Первое применение флэш памяти в компьютере. Где нужна память…. Виды и типы карт памяти и флэш-накопителей

Я постоянно сталкиваюсь с тем, что неразбериха в термине флешка , часто становится причиной недопонимания между покупателем и продавцом при выборе необходимого носителя информации. Итак, «в широких массах» имеются следующие основные толкования слова флешка: USB flash drive (Ю-эС-Би флеш драйв), карта памяти microSD (читается микро-эС-Ди), вообще любая карта памяти, вообще любой flash-носитель информации. Здесь под словом flash (читается флэш) я имею в виду технологию флеш-памяти и использую английский термин для того, чтобы не возникло путаницы. Причем я иногда вижу, что люди в быту могут одновременно называть флешкой любое из этих устройств, полагаясь на то, что их собеседник по контексту или с помощью телепатии поймет о чем речь!

Я не буду спорить о том, какой термин правильнее, и уж тем более пропущу вопрос о том, как правильно «флэш» или «флеш» (фактически оба написания употребляется как минимум одинаково, и ничего с этим не поделаешь). Вместо ненужных споров я просто опишу все устройства, именуемые этим словом, и все слова, которыми они именуются, и тогда вы точно сможете купить именно то, что вам нужно!

Итак, начнем с USB flash drive . Именно за этим устройством, представляющим из себя универсальный носитель содержащим флеш-память и подключаемым непосредственно к USB-разъему, в русском языке закрепилось слово флешка. Впрочем, популярно и слово флешдрайв или флэшдрайв, образованное от английского Flash Drive, а также более официозное флэш-накопитель (или флеш-накопитель). Так как разумного перевода этого словосочетания придумать невозможно (ну не называть же flash drive «мерцающим водителем»!), то слова флэшдрайв или флэш-накопитель следует признать лучшим термином. Вот типичные примеры флешдрайвов:

Флешдрайвы в основном используются для переноса информации между компьютерами. Или для хранения информации, которую вы всегда хотите иметь при себе. Раз уж мы ведем речь о типологии, замечу, что в последнее время появились флешдрайвы с подключением USB3.0 . Что это значит? Это значит, что при наличии в компьютере интерфейса USB3.0 (самое заметное его внешнее отличие - синий цвет), флешдрайв USB3.0 сможет работать быстрее. Если же подключите его к традиционному USB2.0 (тому, что есть на каждом компьютере), то скорость его будет сравнима со скоростью обычного флешдрайва. Вот как выглядит USB3.0 и USB2.0:Теперь вторая категория устройств, называемых флешками: карты памяти microSD (или microSDHC , их непосредственные наследники)
По моему наблюдению их называют флешками либо те, кто никаких других флеш-носителей в руках не держал (а это немудрено, ибо microSD/microSDHC применяются почти во всех телефонах, плеерах и всяких там гаджетах), либо те, кто других названий всем этим «маленьким штучкам» не знает. Они тоже содержат в себе флеш-память, а значит, имеют право быть названы флешками. Но для понимания между людьми желательно как-то дифференцировать понятия, поэтому «карта памяти» будет звучать предпочтительнее, особенно если вам необходимо объяснить продавцу что вам нужно. Так же важно знать, что карты памяти бывают разные! Поэтому неплохо добавить: «такую маленькую карту памяти», но и тут вы можете попасть впросак: есть карты памяти M2, которые очень схожу по размеру. К счастью они применяются только в продукции фирмы Sony. О них мы упомянем ниже. Но все же лучше запомнить магические слова microSD и microSDHC (читается микроэСДэ и микроэСДэХаЦэ). В разговорной речи, кстати, чаще всего первое слово (microSD) используется для обозначения обоих типов карт (и microSD и microSDHC). В этом нет ничего страшного.

Что необходимо знать о microSD и microSDHC картах памяти? Во-первых, чем они отличаются? microSDHC - это более новый стандарт, поддерживающий объем памяти более 4 Гигабайт. Все карты памяти более 4 Гигабайт могут быть только microSDHC, а меньше 4 только microSD. А вот 4 ГБ не повезло: они могут быть и такими и эдакими! Впрочем, microSD на 4 ГБ большая редкость. Теперь самый главный вопрос: как выбрать ту, что подойдет к вашему устройству? Правила два: во-первых, вам необходимо определить максимальный объем карты памяти, с которым ваше устройство способно работать (для этого откройте инструкцию к нему, либо воспользуйтесь поиском в интернете). Во-вторых, вам необходимо купить карту такую же или меньше, чем максимальный объем. Причем все устройства, поддерживающие microSDHC, будут работать с любой картой microSD любого объема. Нюанс тут только один: если для вашего устройства указано, что оно поддерживает карту не более 4 ГБ, то это может означать, что оно не поддерживает никакие карты microSDHC и поддерживает любые карты microSD, включая 4 ГБ. Либо это может означать, что оно поддерживает любые карты 4 ГБ, как microSD, так и microSDHC, а карты microSDHC 8 ГБ и выше не поддерживает. Вот такая арифметика. И если в инструкции нет уточнений по этому поводу, то вам придется использовать старый добрый «метод научного тыка».

Теперь еще одна важная характеристика, которая часто интересует покупателей: что это за класс указан для карт microSDHC? Обозначается он цифрой внутри английской буквы C.
Должен сразу сказать, что это не сорт как, скажем, у помидоров. Класс карты памяти - это ее способность записывать информацию с некоторой минимально гарантированной скоростью. Чем выше класс, тем выше скорость. Причем это именно гарантированная самая маленькая скорость, максимальная же и средняя скорости может быть существенно выше. Две карты разных классов часто могут иметь практически одинаковые средние и максимальные скорости записи, но если одна из них имеет «провалы» в скорости, то есть иногда записывает медленнее, то она будет иметь меньший класс. По-другому говоря: класс гарантирует, что скорость карты на любом участке записи не упадет ниже определенного порога. Зачем он нужен? Класс нужен для устройств, которые быстро записывают информацию и не могут ждать. Это, главным образом, видеокамеры, которым необходимо записывать видео, ведь если карта памяти не успеет записать кадр за время его съемки, то «поезд уйдет»: нужно будет писать следующий кадр, за ним следующий и какую-то часть информации камере придется «выкинуть», что плохо скажется на качестве съемки. Итак, опять же берем инструкцию и смотрим что в ней записано о классе карты памяти. Если ничего - можете сэкономить, если класс указан - берите указанный или выше.

Наконец последнее, с чем нужно определиться при покупке карты памяти microSD/microSDHC - переходник или адаптер на SD . Это такая штукав 4раза больше самой карты, с помощью которой ваша карта micro превращается в «большую» SD/SDHC карту (о них смотри ниже). Часть карт продается с переходником, часть без.Оцените, нужен ли вам такой переходник, учтя имеющиеся у вас устройства: фотоаппараты, старые электронные книги и т.п. А также не забудьте про ваш карт-ридер: может быть он не читает карты micro напрямую и тогда адаптер вам совсем не помешает. Вообще адаптер расширяет ваши возможности в «случае чего». С другой стороны: найдете ли вы его, когда понадобится в своем столе? Выбор за вами.

Теперь перейдем к SD /SDHC картам.
Много о них говорить не буду: это старшие братья microSD/microSDHC карт. Все, что было сказано о тех, верно и для этих переростков (хотя скорее уж "микро" карты являются недомерками, ведь сначала наоборот были большие, а потом уже появились их уменьшенные собратья). Единственное, что адаптеров у них нет, так как адаптировать их к самим себе не нужно, ну и применяются они в более объемных устройствах - это, прежде всего, фотоаппараты-мыльницы и всякие электронные книги (правда, в последних все чаще уже ставят microSDHC карты).

M2. Полное имя Memory Stick micro M2 - это карты очень похожие на microSD/microSDHC. Отличаются тем, что используются в телефонах и плеерах фирмы Sony , Правильнее сказать «использовались», потому что фирма Sony наконец поняла, что «один в поле не воин» и стала использовать форматы линейки SD. Если вы счастливый обладатель Sony, будьте внимательны, проверьте какая у вас карта! Никаких классов эти карты не имеют.

Последняя карта, которую мы рассмотрим - это Compact Flash (по-русски произносится «компакт флеш», но пишется практически всегда по-английски, вероятно потому, что писать «компактный» про самую большую на сегодняшнем рынке карту как-то не литературно:-).
Эти карты из-за своего приличного размера имеют свои несомненные плюсы: емкость в разы больше чем у других карт и недосягаемую пока для карт памяти SDHC скорость. Поэтому они используются в больших "продвинутых" фотоаппаратах и прочих требовательных устройствах. Остается добавить, что скорость (на это раз без «замудренностей» с гарантированным минимумом) обозначается числом и буквой X. Например: 133х, 266х, 300х. Число обозначает во сколько раз данная карта быстрее некоторой минимальной стандартной скорости чтения компакт-диска.

Если вы не встретили в данном обзоре любимую вами доисторическую карту - не огорчайтесь! Вы обязательно найдете ее в википедии. Я же намеренно ограничился только распространенными на сегодняшний день типами флеш-носителей информации, чтобы не забивать ничью голову ненужной информацией и не превращать статью в архивариуса. Итак, теперь вы вооружены знаниями, и выбор нужной флешки не будет для вас проблемой. Удачных покупок!

Флеш память Сюда перенаправляется запрос Флэш-карты . На тему «Флэш-карты» .

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с . В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт .

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ . Самый большой объём USB устройств составлял 4 ТБ .

Файловые системы

Основное слабое место флеш-памяти - количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS для GNU/Linux и Microsoft Windows.

SecureDigital и FAT.

Применение

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive ). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков .

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды .

Есть специальные дистрибутивы GNU/Linux и версии программ , которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе .

Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия . На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick , которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1 , «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 ГБ . Распространение ограничивает высокая цена за ГБ и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в портативных устройствах:

MMC (MultiMedia Card) : карточка в формате MMC имеет небольшой размер - 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card) : карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес - около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер. DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card) : карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм. MMCmicro : миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card) : поддерживается фирмами Panasonic и : Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro). miniSD (Mini Secure Digital Card) : От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер. microSD (Micro Secure Digital Card) : являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo) : данный стандарт памяти разрабатывался и поддерживается компанией

  • Физика ,
  • Электроника для начинающих
  • Предисловие

    Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

    Теоретическая часть

    Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
    Какая память бывает?
    На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

    Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

    Что такое flash-память и какой она бывает (NOR и NAND)?
    Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


    Схематическое представление транзистора с плавающим затвором.

    Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

    NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

    Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


    Устройство ячейки RAM.

    Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

    Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

    Часть практическая

    Flash
    Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


    Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

    Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


    Корпус кварцевого генератора

    Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


    Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

    А вот и первая важная деталь флешки – контроллер:


    Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

    Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

    После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


    «Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

    Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


    СЭМ-изображения контактов, питающих чип памяти

    Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


    Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

    Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


    Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


    Другие структуры внутри чипов NAND памяти

    DRAM
    Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

    Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


    «Скол» BGA-пайки

    А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

    Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


    DRAM память во всей красе

    Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

    Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

    Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


    Другие структуры внутри чипа DRAM-памяти

    Послесловие

    Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

    К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

    P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
    Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


    Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

    Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.

    Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:

    1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.
    2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.

    Для начала я проиллюстрирую проблему картинками.

    Что указывают в характеристиках SSD

    Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.

    Вам что-нибудь говорит эта картинка?

    Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?

    Может быть, так будет понятнее?

    А если так?

    Или все-таки лучше так?

    Между тем, во всех этих накопителях установлена одинаковая память! В это трудно поверить, особенно глядя на две последних картинки, не правда ли? Дочитав запись до конца, вы не только в этом убедитесь, но и будете читать подобные характеристики как открытую книгу.

    Производители памяти NAND

    Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:

    • Intel/Micron
    • Hynix
    • Samsung
    • Toshiba/SanDisk

    Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT .

    На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.

    Все производители SSD покупают NAND у вышеперечисленных компаний, поэтому в разных накопителях может стоять фактически одинаковая память, даже если ее марка отличается.

    Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.

    Типы памяти NAND: SLC, MLC и TLC

    Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.

    SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC - это новое слово на рынке памяти для твердотельных накопителей.

    Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.

    Занятно, что пока широкая публика обеспокоена ограниченным количеством циклов перезаписи SSD, по мере развития технологий NAND этот параметр только снижается!

    Как определить конкретный тип памяти в SSD

    Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.

    Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.

    На специализированных сайтах можно найти базы данных по SSD, и вот вам пример .

    Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.

    В каких SSD установлена самая лучшая память

    Давайте сначала пройдемся по основным пунктам статьи:

    • производителей NAND можно пересчитать по пальцам одной руки
    • в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты
    • MLC NAND различается интерфейсами: ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)
    • ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)
    • производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек
    • официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND

    Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).

    Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!

    Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.

    Самую лучшую землянику вы оставите себе или выставите на продажу? :)

    Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей SSD получается еще короче:

    • Crucial (подразделение Micron)
    • Intel
    • Samsung

    Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний?

    В основе любой flash-памяти лежит кристалл кремния, на котором сформированы не совсем обычные полевые транзисторы. У такого транзистора есть два изолиро­ванных затвора: управляющий (control) и плавающий (floating). Последний спо­собен удерживать электроны, то есть заряд. В ячейке, как и у любого полевого транзистора, есть сток и исток (рис. 4.1). В процессе записи на управляющий затвор подается положительное напряжение и часть электронов, движущихся от стока к истоку, отклоняется к плавающему затвору. Некоторые из электронов преодоле­вают слой изолятора и проникают (диффундируют) в плавающий затвор. В нем они могут оставаться в течение многих лет.

    Концентрация электронов в области плавающего затвора определяет одно из двух устойчивых состояний транзистора - ячейки памяти. В первом, исходном, состоя­нии количество электронов на плавающем затворе мало, а пороговое напряжение открытия транзистора относительно невысоко (логическая единица). Когда на плавающий затвор занесено достаточное количество электронов, транзистор ока­зывается во втором устойчивом состоянии. Напряжение открытия его резко уве­личивается, что соответствует логическому нулю. При считывании измеряется

    Рис. 4.1. Ячейка flash-памяти

    пороговое напряжение, которое нужно подать на сток для открытия транзистора. Для удаления информации на управляющий затвор кратковременно подается от­рицательное напряжение, и электроны с плавающего затвора диффундируют об­ратно на исток. Транзистор вновь переходит в состояние логической единицы и остается в нем, пока не будет произведена очередная запись. Примечательно, что во flash-памяти один транзистор хранит один бит информации - он и является ячейкой. Весь процесс «запоминания» основан на диффузии электронов в полу­проводнике. Отсюда следуют два не очень оптимистичных вывода.

    Время хранения заряда очень велико и измеряется годами, но все же ограниче­но. Законы термодинамики и диффузии гласят, что концентрация электронов в разных областях рано или поздно выровняется.

    По той же причине ограничено количество циклов записи-перезаписи: от ста тысяч до нескольких миллионов. Со временем неизбежно происходит деграда­ция самого материала и р-п-переходов. Например, карты Kingston Compact Flash рассчитаны на 300 ООО циклов перезаписи. Transcend Compact Flash - на

    1 ООО ООО, а flash-диск Transcend 32 Gb USB – всего на 100 ООО.

    Существуют две архитектуры flash-памяти. Они отличаются способом обращения к ячейкам и, соответственно, организацией внутренних проводников.

    Память NOR (ИЛИ-НЕ) позволяет обращаться к ячейкам по одной. К каждой ячейке подходит отдельный проводник. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (каждое слово содержит

    2 байта). Такая архитектура накладывает серьезные ограничения на максималь­ный объем памяти на единице площади кристалла. Память NOR сегодня используется лишь в микросхемах BIOS и других ПЗУ малой емкости, например в сотовых телефонах.

    В памяти архитектуры NAND (И-НЕ) каждая ячейка оказывается на пересече­нии «линии бит» и «линии слов». Ячейки группируются в небольшие блоки по аналогии с кластером жесткого диска. И считывание, и запись осуществляются лишь целыми блоками или строками. Все современные съемные носители по­строены на памяти NAND.

    Крупнейшими производителями NAND-чипов являются компании Intel, Micron Technology, Sony и Samsung. Ассортимент выпускаемых чипов довольно велик, а обновление его происходит несколько раз в год.

    Контроллеры

    Для управления чтением и записью служит контроллер памяти. В настоящее вре­мя контроллер всегда выполняется в виде отдельного элемента (это либо микро­схема одного из стандартных форм-факторов, либо бескорпусный чип, встраиваемый в карту памяти), хотя ведутся работы по интеграции контроллера непосредственно в кристалл flash-памяти.

    Контроллеры разрабатываются и выпускаются под совершенно определенные микросхемы flash-памяти. Способ адресации ячеек конструктивно заложен в кон­троллере. Данные при записи в микросхему flash-памяти располагаются опреде­ленным способом, меняющимся от модели к модели. Производители эти тонкости держат в секрете и, по всей видимости, раскрывать не планируют. Очевидно, мик­ропрограмм контроллеров создается значительно больше, чем самих моделей кон­троллеров. Микропрограмма контроллера (прошивка) и таблица трансляции ад­ресов (транслятор) записываются в служебную область flash-памяти. Именно эту область контроллер начинает считывать сразу после подачи на него питания. Кро­ме собственно адресации ячеек, контроллер выполняет ряд других функций: функ­ции контроля bad-секторов, коррекции ошибок (ЕСС - error check and correct) и равномерности износа ячеек (wear leveling).

    Технологической нормой при изготовлении микросхем памяти считается наличие в них в среднем до 2 % нерабочих ячеек. Со временем их количество может увели­чиваться, поэтому, как и в винчестерах, во flash-памяти предусмотрен резервный объем. Если появляется дефектный сектор, контроллер в процессе форматиро­вания или записи подменяет его адрес в таблице размещения файлов адресом сектора из резервной области. Коррекция осуществляется контроллером, но реа­лизуется на уровне файловой системы конкретного носителя.

    Из-за ограниченного ресурса ячеек (порядка нескольких миллионов циклов чтения/ записи для каждой) в контроллер заложена функция учета равномерности износа. Чтобы запись информации осуществлялась равномерно, свободное пространство условно разбивается на участки, и для каждого из них учитывается количество операций записи. Статистика циклов заносится в скрытую служебную область памяти, и за этими сведениями контроллер периодически обращается к ней. На ад­ресацию это не влияет.

    Конструкция flash-диска USB

    Несмотря на разнообразие корпусов, все flash-диски USB устроены одинаково. Если половинки корпуса соединены защелками, они обычно легко разъединяются. Водонепроницаемые или ультрамодные корпусы приходится вскрывать разру­шающими методами, например разрезать.

    На плате внутри flash-диска USB (рис. 4.2) обязательно присутствуют две микро­схемы: чип памяти и контроллер. На обеих нанесена заводская маркировка. Иногда плата несет два чипа flash-памяти, которые работают в паре. Обвязка микросхем состоит из нескольких резисторов и диодов, стабилизатора питания и кварцевого резонатора. В последнее время стабилизатор все чаще встраивается непосред­ственно в контроллер и количество навесных элементов сокращается до минимума. Кроме того, на плате могут находиться светодиодный индикатор и миниатюрный переключатель для защиты от записи.

    Рис. 4.2. Устройство flash-диска

    Разъем USB припаян непосредственно к плате. Места пайки контактов во многих моделях являются довольно уязвимыми, поскольку на них приходится механиче­ская нагрузка при подключении и отключении устройства.

    Виды и конструкция карт памяти

    Многие компании время от времени предлагали пользователям разные конструк­ции карт памяти. За редкими исключениями все они несовместимы между собой по количеству и расположению контактов и электрическим характеристикам, Flash-карты бывают двух типов: с параллельным (parallel) и последовательным (serial) интерфейсом.

    В табл. 4.1 перечислены 12 основных типов карт памяти, которые встречаются в настоящее время. Внутри каждого типа существуют свои дополнительные раз­новидности, с учетом которых можно говорить о существовании почти 40 видов карт.

    Таблица 4.1. Типы карт памяти

    Тип карты памяти

    Габаритные размеры (мм)

    Максимальная

    конструктивная

    Интерфейс

    CompactFlash (CF)

    Параллельный 50 контактов

    Последовательный 9 контактов

    MultiMedia Card (ММС)

    Последовательный 7 контактов

    Последовательный 7 контактов

    Highspeed ММС

    Последовательный 13 контактов

    Последовательный 10 контактов

    Memory Stick PRO

    Последовательный 10 контактов

    Memory Stick Duo

    Последовательный 10 контактов

    SmartMedia (SSFDC)

    Параллельный 22 контакта

    Параллельный 22 контакта

    Последовательный 8 контактов

    Карты ММС могут работать в двух режимах: ММС (MultiMedia Card) и SPI (Serial Peripheral Interface). Режим SPI является частью протокола ММС и используется идя коммуникации с каналом SPI в микроконтроллерах компании Motorola и не­которых других производителей.

    В слот для карты SD (Secure Digital) можно вставить карту ММС (MultiMedia Card), но не наоборот. В контроллер карты SD заложено аппаратное шифрование данных, а сама память снабжена специальной областью, в которой хранится ключ шифрования. Сделано это для того, чтобы препятствовать нелегальному копиро­ванию музыкальных записей, для хранения и продажи которых и задумывался такой носитель. На карте сделан переключатель защиты от записи (write protection switch).

    Карты CompactFlash (CF) легко можно вставить в разъем PCMCIA Туре II. Несмотря на то что у PCMCIA 68 контактов, а у CF - только 50, конструкция карт CompactFlash обеспечивает полную совместимость и обладает всеми функциональ­ными возможностями формата PCMCIA-AT А.

    Все карты памяти Memory Stick (стандарт корпорации Sony) относительно совмес­тимы между собой. Стандартом теоретически предусмотрен объем карты памяти до 2 Тбайт, хотя в реальности емкость достигает единиц гигабайт.

    Карты SmartMedia практически вышли из употребления, их можно встретить только в очень старых цифровых камерах. Примечательно, что это был единственный стан­дарт, в котором контроллер находился не внутри карты, а в устройстве считывания.

    Конструкция карт памяти неразборная - это непригодное для ремонта устройство. Бескорпусные микросхемы вместе с выводами залиты в компаунд и все вместе спрессованы в пластиковую оболочку. Добраться до кристалла можно лишь путем вскрытия устройства, но при этом почти неизбежно повреждение проводников.

    Устройства считывания

    Для считывания flash-диска USB достаточно обычного порта USB: компьютер видит подобные устройства как стандартный съемный диск благодаря их контрол­леру. Контроллеры всех карт памяти обращены к компьютеру последовательными или параллельными интерфейсами - контактами на карте. Для каждого из этих интерфейсов нужен соответствующий переходник - дополнительный контроллер, согласующий данный интерфейс со стандартным портом USB.

    Кард-ридер - устройство, состоящее из одного или нескольких подобных контрол­леров, преобразователя питания и разъемов для разных карт памяти (рис. 4.3). Питание осуществляется от источника +5 В через кабель USB.

    Рис. 4.3. Кард-ридер

    Чаще всего встречаются «комбайны», рассчитанные на несколько типов карт: от 6 до 40. Слотов в кард-ридере гораздо меньше, так как каждое гнездо использу­ется для нескольких типов карт, близких по размерам и расположению контактов. По своим характеристикам разные модели практически равноценны, а различа­ются, главным образом, количеством поддерживаемых типов карт и конструк­цией.

    Логическая организация

    Прежде чем перейти к файловым системам flash-накопителей, нужно вспомнить об архитектуре NAND. В этой часто используемой памяти и чтение, и запись, и уда­ление информации происходят лишь блоками.

    На жестких и гибких дисках величина блока составляет 512 байтов, не считая 59 служебных байтов, которые видны только контроллеру винчестера. Все файло­вые системы создавались именно с учетом этих значений. Проблема в том, что во flash-памяти величина блока стирания, за редким исключением, не совпадает с величиной стандартного дискового сектора в 512 байтов и обычно составляет 4,8 и даже 64 Кбайт. С другой стороны, для обеспечения совместимости блок чте­ния/записи должен совпадать с величиной дискового сектора.

    Для этого блок стирания разбивается на несколько блоков чтения/записи с разме­ром 512 байтов. На практике блок чуть больше: кроме 512 байтов для данных, в нем еще есть «хвост» (Tail) длиной 16 байтов для служебной информации о самом блоке. Физически расположение и количество блоков чтения/записи ничем не ограничены. Единственное ограничение - блок чтения/записи не должен пересе­кать границу блока стирания, так как он не может принадлежать двум разным блокам стирания.

    Блоки чтения/записи делятся на три типа: действительные, недействительные и дефектные. Блоки, которые содержат записанные данные и принадлежат какому-либо файлу, являются действительными. Использованные блоки с устаревшей информацией считаются недействительными и подлежат очистке. Категорию де­фектных составляют блоки, не поддающиеся записи и стиранию.

    Еще одна особенность flash-памяти состоит в том, что запись информации возмож­на только на предварительно очищенное от предыдущей информации пространст­во. Когда необходимо записать информацию, микропрограмма контроллера долж­на решить, какие недействительные блоки нужно перед этим стереть. В большей части микропрограмм вопрос удаления недействительных блоков решается про­стейшим способом: как только определенная часть емкости flash-диска оказывает­ся заполнена информацией, автоматически запускается механизм очистки недей­ствительных блоков.

    Для увеличения срока службы памяти используется технология управления изно­сом (wear-leveling control), которая продлевает жизненный цикл кристалла памя­ти за счет равномерного распределения циклов записи/стирания блоков памяти. Побочный эффект - выход из строя одного блока памяти - не сказывается на работе остальных блоков памяти того же кристалла. Неподвижные блоки принад­лежат файлам, которые долго или вообще никогда не изменялись и не перемеща­лись. Наличие неподвижных блоков данных приводит к тому, что оставшаяся часть ячеек подвергается усиленному износу и быстрее расходует свой ресурс. Микро­программа учитывает такие блоки и по мере необходимости перемещает их содер­жимое в другие ячейки.

    Файловые системы flash-дисков и карт памяти, на первый взгляд, хорошо знакомы пользователям по жестким и гибким дискам. Это FAT16, реже FAT32: именно так предлагает отформатировать диск операционная система Windows. Стандартными средствами Windows ХР и Windows 7 диск можно отформатировать и в систему NTFS! Для этого нужно предварительно зайти в Диспетчер устройств и в окне свойств подключенного flash-диска на вкладке Политика выбрать значение Оптимизация для быстрого выполнения. Специальные программы от производителей, например HP USB Disk Storage Format Tool, позволяют форматировать flash-диски в NTFS и без таких усилий.

    Однако внешнее сходство файловых систем твердотельных накопителей и обыч­ных винчестеров обманчиво. Файловая система flash-памяти (Flash File System, FFS) лишь эмулирует обычный дисковый накопитель и состоит из блоков управ­ления и блока инициализации. На самом деле об истинном расположении и адре­сации блоков памяти знает только контроллер flash-диска или карты памяти.

    Это очень существенно при разных способах восстановления содержимого микро­схемы flash-памяти. При считывании микросхемы памяти через ее «родной» кон­троллер в файле образа оказывается последовательность блоков в порядке их но­меров или смещений. В начале находятся заголовок и таблица файловой системы. Если же считывание производится на программаторе, в начальных блоках дампа расположена служебная информация, а блоки с данными перемешаны почти бес­порядочно. При этом служебная информация вряд ли будет полезна, поскольку она всецело зависит от модели контроллера и его прошивки - правильную после­довательность блоков приходится составлять с большим трудом.

    Некоторые фотоаппараты работают только с файловой системой RAW Способ записи фотографий на носитель с такой файловой системой, а также особенности форматирования самой карты зависят от модели аппарата и даже прошивки той или иной модели. Этот формат не стандартизирован и имеет много разновидностей. Обычно данные с таких карт могут восстановить лишь сервисные программы от изготовителя фотокамеры, а в качестве кард-ридера желательно использовать сам фотоаппарат.

    Рис. 4.4. Окно форматирования flash-диска в Windows Vista SPl

    Нововведением является файловая система exFAT (Extended FAT - расширенная FAT). Поддержка этой специально разработанной для flash-дисков файловой системы впервые появилась в Windows Embedded СЕ 6.0. С exFAT работают Windows Vista Service Pack 1 и Windows 7 (рис. 4.4).

    Назначение новой файловой системы - постепен­ная замена FAT и FAT32 на flash-накопителях. В ней заложены некоторые черты, которые ранее были присущи только файловой системе NTFS:

    Преодолено ограничение в размере файла в 4 Гбайт: теоретически лимит составляет 2^ байтов (16 эксабайтов);

    Улучшено распределение свободного места за счет введения битовой карты свободного мес­та, что уменьшает фрагментацию диска;

    Снят лимит на количество файлов в одной директории;

    Введена поддержка списка прав доступа.

    Насколько скоро эта файловая система станет нормой для flash-накопителей, по­кажет время. Видимо, это произойдет не раньше, чем на операционную систему Windows 7 перейдет подавляющее большинство пользователей.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: