоте 3,5 ГГц. Он классифицируется как чип третьего поколения микросхем Intel Core. Отличается данный тип решений высочайшим уровнем производительности. Выполнена микросхема в рамках технологического процесса 22 нм на базе ядра Ivy Bridge. Данный процессор устанавливается на материнских платах с разъемом LGA 1155. Процессор имеет четыре ядра. При использовании режима Turbo Boost 2.0 частота процессора может быть увеличена до значения 3,9ГГц.

Процессор оснащен графическим ускорителем HD Graphics 4000. С помощью данного весьма производительного аппаратного компонента пользователь может легко решать повседневные задачи, такие как работа в интернете, запуск офисных приложений. Также данный компонент дает возможность задействовать процессор для компьютерных игр. К наиболее примечательным технологическим опциям рассматриваемого процессора можно отнести поддержку Hyper-Threading.

Эта технология дает чипу возможность осуществлять вычисления в рамках двух потоков на каждом ядре. Это значит, что фактически процессор Intel Core i7 3770 является восьмиядерным. Чип имеет мощную систему охлаждения, которая рассчитана на работу с тепловыделением, соответствующим работе микросхемы на уровне 77 Вт. К наиболее примечательным характеристикам процессора можно отнести наличие флэш-памяти третьего уровня объемом 8 Мб.

Технология Ivy Bridge: особенности

Процессор Intel Core i7 3770 базируется на основе архитектуры Ivy Bridge. Давайте рассмотрим особенности данной архитектуры. Данная технология является результатом развития микроархитектуры Sandy Bridge. Однако различий между соответствующими решениями не очень много. Обновленная микроархитектура использует тот же разъем, что и предшественник – LGA 1155. Это значит, что для процессора Intel Core i7 3770 можно использовать ту же материнскую плату, что и для старых микросхем на базе архитектуры Sandy Bridge.

Коммуникации между процессорами, основанными на базе данной архитектуры, и компонентами системной логики, осуществляются по шине, которая была задействована и для технологии Sandy Bridge. Это DMI 2.0. Данная технология имеет пропускную способность 20 Гбит/с. В архитектуре Ivy Bridge используются те же функциональные узлы, которые были использованы и в предшествующей технологии Sandy Bridge. Микросхемы, основанные на базе данной технологии, могут иметь 4 или 2 ядра с кэш-памятью второго уровня объемом 256 кб и кэш-памятью третьего уровня объемом 8 Мб.

В структуре данной микроархитектуры имеется графическое ядро, контроллер памяти, элемент для графической шины PCI Express, компоненты отвечающие за использование технологии Turbo и других соответствующих интерфейсов. Все компоненты чипа, построенного на базе технологии Ivy Bridge соединены при помощи шины Ring Bus. В чем же заключаются принципиальные отличия технологии Ivy Bridge? Прежде всего, это технологический процесс. Данная архитектура реализована на технологическом процессе 22 нм.

Определенные отличия есть и во внутренней структуре транзисторов. Согласно информации бренда-производителя, данные компоненты имеют трехмерную структуру. Такая конструкция позволяет чипу работать при пониженном напряжении и меньшей интенсивности нагрева. Таким образом, новая архитектура, на базе которой разработан процессор Intel Core i7 3770, примерно в полтора раза эффективнее, чем технология Sandy Bridge. IT эксперты отмечают, что это свойство новой микроархитектуры от Intel формирует потенциал для активного распространения соответствующих процессоров в сегменте портативных компьютеров. Данные технологические преимущества Ivy Bridge дополнены алгоритмами энергосбережения.

Компания Intel реализовала эти алгоритмы на чипах, которые базируются на соответствующей архитектуре. К примечательным решениям, которые были внедрены брендом, также можно отнести конфигурируемый TDP. Данные технологические нововведения, которые реализованы на Ivy Bridge, в частности в процессоре Intel Core i7 3770, определили возможность выпуска данных чипов на площади примерно на 35% меньшей, чем у микросхем, основанных на базе Sandy Bridge. Это возможно благодаря тому, что в структуре микропроцессоров от Intel используется около 1,4 млрд транзисторов. В чипах, основанных на предыдущей микроархитектуре имелось 995 млн соответствующих компонентов.

Intel Core i7 3770: сравнение с конкурентами

Как процессор Intel Core i7 3770 выглядит на фоне конкурирующих решений? Сравнивать рассматриваемый чип с аналогами можно, основываясь на базовых характеристиках микросхем. Одним из конкурентов данного процессора можно считать чип AMD FX-8350, основанный на микроархитектуре Piledriver. Данную микроархитектуру можно считать результатом развития Bulldozer. Функционирует процессор на базе платформы Socket AM3+, которая довольно часто рассматривается как конкурент LGA 1155. Процессор Intel Core i7 3770 превосходит конкурента от AMD в первую очередь по технологическому процессу. Решение от компании AMD реализовано на 32 нм.

Вместе с тем, в чипе от компании AMD используется 8 ядер. Это преимущество может быть довольно значимым, но только в том случае, если на персональном компьютере запускается игра или приложение, которое в полной мере задействует данный ресурс. В начале статьи уже было отмечено, что фактически процессор Intel Core i7 3770 является 8-ядерным благодаря поддержке концепции Hyper Threading. Даже если два рассматриваемых чипа будут запущены в схожей среде, результаты далеко не всегда будут в пользу устройства от AMD.

IT эксперты считают, что именно благодаря использованию технологического процесса в 22 ним процессор от компании Intel можно считать высокопроизводительным решением в своей ценовой категории. Остальные характеристики данного чипа можно считать второстепенными. Прямые конкуренты процессора Intel Core i7 3770 могут использоваться для решения отдельных задач, которые требуют узкой специализации чипов. Так, например, такие решения могут использоваться для запуска компьютерных игр, оптимизированных на использование чипов от AMD.

Графический модуль: особенности

Рассмотрим основные особенности некоторых ключевых компонентов процессора Intel Core i7 3770. Особого внимания заслуживает новый графический модуль HD Graphics 4000, встроенный в чип от Intel. Главное преимущество данного аппаратного компонента заключается в поддержке современных технологий, таких как Direct Compute, DirectX 11 и Shader Model 5.0. Кроме того, производитель процессора смог реализовать поддержку выполнения вычисления GPGPU при помощи интерфейса Open CL версии 1.1.

Присутствующий в структуре процессора Intel Core i7 3770 графический модуль HD Graphics 4000, может работать с тремя независимыми дисплеями. Также увеличился и общий уровень производительности чипа. Этого удалось достичь благодаря использованию дополнительных исполнительных элементов. Их в устройстве шестнадцать. Перечисленные преимущества графического модуля HD Graphics 4000 дают возможность использовать его для запуска требовательных компьютерных игр, в том числе и на ноутбуках.

Это особенно важно с точки зрения влияния компании Intel на соответствующий сегмент рынка. Какой выигрыш в производительности дает архитектура Ivy Bridge? Какой прирост производительности показывают чипы, построенные на базе данной микроархитектуры по сравнению с процессорами, реализованными на базе технологии Sandy Bridge? IT-специалисты отмечают, что новая технология от компании Intel не позволяет добиться рекордного роста производительности. Проведенные тесты показали, что увеличение производительности при использовании технологии Ivy Bridge составляет примерно 5% при одинаковых частотах.

Эксперты считают, что это связано с тем, что в новых чипах от Intel имеется та же самая структура вычислительных ядер, что и в предыдущих моделях процессоров. Если сравнивать ядра Sandy Bridge и Ivy Bridge на прямую при одинаковых частотах и отключенной функции Hyper Threading, то у второй микроархитектуры в некоторых случаях наблюдается едва заметное преимущество. Так, например, при проведении арифметических тестов рассматриваемых решений в программе Sandra, процессоры демонстрируют практически одинаковые результаты. Конечно, такую картину можно наблюдать только в том случае, если при проведении тестирования используются компьютеры с одинаковыми техническими характеристиками. Можно при желании протестировать чипы на одном том же компьютере. Сначала протестировать процессор на базе архитектуры Ivy Bridge, а затем установить на тот же компьютер Intel Core i7 3770.

PCI Express: производительность

Если рассуждать с точки зрения производительности, то у новой технологии Ivy Bridge есть не так уже много преимуществ по сравнению с предшествующей микроархитектурой. Однако, как уже было отмечено в начале данной статьи, в процессоре Intel Core i7 3770 используется усовершенствованная технология PCI Express. Значит ли это, что при задействовании данного аппаратного компонента будет наблюдаться практический рост производительности? Благодаря проведению ряда тестов, экспертам удалось доказать, что это действительно так.

Технология PCI Express представляет собой особый интерфейс, который отвечает за эффективность работы ключевых аппаратных компонентов, расположенных внутри процессора. Архитектура Ivy Bridge совместима с контроллером PCI Express третьей версии. В соответствующей реализации интерфейса пропускная способность получается почти в два раза больше, чем у второй версии. Она равняется примерно 8 гигатранзакций в секунду.

Контроллер памяти: особенности работы

Имеется еще один довольно интересный компонент рассматриваемого чипа. Это контроллер памяти. Давайте рассмотрим его особенности. Основные характеристики в новом чипе не слишком отличаются от характеристик, наблюдаемых в архитектуре Sandy Bridge. Так, например, они контроллер поддерживает работу с памятью типа DDR3 SDRAM в режиме двух каналов. Также в новом чипе реализована возможность тонкой настройки частот. При работе с соответствующим параметром диапазон корректировки значений частот может равняться 200 или 266 МГц. Можно также отметить, что новый процессор поддерживает частоту, которая соответствует модулям памяти DDR3-2800 SDRAM.

Тест процессора в компьютерных играх

Теперь изучим, как ведет себя процессор Intel Core i7 3770 в компьютерных играх. Эксперты отмечают, что процессоры, основанные на микроархитектуре Ivy Bridge в играх намного быстрее, чем их предшественники. При проведении тестов в компании Sandra наблюдается достаточно небольшой прирост производительности. Стоит отметить, что рассматриваемый процессор от компании Intel во много опережает конкурирующее решение от компании AMD – чип FX-8150. Проведение тестирования в компьютерных играх предполагает использование аналогичных по производительности компонент компьютера, в том числе и видеокарты.

Также проводить тесты процессора рекомендуется при выборе минимальных настроек графики. Это делается для того, чтобы результаты проверки производительности компьютеров в играх преимущественно основывались на эффективности работы процессора, а не на ресурсах видеокарты. Наряду с базовой моделью Intel Core i7 3770, компания Intel также разрабатывает модификацию с разблокированным программным коэффициентом-множителем — Intel Core i7 3770 K. Данная модификация приспособлена к разгону. Изучим специфику разгона данного устройства.

Разгон процессора Intel Core i7 3770

Чтобы разогнать процессор, достаточно увеличить множитель до значения 63. Так, например, в предшествующей архитектуре Sandy Bridge возможно было выставить значение множителя 59. Однако, как уже было отмечено выше, разогнанный чип может функционировать только в том режиме, который соответствует производительности DDR3-2800. Стоит также отметить поддержку XMP 1.3. Насколько Intel Core i7 3770 производителен в данном режиме? Специалисты отмечают, что разгон процессора сопровождается не слишком впечатляющими результатами.

Так, например, максимальное значение частоты, при котором микросхема работает стабильно, равняется 4,6 ГГц. Таким образом, по сравнению с номинальным значением наблюдается некоторый прирост производительности, примерно на 20%. Такую результативность специалисты оценивают, как довольно скромную. И это даже на фоне старших моделей, которые базировались на архитектуре Sandy Bridge.

Так, например, чипы Intel Core i7 2600 K и Intel Core i7 2500 K могут разгоняться до 5 ГГц при условии приемлемых показателей напряжения. Эксперты отмечают, что в принципе при этом процессор не сильно нагревается. Система охлаждения неплохо справляется с ростом частоты чипа. Проблемы со стабильностью работы чипа начинают проявляться по мере разгона. При разгоне не рекомендуется выставлять напряжение выше 1,2 В. Разгонный потенциал Intel Core i7 3770, таким образом, получается весьма скромным. Однако для поклонников бренда Intel открыты все возможности по разгону при том условии, что будут задействованы процессоры линейки Sandy Bridge.

Intel Core i7 3770: итоги

Какой итог можно подвести после рассмотрения процессора Intel Core i7 3770? Данный чип имеет довольно неплохие технические характеристики, что позволяет отнести процессор к передовым устройствам данного ценового сегмента. Прежде всего это возможно, благодаря тому, что при производстве используется один из самых совершенных на сегодняшний день технологических процессов – 22 нм. Также довольно примечательная реализация поддержки микросхемой технологии PCI Express третьей версии.

Отдельного внимания заслуживает графическое ядро процессора, которое также было подвергнуто усовершенствованию. Технологии энергосбережения чипа также были модернизированы. Однако, если рассматривать фактические показатели скорости работы чипа, то данный процессор никак нельзя назвать революционной моделью по сравнению с лидирующими моделями предшествующей линейки, в которой использовалась архитектура Sandy Bridge. Если сопоставить характеристики данных микросхем, то при номинальных частотах производительность новинки получается всего на несколько процентов выше.

В компьютерных играх такое преимущество вообще кажется незаметным. Если же говорить о разгоне, то данное устройство обладает не слишком высоким потенциалом. Как считают эксперты, процессор Intel Core i7 3770 адаптирован для продвижения бренда на рынке мобильных решений. Если говорить о сегменте десктопных моделей, то здесь чип имеет те же возможности, что и старшие модели. В сегменте ноутбуков данный чип является одним из самых конкурентных. Такие преимущества обусловлены малыми размерами чипа и более эффективной системой энергопотребления.

Intel Core i7 3770: отзывы пользователей

Уделим внимание еще одному важному аспекту изучения процессоров Intel Core i7 3770 – отзывам пользователей. В-общем, мнения владельцев компьютеров, в которых используется рассматриваемая микросхема, довольно позитивны. Некоторые пользователи разделяют мнение экспертов о скромном разгонном потенциале устройства. Однако для поклонников данного бренда Intel Core i7 3770 продолжает оставаться передовым решением. Такой оценки процессор удостоился благодаря своей технологичности. Она выражается в поддержке таких технологий, как PCI Express, наличии мощного графического модуля.

Отсутствие стоящего конкурента в сегменте настольных центральных процессоров не мешает и не демотивирует Intel следовать своим традициям. Первая традиция закон Гордона Мура. Вторая традиция — реализация концепции «тик-так». Казалось бы, только вчера мы охали и ахали, удивляясь тому уровню производительности, что могли предоставить нам «камни» архитектуры Intel Sandy Bridge. А уже сегодня просим любить и жаловать новый виток эволюции кремниевого оверлорда — Intel Ivy Bridge!

Вот новый поворот

Думаем, очередной раз про закон Мура рассказывать нет смысла. Лучше более детально остановимся на концепции «тик-так». Согласно ей. Intel сначала выпускает процессор на новом техпроцессе, но старой архитектуры («тик»), а затем, наоборот, выпускает процессор на базе все того же техпроцесса, но с новой архитектурой («так»). Например. 32-нанометровые «камни» архитектуры Westmere (Intel Core І7-990Х) «тик-процессоры». А 32-нанометровые Intel Sandy Bridge (Intel Core І7-2700К) — «так-процессоры». Наконец, новые Intel Ivy Bridge и Intel Core І7-3770 в частности — опять «тик-процессоры».

Насиженное место

Примечательно, что Intel продолжает еще одну свою старую традицию. Уже давно новое поколение процессоров «тик-так» совместимо со старой платформой: Intel Core (архитектура Nehalem. 45 нм) — LGA1156/1366; Intel Core I3/І5/І7 первого поколения (Westmere 32 нм) — LGA1156/1366; Intel Core І3/І5/І7 второго поколения процессоров (Sandy Bridge 32 нм) — LGA1155/2011; наконец. Intel Core І5/І7 третьего поколения (Ivy Bridge. 22 нм) — снова LGA1155. Что тут сказать? Всем нам очень приятно! Материнские платы как на основе новых чипсетов Intel H67/P67/Z68 Express, так и на базе Intel Z77/ Н77/В75 Express с радостью подружатся с новыми 22-нанометровыми «камнями». Следовательно, у всех обладателей вышеперечисленных плат есть маневры для дальнейшего апгрейда системы.

В формате 3D

Теперь перейдем к самому главному, к обзору новейшей архитектуры. Хотя в случае «тик-процессоров» все довольно-таки условно. Так. основные черты Intel Ivy Bridge не претерпели изменений в сравнении с Intel Sandy Bridge (Intel Sandy Bridge-E выносим за скобки. не забывая о том. что, возможно, со временем выйдут свои (условно) Intel Ivy Bridge-E для платформы LGA2011). Топовые «камни» по-прежнему имеют до 4 физических ядер, но за счет технологии HyperThreading пользователь может рассчитывать на все восемь потоков. Как обычно, 22-нанометровые Intel Core І5 поддержки данной технологии будут лишены. Непосредственное кристалл интегрированы двухканальный набор памяти DDR3 и 16 разделяемых линий PCI Express последнего, третьего поколения с пропускной способностью 128 Гбит/с в одну сторону.
За счет перехода на более тонкий техпроцесс (хотя куда уже тоньше?) Intel Core І7-3770 имеет в своем распоряжении 1.4 миллиарда транзисторов. Для сравнения. Intel Core І7-2700К насчитывает всего 995 миллионов кремниевых затворов.
Площадь кристалла составляет 160 квадратных миллиметров, что на 30% меньше, нежели у кристалла Intel Sandy Bridge. Подобный рост транзисторов Intel Ivy Bridge связан не только с –«липосэкцией», но и с нетрадиционным расположением кремниевых элементов. Есть что-то общее с технологией LTO Ultrium, которая применяется для надежности хранения больших объемов данных. Эта технология нашла сове применение в катриджах LTO Ultrium. Дешевые ленты LTO можно купить на сайте storusint.com. С помощью этих лент можно хранить объемы до 800 Гб. Конструкция Tri-Gate подразумевает установку на подложке специального кремниевого ребра, покрытого так называемым High-K диэлектриком, расположенного вертикально и проходящего непосредственно сквозь затвор.
Таким образом, в Intel добились улучшенного переключения транзисторов и заметного уменьшения потребляемой электрической энергии. TDP топового на сегодняшний день Intel Ivy Bridge составляет всего (sic!) 77 Вт! И уж точно, если Intel Core І7-3770 может похвастать такой энергоэффективностью, то легко представить, каким уровнем потребления энергии будут обладать мобильные процессоры на базе этой архитектуры! Похоже, ноутбучные 22-нанометровые «камни» обречены на успех, причем полный и безоговорочный.

Очередной апгрейд

При том росте транзисторов, что мы наблюдаем в Intel Ivy Bridge, объем всех трех уровней SRAM-памяти совершенно не изменился. Обычно с ростом физических характеристик увеличивается и емкость кэша. Здесь же мы наблюдаем привычные 32 Кбайт для инструкций и данных, привычные 256 Кбайт для L2. а также привычные 8 Мбайт для L3. У Intel Core І5 (на данный момент заявлены три модели) кэш-память 3 уровня «весит» всего 6 Мбайт. Большая часть транзисторов Intel Ivy Bridge была потрачена на новое граф. ядро — Intel HD Graphics 4000. Видеосоставляющая «камня» может похвастать сразу 16 исполнительными блоками вместо 12 у Intel Sandy Bridge (читай — Intel HD Graphics 3000). Появилась и поддержка DirectX 11 вместе с шейдерами версии 5.0 и DirectCompiJte. Правда, в современные игры на высоких разрешениях и с максимальным качеством графики поиграть все равно не получится. Маловато будет! Тем не менее. Intel HD Graphics вполне хватит для сборки достаточно производительного НТРС. Встроенная графика поддерживает подключение до трех мониторов. Отметим, ч ю младшие Intel Ivy Bridge будут оснащаться менее производительным видеоядром Intel HD Graphics 2500.



Дела оверклокерские

Как обычно, процессоры Intel Core делятся на модели с заблокированным и разблокированным множителем. О благородстве того или иного «камня» говорит литера «К» в названии устройства. Как ты уже догадался, к нам попал процессор без возможности самостоятельно управлять частотой кремниевого девайса за счет увеличения множителя. Обидно. Максимальный множитель Intel Ivy Bridge был увеличен до х63. В свою очередь, максимальный коэффициент умножения у Intel Sandy Bridge находился на отметке х59. Кстати, Intel Core І7-3770К еще и работает на частоте 3.5 ГГц, что ровно на 100 МГц выше, нежели у Intel Core І7-3770.
Отметим, что все Ivy Bridge оснащены большим количеством делителей памяти. Если Intel Sandy Bridge могут работать с «мозгами» на частоте 2400 МГц, то тот же Intel Core І7-3770 поддерживает киты с частотой 2666 МГц и 2800 МГц!
К моменту написания данной статьи на ресурсе hwbot.org уже появился целый ряд интереснейших результатов. Так. при помощи воздушной системы охлаждения чешский энтузиаст gzhir сумел разогнать Intel Core І7-3770К до 5127 МГц! Понимаем, что с «камнем» может повезти не всем, однако стабильные 4500 МГц у абсолютного большинства Intel Ivy Bridge достижимы. Российскому оверклокеру KENTAVR777 при помощи СВО удалось поднять частоту «корки» до 5300 МГц. Для этого наш соотечественник просто увеличил множитель CPU до х53. а напряжение — до 1.6 В. Наконец, на момент написания статьи мировой рекорд по разгону Intel Core І7-3770К принадлежал тайваньскому оверклокеру AndreYang. Житель Формозы при помощи жидкого азота смог снять валидацию на отметке 6936 МГц! Учитывая, что BIOS’ы материнских плат, а также непосредственно сам степпинг процессоров постоянно будут обновляться, мы гарантируем, что в самом ближайшем будущем топовые Intel Ivy Bridge покорят психологическую отметку в 7000 МГц!

Evolutio

По сути Intel Ivy Bridge не является чем-то революционным. Нет, скорее эволюционным. В новых «камнях» прогнозируемо увеличила свою производительность как х86составляющая, так и графическое ядро. Так как основная цель Intel была перенести имеющуюся архитектуру на плечи нового техпроцесса, то и залихватского прироста производительности мы не видим. Поэтому в сравнении хотя бы с Intel Core І7-2600К на штатных частотах смысла прямо сейчас бежать в магазин и менять свой Intel Sandy Bridge на Intel Ivy Bridge нет. Но если ты только-только планируешь собрать себе десктоп на базе платформы Intel, то «плющевые» процессоры подойдут как никогда кстати: они быстрее, холоднее, совместимы с любой LA1155-платой и имеют вполне адекватную стоимость.

Разгонный потенциал

В статье уже было сказано, что 99% процента Intel Ivy Bridge смогут стабильно работать на частоте 4500 МГц с применением воздушного охлаждения. Для этого необходимо увеличить напряжение «камня» с 0.9 В до 1.2 В. Но множество тестов со сторонних ресурсов показывают, что без применения экстремальных видов систем охлаждения новые 22-нанометровые «камни» гонятся хуже, нежели те же Intel Sandy Bridge. А вот с применением жидкого азота наоборот. Как только к нам в тестовую лабораторию доставят полноценный семпл Intel Core І7-3770К, мы обязательно уделим разгону этого «камня» самое что ни на есть пристальное внимание. Не пропусти!

И снова про разгонный потенциал

Стало известно, что тайваньский оверклокер HiCookie поставил очередной мировой рекорд по разгону процессор Intel Core І7-3770К. Азиатскоский энтузиаст в ходе отбора нескольких процессоров сумел найти тот неповторимый и единственный «камень», который под действием жидкого азота покорил психологическую отметку 7000! Если быть более точным, то HiCookie разогнал топовый Intel Ivy Bridge до 7032.7 МГц. При этом экстремал использовал отнюдь не самую топовую материнскую плату — GIGABYTE GA-Z77X-UD3H.
Буквально спустя несколько часов еще один тайваньский оверклокер — AndreYang — покорил результат своего соотечественника и разогнал Intel Core І7-3770К до 7074 МГц!
Наконец, громаднейший делитель памяти позволил установить мировой рекорд по разгону DDR3-памяти — 3280 МГц! И это с учетом того, что BCLK плат практически не гонится!

Результаты тестирования:

  • wPrime 1.55 1024т: 191.024 с
  • CINEBENCH R11.5 : 7.95 pts
  • WinRAR : 3738 Ибзйг/с
  • Super PI 1.5XS lm : 9.344 с
  • 3DMark Vantage, performance (CPU): 30460 (73178) баллов
  • 3DMark Vantage, performance, Intel HD Graphics 4000: 4037 баллов
  • 3DMark’06 : 6648 баллов
  • Battlefield 3 :61.92 FPS
  • The Elder Scrolls V : Skyrim: 60.5 FPS

Не секрет, что выхода новейших 22-нм процессоров Intel Ivy Bridge многие оверклокеры ждали с нетерпением. Причин тому несколько.

Мало кто будет спорить с тем, что Intel в последние годы сумела обеспечить очень заметный отрыв от извечного соперника – AMD, как по чистой производительности конкретных моделей процессоров, так и по абсолютному показателю «производительности на такт». В нижнем и среднем ценовых диапазонах по-прежнему идет настоящая борьба (главным образом, из-за агрессивной ценовой политики AMD), но в топ-сегменте конкуренции нет и в помине: кроме Sandy Bridge и Sandy Bridge-E покупать по существу нечего.

Прошлое поколение процессоров Intel было особенно удачным. 32-нм Sandy Bridge заслуженно получили прочную «прописку» в системных блоках большинства энтузиастов. Что же послужило причиной этому?

Во-первых, новая архитектура благодаря многочисленным оптимизациям оказалась весьма удачной. Старые 45-нм Bloomfield (помните широко распространенный Core i7-920?) тоже были совсем неплохи. Настолько, что они и по сей день подходят для решения абсолютного большинства задач и могут работать даже в очень мощных игровых компьютерах. Однако Sandy во многих тестах продемонстрировали заметное преимущество над равночастотными процессорами с архитектурой Nehalem.

Во-вторых, о «равных частотах» речь как раз не шла. Новые CPU позволяли достичь невиданных частот «на воздухе»: результат 4500 МГц, с трудом достижимый для лучших Bloomfield и Lynnfield, стал считаться посредственным; многие оверклокеры успешно разгоняли процессоры и до 5 ГГц, причем с прицелом на повседневное использование! Сочетание улучшенной архитектуры и выдающегося частотного потенциала позволило им стать эталоном по производительности для всех систем игрового толка.

Вот почему первые же слухи о скором выходе новейших 22-нм процессорах стали настоящей сенсацией. Самые оптимистичные из читателей нашего сайта, прослышав о неведомых транзисторах новой конструкции, низких токах утечки и малой площади ядра, высказывали смелые суждения наподобие «ну уж 5.5 ГГц на воздухе возьмет, к бабке не ходи, а может и все 6 ГГц!». Это и неудивительно – такой вывод легко сделать, приняв во внимание значительное улучшение разгонного потенциала при предшествующих сменах техпроцесса CPU Intel.

В общем, авансов наподобие «как выйдет - сразу возьму» и «я уже плату на Intel Z77 специально купил» новому процессору было роздано немало. Чем все это закончилось, я полагаю, известно почти всем читателям. 22-нм Ivy Bridge из-за высоких рабочих температур и затрудненного разгона не оправдали надежд многих энтузиастов. Так что «глас народный» мгновенно сменил свою тональность – сейчас Ivy модно ругать. Доходит до того, что некоторые на полном серьезе считают новые CPU «неразгоняемыми» и невероятно горячими, настолько, что их нереально эксплуатировать при повышенном напряжении без удаления теплораспределительной крышки или, по крайней мере, использования СВО. Но так ли это на самом деле?

Нет сомнения, что оверклокеры, внимательно отслеживающие выход нового «железа», уже знают об Ivy Bridge предостаточно. Поэтому я предлагаю не лезть в дебри архитектуры (хотя такой раздел в статье, безусловно, есть) и не тратить время на исследование огромного количества сопутствующих параметров, а просто проверить на практике – нужен ли вам новый процессор в составе типичной производительной системы, «заточенной» под разгон.

Архитектура и модельный ряд

Новые процессоры используют ту же архитектуру, что и выпущенные ранее Sandy Bridge. В рамках фирменной стратегии «тик-так» (или «tick-tock» в английском варианте), предусматривающей поочередное обновление технологических процессов и микроархитектур с выпуском новых продуктов один раз в год, релиз Ivy Bridge является «Тиком»:

В следующем сезоне должны быть представлены принципиально новые процессоры, использующие тот же техпроцесс – это и будет «Так».

А пока можно сделать вывод, что Ivy Bridge не должен по общей компоновке и применяемым архитектурным решениям отличаться от предшественников (специалисты Intel говорят только о незначительных улучшениях, обеспечивающих преимущество в производительности на уровне 5%). Основным нововведением стал перевод ядра на 22-нм техпроцесс. По сравнению с применявшимся ранее 32-нм это должно было обеспечить значительное снижение площади ядра, энергопотребления и тепловыделения.

Так, кристалл нового процессора стал меньше сразу на 35%. В сравнении с весьма похожим по конструкции Sandy Bridge его площадь уменьшена с 216 до 160 кв. мм. Это особенно впечатляет, с учетом того, что специалисты Intel применили гораздо более сложное графическое ядро (общее количество транзисторов увеличилось с 995 млн до 1.4 млрд, в основном именно за счет iGPU). Если бы Ivy Bridge стал просто «22-нм Sandy», площадь ядра могла бы быть еще меньше. Но это и так рекорд последних лет – для сравнения можно привести пару CPU, выполненных по 32-нм процессу и содержащих схожее количество транзисторов. Площадь ядра AMD Bulldozer в восьмиядерном варианте составляет 325 кв. мм при 1.2 млрд транзисторов, площадь «урезанного» четырехъядерного Sandy Bridge-E – 294 кв.мм при 1.27 млрд транзисторов.

Прогресс очевиден. Кстати, отчасти такое уменьшение площади стало возможным не только благодаря новому техпроцессу, но и из-за применения оригинальных «трехмерных» Tri-Gate транзисторов, взамен обычных планарных.

Добавление дополнительного кремниевого «ребра» позволяет добиться уменьшения токов утечки и сократить размеры всей конструкции. Также среди достоинств этой модели отмечается повышенная скорость переключения, хотя на практике многие оверклокеры уже успели убедиться в обратном. Впрочем, проблемы с разгоном могут быть вызваны десятком других причин, вполне вероятно, что трехмерная структура еще раскроет свой потенциал на других процессорах компании.

Уровень TDP, заявленный для новых процессоров, составляет 77 Вт. Хотя здесь все не столь однозначно. В спецификациях, представленных продавцам, а также на коробках значится 95 Вт. Напомню, что это значение характерно для большинства четырехъядерных Sandy Bridge кроме специальных «энергосберегающих» моделей. Как бы красиво не объясняли эту ситуацию представители компании, мне кажется наиболее вероятной распространенная «конспирологическая» версия, согласно которой TDP пришлось увеличить из-за сильного нагрева серийных образцов CPU. Ситуация, когда новинка нагревается сильнее предшественника при том, что по заявленным данным все должно быть наоборот, была бы донельзя нелепой.

Тем не менее, на слайде в официальном пресс-релизе фигурирует именно это значение:

Пока были представлены пять моделей линейки стоимостью от 174 до 313 долларов. Максимальную сумму просят за разблокированный по множителю Intel Core i7-3770K, который должен прийти на смену распространенным среди оверклокеров i7-2700K и i7-2600K. Свой аналог «бюджетной» модели i5-2500K, характеризующейся свободным множителем и отсутствием Hyper Threading, в этом списке тоже есть – Intel Core i5-3570K. Напомню, что на момент релиза за i7-2600K просили 317 долларов, а за i5-2500K – 216, так что новинки оказались даже чуть дешевле, правда, разница совсем незначительна.

Самая дешевая модель 22-нм CPU оценивается в 174 доллара, она заметно урезана по частотам и лишена Hyper Threading. Новейшее графическое ядро HD Graphics 4000 получили все процессоры линейки за исключением двух самых дешевых. Максимальным объемом cache-памяти L3 (8 Мбайт) характеризуются все процессоры семейства 37xx, а для 35xx этот показатель снижен до 6 Мбайт.

В целом все очень похоже на линейку Sandy Bridge. Кстати, как и в прошлый раз, компания Intel представила несколько моделей с индексами S и T, которые отличаются пониженным TDP. В целом, цены выглядят вполне разумными, правда, при слабой конкуренции со стороны AMD в данном сегменте Intel незачем снижать их со временем – так что эти процессоры могут стоить столько же хоть до релиза 22-нм CPU следующего поколения.

Один из значительных плюсов Ivy Bridge – полная (за исключением поддержки PCI-e 3.0) совместимость с материнскими платами предыдущего поколения, основанными на системной логике Intel шестидесятой серии.

Поскольку вычислительные ядра, по сути, изменились очень мало, Intel уделяет повышенное внимание графической подсистеме:

Главная гордость компании - введение поддержки DirectX 11. По собственному опыту тестирования видеокарт начального уровня не могу не отметить, что это чистая профанация, задействовать передовой API в реальных играх можно будет только при экстремально низких настройках и далеко не в FullHD-разрешении. Помимо этого заявлена поддержка OpenGL 3.1, OpenCL 1.1, Direct Compute и Shader Model 5.0. Интереснее всего выглядит возможность одновременного использования трех мониторов – в роли основы для рабочего компьютера с тремя экранами новый CPU можно представить без труда.

В плане производительности новое графическое ядро может похвастаться наличием 16 универсальных исполнительных блоков вместо 12 в предыдущей версии HD 3000.

Безусловно, это все замечательно, но я по-прежнему скептически отношусь к наличию «встройки» на старших моделях серии и необходимости в обязательном порядке приобретать становящееся все более сложным видеоядро вместе с процессором. Только вдумайтесь, iGPU съедает порядка трети транзисторного бюджета и площади ядра, насколько дешевле можно было бы сделать CPU при его отсутствии? Хотя для мобильного сегмента апгрейд графической составляющей новых ЦП может оказаться чрезвычайно полезным.

Не забыты и оверклокеры.

Из всех особенностей новых процессоров наиболее интересной представляется повышенный множитель (с 59 до 63 единиц для «разблокированных» моделей). Это уже позволило нескольким энтузиастам покорить рекордные частоты при использовании экстремального охлаждения, не так давно была пройдена отметка в 7 ГГц . Также нужно отметить введение новых повышающих множителей для оперативной памяти и улучшенные возможности по разгону видеоядра.

На тестирование в лабораторию сайт был представлен серийный образец процессора Intel Core i7-3770K. На данный момент это старшая модель серии, отличающаяся разблокированным множителем, наличием Hyper Threading и 8 Мбайт Cache L3. Максимальная частота с учетом Turbo Boost – 3900 МГц, базовая – 3500 МГц.

По внешнему виду он практически не отличается от уже знакомых всем оверклокерам «камней» Sandy Bridge. Разумеется, новый CPU легко определить по маркировке, также можно обратить внимание на распайку конденсаторов на обратной стороне.

Тестовый стенд

  • Материнские платы:
    • ASUS P8Z77 DeLuxe (BIOS v 0603) для процессоров LGA 1155;
    • Sapphire Pure Black X79N (BIOS v 4.6.1) для процессора LGA 2011;
  • Соперники (процессоры предоставлены компанией Регард):
    • Intel Core i7-2700K;
    • Intel Core i7-3930K;
  • Система охлаждения процессора: Noctua NH-D14 (штатные вентиляторы);
  • Оперативная память: Corsair TR3X6G1600C7 DDR3-1600, 7-7-7-20, 2 Гбайта, двухканальный режим/четырехканальный режим;
  • Видеокарта: AMD Radeon HD 6970 (ref);
  • Жесткий диск: Western Digital WD10EALX, 1000 Гбайт;
  • Блок питания: Hiper K1000, 1 кВт;
  • Корпус: открытый стенд.

Программное обеспечение

  • Операционная система: Windows 7 x64 Ultimate (без SP1);
  • Драйверы видеокарт: AMD Catalyst 12.4 для Radeon HD 6970;
  • Вспомогательные утилиты: SpeedFan 4.44, Real Temp 3.60, CPU-z 1.60, LinX 0.6.4, Prime 26.5 build 5 (In-Place Large FTTs).

Инструментарий и методика тестирования

Разгон процессоров производился без использования сторонних утилит, непосредственным изменением параметров в BIOS Setup. Для мониторинга температуры ядер использовалась утилита Real Temp 3.60, а для создания нагрузки при исследовании температурного режима - тест Linpack в оболочке Linx. Температура в помещении на момент тестирования составляла ~26 градусов.

Для тестирования производительности процессоров применялись следующие приложения и синтетические тесты:

  • SuperPi Mod 1.5 (XS) – учитывалось время, необходимое для вычисления 1 миллиона знаков числа Пи после запятой (Super Pi 1M). Однопоточный тест.
  • Fritz Chess Benchmark – количество операций в секунду (kilo Nods). Все процессоры выполняли тест в восемь потоков.
  • WPrime Benchmark v. 2.09 – учитывалось время, необходимое для завершения теста в режиме 32M. Алгоритм выполнялся в четыре/шесть потоков согласно рекомендациям разработчиков теста, хотя современные процессоры Intel могут получить преимущество с использованием Hyper Threading, но для данного сравнения абсолютный результат несущественен.
  • 3DMark Vantage 1.0.1 – пресет Performance, учитывался результат CPU Score.
  • SiSoft Sandra Professional 2010 – учитывались результаты, полученные в следующих тестах: арифметическая производительность процессора (общая производительность), общая скорость криптографии.
  • True Crypt 7.1a – встроенный бенчмарк, учитывался показатель скорости кодировки AES-Twofish-Serpent. Четырехъядерные процессоры выполняли алгоритм в восемь потоков, шестиядерный - в двенадцать.
  • Cinebench 11.5 x64 – рендеринг сцены, учитывался общий рейтинг ЦП в баллах. Четырехъядерные процессоры выполняли алгоритм в восемь потоков, шестиядерный - в двенадцать.
  • PovRay 3.7 – встроенный бенчмарк, режим All CPU’s, учитывалось время, необходимое для рендеринга сцены.
  • WinRar 4.20 beta 2 (x64) – встроенный тест производительности. В настройках программы был активирован режим многопоточности (multithreading).
  • x264 HD Benchmark v4.0 – стандартный алгоритм преобразования видеоролика. На графиках представлены минимальное и максимальное значения FPS, полученные в двух проходах теста. Четырехъядерные процессоры выполняли алгоритм в восемь потоков, шестиядерный - в двенадцать потоков.
  • Adobe Photoshop CS5 – замерялось время наложения последовательности фильтров на эталонное изображение.

Кроме того было проведено тестирование производительности системы в нескольких играх.

  • Hard Reset – встроенный тест;
  • F1 2011 – встроенный тест;
  • Batman: Arkham City – встроенный тест;
  • Сrysis 2 - утилита Adrenaline Crysis 2 Benchmark Tool;
  • Metro 2033 – фирменная утилита для тестирования производительности, поставляемая с игрой.

VSync при проведении всех тестов был отключён. Список настроек игры будет в каждом случае приводиться отдельно для удобства восприятия.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: