Автономные доплеровские устройства и системы навигации летательных аппаратов доплеровский измеритель вектора скорости и угла сноса (дисс) лекция ирэ кафедра. Назначение и классификация дисс

2.1.1. Принцип действия однолучевой ДИСС

Доплеровский измеритель скорости и угла сноса (ДИСС) летательных аппаратов является автономным доплеровским устройством навигации и управления, призванным обе­спечить прибытие пилотируемого или беспилотного объекта носителя ДИСС к пункту с известными координатами.

В данном пособии изложены принцип действия и структура работы доплеровского измерителя скорости и угла сноса на базе типовой радиосистемы ДИСС-7.

Задача навигации обычно решается в горизонтальной плоскос­ти. Поэтому основной интерес представляет горизонтальная проек­ция скорости самолета, носящая название путевой скорости .

Путевая скорость складывается из двух составляющих:

воздушной скорости , т.е. скорости движения ЛА относительно воздушной среды, и скорости ветра , т.е. скорости движения воздушной среды относительно земли. На­правление вектора воздушной скорости практически совпадает с направлением оси ЛА. Векторы об­разуют так называемый навигационный треугольник (рис. 2.1).

Угол β между направлениями векторов называ­ется углом упреждения или углом сноса.

Наиболее надежным и точным средством измерения β и W является бортовой радиолокатор, работа которого основа­на на использовании эффекта Доплера при отражении излученных бортовым передатчиком радиоволн от земной поверхности. Простейшей схемой измерения при этом является однолучевой доплеровский радиолокатор с наклонным облучением зем­ной поверхности под некоторым углом В (см. рис.2.2).

Положим, что самолет летит строго горизонтально, а ДНА может поворачиваться в горизонтальной плоскости в пределах угла ± ψ .

Так как ДНА имеет конечный раствор, то на поверхности земли облучается площадка значительных размеров, содержащая множество взаимно независимых элементарных отражателей. Поэтому отраженный сигнал по своим свойствам близок к "белому шуму". Он имеет сплошной спектр, огибающая кото­рого соответствует форме ДНА. Зна­чение средней частоты доплеровского спектра для некоторого угла ψ при β =0 определяется величиной проекции вектора путевой скорости на ось ДНА

где - вектор путевой скорости; λ 0 - длина волны передатчика; B - угол визирования; ψ - угол между горизонтальной проекцией направления излучения и продольной осью самолета.

Значение углов B и ψ ясны из рис. 2.2. Из формулы (2.1) видно, что при B = 90° . Следовательно, облучение земной поверхности всегда должно быть наклонным. Обычно В = 60°...70°.

Если направление полета не совпадает с осью самолета, т.е. существует угол сноса "β ", то выражение (2.1) будет иметь вид

Рис. 2.1. Навигационный треугольник

B
Ψ

Рис. 2.2. Однолучевой доплеровский измеритель W и β

Однолучевой измеритель работает следующим образом. ДНА поворачивается в горизонтальной плоскости до получения максимального значения , что соответствует β+Ψ =0. При этом положении антенны по значению можно определить и, измеряя угол между фокусной осью антенны и продольной осью самолета, можно определить угол сноса β . Однако, такая сис­тема обладает рядом существенных недостатков. Главные из них следующие.

Как видно из рис. 2.3, наиболее резкая зависимость от угла (β+Ψ ) наблюдается при значениях β+Ψ близких к 90°. В области β+Ψ =0 почти не изменяется. Поэтому однолучевые измерители не дают необходимой точности.

Рис. 2.3. Полярная диаграмма зависимости F д от (β+ψ)

При изменении угла (β+Ψ ) в обе стороны от нулевого значения изменения доплеровской частоты имеют одинаковые значения. Это обстоятельство делает невозможным построение схемы автоматического измерения скорости и угла сноса.

В однолучевом доплеровском измерителе предъявляются жесткие требования к стабильности частоты передатчика f прд зa время запаздывания отраженного сигнала t з (кратковременная стабильность):

, (2.3)

где (df прд /dt) max / f прд - относительная скорость ухода частоты передатчика; Δ w = ΔW/W - относительная погрешность определения скорости; t з –время распространения радиоволн до земной поверхности и обратно.

В однолучевых (двухлучевых) системах сильно зависит от углов крена и тангажа. Так, уже при угле тангажа =1° и угле В =70° относительная ошибка измерения Δ W будет дости­гать 5%.

В силу перечисленных недостатков однолучевых систем послед­ние не нашли применения.

2.1.2. Принцип действия многолучевой ДИСС

Так как вектор скорости летательного аппарата опре­деляется в общем случае проекциями на три некомпланарных (т.е. лежащих не в одной плоскости) направления, то для определения всех трех составляющих необходимо излучать и принимать сигна­лы минимум по трем лучам антенны. Наибольшее применение нашли трех-четырехлучевые системы с , – расположением лучей (см. рис. 2.4). Эти системы свободны от основных недостатков однолучевых систем.

Рассмотрим подробнее принцип действия трехлучевой системы. Значение доплеровского сдвига частоты определяется равенством (см. рис. 2.4)

, (2.4)

где W S - проекция полной скорости летательного аппарата на направление излучения; λ 0 – длина волны излучаемого передатчиком сигнала. Задача измерения полной скорости сводится к вычислению трех ее составляющих W x , W y , W z , полученных по трем лучам антенной системы РЛС 1, 2, 3 (см. рис. 2.4).

В системе координат x , y , z направление излучения S определяется углами γ 0 и δ 0 (рис. 2.4), где γ 0 –угол между направлением продольной оси самолета 0x и направлением излучения S , δ 0 – угол между обратным направлением вертикальной оси самолета 0y и проекцией S yz направления излучения S на плоскость y0z . Вектор полной скорости можно разложить в самолетной системе координат на три составляющие: W x , W y , W z . Проектируя эти составляющие полной скорости на направление излучения S и суммируя их, получаем

Подставляя (2.5) в (2.4), получим

Уравнение (2.6) содержит три независимых неизвестных (W x , W y , W z ) и значение полной скорости может быть полностью определено по трем независимым уравнениям типа (2.6), полученным по трем некомпланарным лучам антенной системы.

ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ДИСС-7

Общие сведения

Доплеровский измеритель путевой скорости и угла сноса ДИСС-7 («Поиск») обеспечивает непрерывное автоматичес­кое измерение составляющих вектора путевой скорости W само­лета. Предназначен для работы только в составе навигационного комплекса и прицельно-навигационной системы (ПНС) или со специальным вычислителем В-144.

В состав ДИСС входят: передающее устройство, приемное устройство, частотомер и синхронизатор (рис. 13.3), Принцип работы состоит в следующем. Передающее устройство генерирует немодулированные СВЧ колебания, которые излучаются направленно к наземной поверх­ности (рис, 13.4, а). Передающая антенна, как и приемная, имеет остронаправленную (игольчатую) четырехлучевую диаграмму направленности. Лучи антенны 1, 2, 3 развернуты в горизонтальной плоскости на угол β от продольной оси самолета и наклонены в вертикальной плоскости на угол γ.

Рис. 13.3. Структурная схема ДИСС-7

Рис. 13.4. Положение лучей антенны ДИСС-7: а - вид в пространстве; б - вид сверху

относительно продольной оси самолета показано на рис. 13.4, б ).

Излучение (и прием) энергии по лучам 1, 2, 3, 4 происходит поочередно. Очередность излучения (и приема) задается синхро­низатором.

Отраженные от земной поверхности сигналы принимаются при­емной антенной и из-за проявления эффекта Доплера имеют сдвиг по частоте. В приемнике происходит усиление принятых сигналов и выделение доплеровской частоты F Д. Доплеровская частота поступает в частотомер. В частотомере осуществляется обнаружение доплеровской частоты и формирование импульсов напряже­ния, частота повторения которых равна доплеровской частоте по лучам 1, 2, 3.

Рис. 13.5. Вектор полной путевой скорости и его составляющие

Величины доплеровских частот F Д (рис. 13.5) по лучам 1, 2, 3 составят:

F Д1 = (W X cosβcosγ- W Z sinβcosγ-W Y sinγ)

F Д2 = (W X cosβcosγ+ W Z sinβcosγ+W Y sinγ)

F Д3 = (W X cosβcosγ- W Z sinβcosγ+W Y sinγ),

где W X , W Y , W Z - проекция полного вектора путевой скорости на оси самолетной системы координат.

Величины W X cosβcosγ, W Z sinβcosγ, W Y sinγ представляют собой проекции составляющих полной путевой скорости на направ­ления излучения (рис. 13.6).



Доплеровские частоты F Д1, F Д2 , F Д3 из частотомера поступают в вычислительное устройство для измерения путевой скорости и угла сноса самолета. В вычислительном устройстве осуществляет­ся решение системы уравнений относительно W X , W Y , W Z при этом следует иметь в виду, что доплеровские сдвиги частот F Д2 и F Д3 отрицательны, так как лучи 2 и 3 направлены назад, и в расчетах используются их модули.

Величину продольной составляющей полного вектора путевой скорости W Х найдем, вычитая из первого уравнения системы вто­рое:

W Х = .

Величину вертикальной составляющей полного вектора путе­вой скорости W Y найдем, складывая первое уравнение с третьим уравнением системы:


Величину поперечной составляющей полного вектора путевой скорости Wz найдем, вычитая из третьего уравнения системы вто­рое:

Wz=

С учетом того, что в ДИСС-7 угол β=45°, угол γ= 66°, по­лучим:

W X =0,83(F Д1 -|F Д3 |)λ 0 ;

W Y =0,28(|F Д3 |-|F Д1 |)λ 0 ;

W Z =0,83(|F Д3 |-|F Д2 |)λ 0

Полученные выражения представляют основные рабочие формулы, на основании которых в бортовой ЦВМ или в спе­циализированном вычислителе В-144 определяется вектор путе­вой скорости.

Составляющие вектора полной путевой скорости W x , W Y , W z позволяют вычислить горизонтальную составляющую путевой скорости W и угол сноса самолета а по следующим формулам:

; tgα=

Измеренные составляющие вектора полной путевой скорости W x , W Y , W z , а также W и αиспользуются для решения навига­ционных и боевых задач. Величины W и α могут быть сняты со специального индикатора или с индикатора вычислителя В-144.

Следует отметить, что рабочие формулы являются приближен­ными, так как в них не учтены отклонения реальных углов лучей, реальной частоты излучаемых колебаний от номинальных значе­ний, не учтено смещение доплеровских частот, определяемое ха­рактером отражающей поверхности.

Все блоки измерителя размещены на общем основании, уста­навливаемом в нижней части фюзеляжа самолета.

В комплект блоков ДИСС-7 входят следующие блоки: питания передатчика ПК7, коммутации ПК8, приемник ПК3, электронный ПК-5 (2 шт.), питания низковольтный ПК4, пере­датчик ПК2 (2 шт.), антенное устройство ПК1.

Измеритель ДИСС-7, работающий совместно с вычислителем В-144, имеет следующие тактико-технические данные:

Диапазон измеряемых путевых скоростей -250-3200 км/ч.

Диапазон измеряемых углов сноса - ±15°

Точность измерений путевой скорости - ± (5,5+0,006W )км/ч

Точность измерения угла сноса - ±54".

Диапазон рабочих высот - до 25000 м.

Диапазон волн - сантиметровый.

Вид излучения - непрерывный.

Мощность передатчика -2Вт.
Чувствительность приемника - 106 дБ.

Число лучей антенны - 4.

Частота коммутации лучей антенны -2,5Гц.
Время непрерывной работы - 12 ч.




АВТОНОМНЫЕ ДОПЛЕРОВСКИЕ УСТРОЙСТВА И СИСТЕМЫ НАВИГАЦИИ ПРЕДНАЗНАЧЕНЫ: Для измерения путевой скорости, угла сноса и составляющих вектора скорости летательных аппаратов (ЛА); Для определения координат их местоположения и автоматического управления полетом; Для измерения скорости ветра; ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011


КООРДИНАТЫ ПУНКТА НАЗНАЧЕНИЯ И НАВИГАЦИОННЫЙ ТРЕУГОЛЬНИК СКОРОСТЕЙ Движение ЛА по отношению земной поверхности происходит в результате взаимодействия силы тяги двигателей, аэродинамических сил и силы тяжести, вызывающих перемещение ЛА со скоростью по отношению к воздушной массе, и в результате действия ветра, вызывающего перемещение воздушной массы вместе с ЛА со скоростью. Результирующий вектор полной скорости определяет скорость движения ЛА по отношению к земной поверхности. ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 НПМ и КПМ Начальный и конечный пункты маршрута ЗПУ Заданный путевой угол К – курс – угол сноса – угол сноса ветром – угол аэродинамического скольжения Рис. 1


ОСНОВНЫЕ ЧАСТИ АВТОНОМНОЙ ДОПЛЕРОВСКОЙ СИСТЕМЫ НАВИГАЦИИ И УПРАВЛЕНИЯ ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Рис. 2 ДИСС определяет на борту ЛА направление вектора путевой скорости по отношению к продольной оси ЛА. Для определения направления полета ЛА по отношению к странам света, т.е. в системе координат, связанной с Землей, необходимо знание курса ЛА, определяющего переход по направлению от подвижной системы координат к неподвижной. Итак, для того, чтобы определить, в каком направлении и с какой скоростью летит аппарат, необходимо наличие как доплеровского устройства, измеряющего угол сноса и путевую скорость, так и курсовой системы. Интегрирование получаемых данных о перемещении ЛА с помощью так называемого навигационного вычислителя координат и учет координат начального пункта маршрута позволяет ответить на вопрос, где находится ЛА. Для того, чтобы решить задачу, в каком направлении и сколь долго лететь до пункта назначения, необходимо сопоставить информацию о действительном положении ЛА с заданными координатами пункта назначения.




ХАРАКТЕРИСТИКИ ОТРАЖЕНИЯ ЗОНДИРУЮЩИХ СИГНАЛОВ ОТ ЗЕМНОЙ ПОВЕРХНОСТИ ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Величина удельной эффективной площади обратного рассеяния зависит от большего числа параметров: от длины волны и поляризации излучаемых колебаний, вида отражающей поверхности ее характеристик и углов визирования. С увеличением угла визирования растет уровень отраженного сигнала, но это приводит к уменьшению чувствительности доплеровской частоты и минимальный разброс мощности отраженного сигнала. Поэтому компромисс 65 – 75 град. 1 - пашня 2 – лес 3 – поле с зеленой травой 4 – песчаная пустыня 5 – поле, покрытое снегом 6 – ледовая поверхность Рис. 5


ПОГРЕШНОСТИ ОДНОЛУЧЕВОГО ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Угол сноса равен углу, составленному осью самолета и осью ДНА в момент совмещения с направлением вектора путевой скорости, т.е. при Однолучевая система находит практического применения из-за низкой точности измерения Допустим, если, то погрешность измерения составляет (3) (4) (5) (6) Рис. 6


ПОГРЕШНОСТИ ОДНОЛУЧЕВОГО ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Если продифференцируем максимальную доплеровскую частоту по углу визирования, то получим Тогда Стабилизация антенны в горизонтальной плоскости или введение поправок на крен при обработке усложняет измеритель, но не устраняет недостатков однолучевого метода, к которым следует отнести высокие требования к стабильности частоты излучаемых колебаний. Решение проблемы: многолучевые ДИСС


МНОГОЛУЧЕВОЙ ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Рис. 7 Многолучевые ДИСС По назначению и способу построения измерители вектора скорости ЛА могут быть условно разделены на два основных типа: ДИСС, измеряющие путевую скорость и угол сноса ЛА или продольную и поперечную составляющие вектора путевой скорости (самолетные ДИСС), и ДИСС, измеряющие полный вектор скорости ЛА, т.е. три его составляющие (вертолетные ДИСС)










ТРЕХ-ЧЕТЫРЕХЛУЧЕВОЙ ДИСС ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 Так как вектор скорости ЛА определяется в общем случае проекциями на три некомпланарных направления, то для определения всех трех составляющих необходимо излучать и принимать сигналы минимум по трем лучам антенны.



ЛИТЕРАТУРА 1.Колчинский В. Е., Мандуровский И. А., Константиновский М.И. Автономные доплеровские устройства и системы навигации ЛА. М.: Сов. Радио, 1975, 432 с. 2.Радиотехнические системы. Под ред. Ю. М. Казаринова, М.: Высшая школа, с. 3.Сборник описаний лабораторных работ по радиолокации ИРЭ КАФЕДРА РАДИОТЕХНИЧЕСКИХ ПРИБОРОВ 2011 СОСТАВИЛИ А.И. БАСКАКОВ, Б. ОДСУРЭН

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Обзор и анализ аналогичных систем

1.1 Обзор существующих устройств

Обзор и анализ существующих моделей фильтров для систем ДИСС затруднителен в связи с тем, что данная область знаний является закрытой для широкого круга специалистов, поэтому оценить параметры, качество и особенности реально существующих фильтров не представляется возможным. С учетом этого для сравнительного анализа разрабатываемого цифрового фильтра для системы ДИСС использован DSP модуль для обработки радиолокационных сигналов на основе TMS320C5410A и Altera Cyclone EP1C6T144. DSP модуль представляет собой эффективную систему управления транспортными потоками на автомагистралях и обеспечивает:

1) Ввод аналоговых сигналов по 2-м каналам и их одновременное преобразование в цифровую форму с точностью 12 бит и частотой дискретизации до 50 МГц. Частота дискретизации и моменты взятия отсчетов для каждого из каналов задаются независимо;

2) Предварительную цифровую обработку сигналов на частоте дискретизации, выполняемую на ПЛИС;

3) Передачу результатов предварительной обработки из ПЛИС в ЦПОС со скоростью 20 Мбит/с;

4) Основную цифровую обработку сигналов, выполняемую на ЦПОС;

5) Выдачу низкоскоростных управляющих сигналов по 8 цифровым оптически изолированным линиям;

6) Выдачу высокоскоростного управляющего сигнала по 1 цифровой линии;

7) Работу в составе локальных сетей с интерфейсами RS232 и 100 Мбит/с Ethernet;

8) Дистанционную замену программ ЦПОС и ПЛИС, и отладку программ ЦПОС и ПЛИС по интерфейсу JTAG;

9) Рабочий диапазон температур - 40 …+85°С.

ПЛИС (Altera Cyclone EP1C6T144I7), использованная в данном модуле, выполняет предварительную цифровую обработку сигнала в реальном масштабе времени. В ПЛИС реализованы корреляторы, полосовые фильтры, схема синхронизации, формирование тактовых сигналов для АЦП, интерфейс связи с ЦПОС. Фильтры для каждого канала дальности реализованы по многокаскадной схеме с понижением частоты дискретизации с 50 МГц до 4. После понижения частоты дискретизации отсчеты сигналов передаются в ЦПОС для спектрального анализа и дальнейшей обработки .

Данный модуль взят за аналог ввиду применения в нем ПЛИС для ЦОС.

1 .2 Анализ требований к разрабатываемому устройству

Разрабатываемое устройство на ПЛИС по сравнению с вышеописанным модулем для обработки радиолокационных сигналов выполняет узкоспециализированую задачу предварительной фильтрации линейно-частотно модулированного сигнала (ЛЧМ).

Проектируемый фильтр строится на основе банка цифровых фильтров, в котором входной сигнал, представленный последовательностью отсчетов, с помощью N различных цифровых субфильтров (каналов) разбивается на N подполос фильтрации, ширина которых значительно меньше рабочей полосы частот. Согласно заданию на дипломное проектирование число каналов выбрано равным 16, исходя из того, что увеличение количества каналов ведет к увеличению затрат ресурсов ПЛИС, а уменьшение ведет к снижению точности вычислений.

Поскольку в качестве основы для проектирования ЦФ выбраны фильтры, используемые в системе ДИСС-7, рабочая частота которого составляет 13325ГГц±25МГц, то ширина полосы пропускания фильтра находится в пределах 0..50 МГц. Соответственно, частота дискретизации по теореме Котельникова должна превосходить максимальную частоту в полосы пропускания (50 МГц) минимум в 2 раза.

Исходя из вышесказанного к проектируемому фильтру предъявляются следующие требования:

а) 16 канальный банк цифровых фильтров;

б)ширина полосы пропускания 50 МГц;

в)частота дискретизации 102 МГц;

г)возможность изменения функциональности фильтра за счет перепрограммирования по интерфейсу JTAG;

д)рабочий диапазон температур -40 …+125°С.

2 . Теоретические основы реализации цифровой фильтрации

Поскольку реализация цифровой фильтрации в широкой полосе частот требует как минимум двукратного увеличения частоты дискретизации относительно максимальной частоты полосы (согласно теореме Котельникова), то реализация ЦФ затруднена ограничением частоты дискретизации устройства ЦОС, поэтому используют банк фильтров.

Банк фильтров (БФ) - цифровое устройство, в котором входной сигнал, представленный последовательностью отсчетов, с помощью М различных цифровых фильтров разбивается на М различных канальных сигналов (для обработки некоторым способом каждого из них), из которых с помощью выходных фильтров и последующего суммирования образуется последовательность отсчетов выходного сигнала.

Основную идею построения системы анализа / синтеза сигналов с использованием банка фильтров раскрывает рисунок 2.1.

Рисунок 2.1 - Система анализа / синтеза сигналов на основе банка фильтров

Исходный сигнал разбивается при помощи фильтров анализа H k (z), k=0,1…, M-1 на M субполосных составляющих, которые в идеальном случае в частотной области не перекрываются. Подобрав соответствующим образом набор фильтров синтеза F k (z), k=0,1…, M-1, можно восстановить исходный сигнал из его субполосных компонент. Вследствие ограничения ширины спектра сигналов на выходе БФ можно уменьшить частоту дискретизации субполосных сигналов пропорционально уменьшению ширины спектра. Для понижения частоты дискретизации на стадии анализа и последующего повышения на стадии синтеза используются соответственно компрессоры и экспандеры частоты дискретизации. В случае, когда коэффициент прореживания в каждом канале равен отношению ширины спектра субполосного сигнала к ширине спектра исходного, т.е.

говорят о системе анализа / синтеза с полной децимацией. Таким образом, получается M сигналов, отражающих поведение исходного сигнала в каждом частотном поддиапазоне, которые представлены в сумме тем же количеством отсчетов, что и исходный сигнал. Каждый субполосный сигнал в отдельности может быть эффективно обработан по некоторому алгоритму b k , k=0,1…M-1. БФ разделяют на банки с равнополосными и неравнополосными каналами, ортогональные, биортогональные, двухканальные и многоканальные и т.д. Каждый фильтр банка цифровых фильтров образует канал. Поэтому говорят об M-канальном банке фильтров.

Сигнал в канале называется субполосой, отсюда название субполосная фильтрация или субполосное кодирование.

Равнополосная декомпозиция подразумевает одинаковый коэффициент децимации и одинаковую суммарную ширину полосы пропускания каждого канала. В этот класс цифровых БФ входят также банки с многокомпонентными фильтрами (имеющими более одной полосы пропускания). В случае неравнополосных каналов коэффициенты децимации различны и в общем случае могут быть выражены в виде рационального числа

Дециматор (компрессор частоты дискретизации) - устройство, осуществляющее децимацию (прореживание) сигнала во времени. Децимация - операция, заключающаяся в исключении (пропуске) отсчетов входного сигнала, с порядковым номером, кратным коэффициенту децимации. Децимация в M раз обозначается обычно как: В частотной области это запишется как то есть спектр выходного сигнала операции децимации содержит M копий «расширенного» в M раз спектра входного сигнала, как это показано на рисунке 2.2.

Рисунок 2.2 - Децимация сигнала в M раз

Как видно из рисунка 2.2, если сигнал неограничен полосой частот, то происходит наложение спектров копий, то есть алайзин (от англ. «aliasing»). Поэтому в банке фильтров перед децимацией выполняется НЧ-фильтрация. Совокупность фильтра и дециматора называется фильтром-дециматором.

Интерполятор - устройство, выполняющее действия, обратные децимации. Интерполяция - операция, заключающаяся во встраивании (добавлении) между отсчетами, чей порядковый номер кратен определенному числу, некоторой константы (обычно нуля). Интерполяция в M раз обычно обозначается как (M ^):

В частотной области это записывается как то есть спектр выходного сигнала операции интерполяции содержит M копий «сжатого» в M раз спектра входного сигнала. Эти копии повторяются через. Для их устранения после интерполятора ставится НЧ-фильтр. Совокупность интерполятора и фильтра называется фильтром-интерполятором.

Частота дискретизации входного сигнала снижается при помощи дециматора, а затем осуществляется процесс фильтрации, таким образом общая вычислительная сложность уменьшается пропорционально коэффициенту децимации. После окончания обработки субполосного сигнала в каждом банке фильтров частота дискретизации повышается при помощи интерполятора. Данные равенства (эквивалентные схемы включения) широко применяются для вывода различных соотношений и представлены на рисунке 2.3.

Рисунок 2.3 - Эквивалентные схемы включения фильтров-дециматоров и фильтров-интерполяторов

Банк цифровых фильтров предназначен для разбиения входного сигнала на несколько подканалов. В рассматриваемом случае банк фильтров - совокупность однотипных полосовых фильтров, перекрывающих весь исследуемый частотный диапазон.

Пусть исследуемая полоса:

где Fs - частота дискретизации входного комплексного сигнала.

Тогда центральная частота k-ого фильтра:

где K - число подканалов, равное числу фильтров;

k - номер канала фильтра;

Центральная частота фильтра прототипа.

Выходные отсчеты k-ого канала (фильтра) определяются следующей формулой:

Все полосовые фильтры получены из исходного ФНЧ сдвигами его частотной характеристики (входного сигнала) (рисунок 2.4). Такие сдвиги может обеспечить дискретное преобразование Фурье:

где K - количество отсчетов в выборке; k - номер гармоники.

Рисунок 2.4 - АЧХ банка фильтров

Повторяя преобразования (2.7) на каждом текущем отсчете, получим:

что соответствует формуле (2.6), когда h(i)=1, i = (0, K-1). Теперь ДПФ (рисунок 2.5) можно рассматривать как набор из K полосовых фильтров:

где K - k-номер фильтра (канала).

Частотная характеристика, представленная на рисунке 2.5 имеет ряд существенных недостатков: растекание в боковые лепестки, наложение соседних каналов.

Улучшить АЧХ возможно лишь при использовании стандартных окон Хеннинга, Хемминга, Хана, Блэкмена и т.д. Применение эти окон позволяют убрать боковые лепестки (растекание), но лишь за счет усиления эффекта наложения.

Рисунок 2.5 - Эффекты наложения и растекания ДПФ

Это объясняется тем, что во временной области все стандартные окна фактически сужают интервал анализа относительно исходного прямоугольного окна, что в частотной области приводит к обратному эффекту. Вывод прост: для того чтобы частотные характеристики каналов не перекрывались, интервал, на котором происходит взвешивание сигнала, должен быть больше интервала ДПФ-анализа. Фактически, нужно сначала сформировать взвешивающим окном желаемую форму частотной характеристики, а потом проводить ДПФ. Если снять ограничение на длину интервала взвешивания N = K и заменить его на более легкое - N = LхK, L = 2, 3, 4,…, то есть N больше, но кратно интервалу ДПФ-анализа, то подбором взвешивающего окна можно задать любую форму частотной характеристики фильтра. Это позволит обеспечить и отсутствие перекрытия соседних каналов, и максимально равномерную характеристику в полосе пропускания. Как показывают вычисления, для обеспечения перекрытия соседних каналов менее 5% при любом К длина окна N должна быть в 12-16 раз больше К. Чтобы вернуться к выбранной длине интервала ДПФ-анализа, взвешенную последовательность длины N = LхK разбивают на L блоков по K отсчетов, после чего эти блоки накладывают друг на друга и поэлементно суммируют. Каждый r-й отсчет наложенной последовательности, полученной в момент времени t, z t (r)=z t (K-i), i = (0, K-1), определяется выражением:

где N = LхK, n - номер блока, п = (0, L-1).

Далее над полученными К отсчетами проводится ДПФ. Поэлементное сложение блоков длины. К взвешенной последовательности допустимо, так как все используемые в ДПФ комплексные экспоненты укладываются в К отсчетах целое число периодов, поэтому каждый К-й отсчет умножается на одно и то же значение.

Отсчеты после ДПФ описываются выражением:

Фактически взвешивающее окно - это импульсная характеристика КИХ фильтра.

На практике обычно имеет место перекрытие АЧХ соседних каналов. Перекрытие вызвано тем, что невозможно получить идеально прямоугольную форму АЧХ взвешивающего окна. Это означает, что частотная полоса в каждом канале будет несколько шире, чем Fs/K. Следовательно, после децимации в К раз выходной сигнал будет искажен (рисунок 2.6).

Рисунок 2.6 - Иллюстрация эффекта наложения при децимации: а) спектр исх. сигнала; б) спектр сигнала после децимации в 2 раза

Поэтому для устранения нежелательных эффектов децимации проводится следующее преобразования не через К, а через K/2 входных отсчетов, таким образом создается двукратный запас по частоте дискретизации выходного сигнала .

При проектировании банка цифровых фильтров с равнополосными каналами используется модель с полной модуляцией. Если банк основан на одном НЧ-фильтре-прототипе с конечной импульсной характеристикой (КИХ), то ширина полосы пропускания фильтра-прототипа определяет ширину каждого канала. Чтобы такой фильтр мог выделить полосу, соответствующую каждому каналу, необходимо сдвинуть спектр в область низких частот при помощи гетеродина (экспоненциального модулятора), а затем осуществить НЧ-фильтрацию фильтром-прототипом. После чего можно снизить частоту дискретизации субполосного сигнала без потери информации. Снижение частоты дискретизации осуществляет компрессор посредствам децимации, который удаляет М-1 отсчетов из каждой последовательности длиной M.

Максимальный коэффициент децимации равен количеству каналов K, таким образом, данный банк фильтров является максимально децимированным. Синтез осуществляется в обратной последовательности. Сначала увеличивается частота дискретизации. В экспандере между каждыми двумя отсчетами вставляются M-1 нулевых отсчетов. Затем осуществляется фильтрация субполосных сигналов с последующей модуляцией с целью перемещения субполосы в соответствующий частотный диапазон, который она занимала в исходном широкополосном сигнале. Суммирование выходов всех каналов синтезирующего банка фильтров дает восстановленный широкополосный сигнал, что представлено на модели ниже (рисунок 2.7).

Рисунок 2.7 - Модель ДПФ-модулированного банка фильтров, основанного на полной модуляции

НЧ-фильтр-прототип может быть спроектирован стандартными методами, такими как синтез при помощи взвешивающих окон, частотной выборки и т.д. Частота среза фильтра-прототипа определяет количество каналов и их ширину, так как вся полоса может быть поделена на K равных частей. Степень наложения субполос ограничивается в соответствии с требованиями, налагаемыми областью применения конкретного банка фильтров .

Импульсная и частотная характеристика фильтра для каждого канала определяется следующим образом:

Система характеризуется равномерным размещением полос с шагом

Непосредственная реализация такой схемы банка фильтров является крайне неэффективной. В каждом канале при большой частоте дискретизации осуществляется свертка с импульсной характеристикой фильтра-прототипа, что приводит к значительному увеличению вычислительных затрат, которые можно снизить путем снижения частоты дискретизации. Ключом для построения эффективной структуры является полифазная декомпозиция фильтра-прототипа. Она основывается на разбиении, децимации, группировании коэффициентов фильтра на подгруппы, называемые полифазными фильтрами.

Такое группирование полифазных фильтров может быть поделено между каналами, что изображено на рисунках 2.8 и 2.9.

Оценка субполосных сигналов осуществляется после модуляции, реализуемой при помощи ДПФ, вычислительную сложность которого можно ограничить, используя алгоритмы БПФ .

Рисунок 2.8 - Полифазная структура канала максимально децимированного банка анализа

На основе приведенных выше теоретических сведений в данном дипломном проекте разрабатывается цифровой фильтр на основе ДПФ-модулированных банков анализа и синтеза с равнополосными каналами. Число каналов ЦФ составляет 16, т.к. обеспечивается оптимальное распределение ресурсов ПЛИС и выполнение поставленной задачи. Ширина канала составляет 3.125 МГц.

3 . Реализация математической модели фильтра в пакете MATLAB

3.1 Основы проектирования фильтров в MATLAB

радиолокационный сигнал фильтрация модель

Для построения фильтра-прототипа и расчета коэффициентов проектируемого фильтра использована среда Matlab.

В пакете Signal Processing, входящем в Matlab, имеется две графических среды, позволяющих рассчитывать и анализировать дискретные фильтры: FDATool (Filter Design & Analysis Tool) и блок работы с фильтрами, входящий в среду SPTool. В среде FDATool поддерживается больше методов синтеза; в SPTool имеется возможность ручного графического редактирования расположения нулей и полюсов функции передачи фильтра.

Расчет фильтра начинается с задания требуемых параметров на вкладке Design Filter. Тип синтезируемой АЧХ выбирается с помощью переключателя Filter Туре. Возможны следующие варианты: Lowpass (ФНЧ), Highpass (ФВЧ), Bandpass (полосовой фильтр), Bandstop (режекторный фильтр). Выбор пятого положения переключателя позволяет использовать раскрывающийся список, в котором перечислены более сложные варианты: Differentiator (дифференцирующий фильтр), Hilbert Transformer (преобразователь Гильберта), Multiband (многополосный фильтр), Arbitrary Magnitude (произвольная АЧХ) и Arbitrary Group Delay (произвольная групповая задержка).

Выбрав категорию синтезируемой АЧХ, следует выбрать тип синтезируемого фильтра, установив переключатель, расположенный в разделе Design Method, в положение IIR (рекурсивный) или FIR (нерекурсивный). Каждому положению переключателя соответствует список возможных методов синтеза. Состав этого списка меняется в зависимости от выбранного типа АЧХ. Например, при синтезе фильтра с произвольной зависимостью групповой задержки от частоты (Arbitrary Group Delay) переключатель автоматически установится в положение IIR, а в списке будет доступен всего один метод - метод минимизации р-нормы ошибки (Constrained Least Pth Norm). В случае синтеза АЧХ четырех простейших типов набор возможных методов синтеза значительно шире:

Нерекурсивные фильтры (FIR). Здесь доступны следующие методы:

а) Equiripple - синтез фильтров с равномерными пульсациями АЧХ методом Ремеза;

б) Least-Squares - минимизация среднеквадратического отклоне-ния АЧХ от заданной;

в) Window - синтез с использованием весовых функций (окон);

Рекурсивные фильтры (IIR). Здесь доступны четыре варианта синтеза по различным аналоговым прототипам методом билинейного Z-преобразования:

а) Butterworth - синтез фильтра Баттерворта;

б) Chebyshev Type I - синтез фильтра Чебышева первого рода;

в) Chebyshev Type II - синтез фильтра Чебышева второго рода;

г) Elliptic - синтез эллиптического фильтра.

В разделе Filter Order указывается требуемый порядок фильтра или устанавливается переключатель в положение Minimum order (наименьший возможный порядок). В разделе Frequency Specifications и Magnitude Specifications необходимо ввести частоту дискретизации Fs, граничные частоты полосы пропускания и полосы задерживания (Fpass и Fstop), допустимые затухания в полосе пропускания и в полосе задерживания (Apass и Astop). После задания всех параметров нажимается кнопка Design Filter и производится расчёт коэффициентов фильтра, после чего можно просмотреть характеристики синтезированного фильтра .

3.2 Расчет коэффициентов фильтра

Фильтр рассчитывается с частотой дискретизации 102 МГц и частотой среза 50 МГц. Тип фильтра - ФНЧ, с конечной импульсной характеристикой (FIR). Полоса пропускания равна - диапазон частот (50 МГц), Число коэффициентов фильтра (порядок фильтра) - 768 (16*48), т.к. при проектировании фильтра была экспериментально получена оптимальная длина полосы, равная 48.

Послерасчёта коэффициенты фильтра экспортируются через меню File - Export to - Coefficient File, в Options выбирается формат Binary и экспортируется в файл h.fcf, который приведен в приложении Б.

В дальнейшем этот файл будет использоваться как подключаемый в проект программной реализации фильтра.

3.3 Реализация ДПФ-модулированных банков фильтров

Можно построить математическую модель банка фильтров, используя функции пакета MATLAB.

Функция анализатора - dft01a (x, K, M, h), где

x - анализируемый сигнал,

K - количество каналов,

M - коэффициент децимации,

На выходе функции - X - матрица с сигналами каналов банка фильтра.

1) Формирование сигнала модуляции (гетеродин).

2) Модуляция входного сигнала - получение канальных сигналов.

3) НЧ-фильтрация каналов.

4) Децимация канальных сигналов.

Функция синтезатора - dft01s (X, M, h), выполняет действия обратные функции анализатора, на входе функции X - матрица с сигналами каналов, M - коэффициент интерполяции, h - коэффициенты фильтра-прототипа.

1) Определение количества каналов по размеру матрицы с сигналами каналов.

2) Добавление нулевых отсчетов.

3) Подготовка фильтра.

4) Фильтрация каналов.

5) Формирование коэффициентов модулятора (гетеродина).

6) Модуляция.

7) Суммирование выходов всех каналов и получение синтезированного сигнала.

Так как прямая реализация уступает в эффективности полифазной, то необходимо провести подробный анализ полифазной реализации банков фильтров. Функция анализатора полифазной реализации, с максимальной децимацией - dft02a (x, K, h), где

x - анализируемый сигнал,

K - количество каналов,

h - коэффициенты фильтра-прототипа.

На выходе функции - X - матрица с сигналами каналов цифрового банка фильтра .

Основные этапы выполняемые функцией анализатора:

1) Сортировка входных отсчетов сигнала на каналы - децимация. Осуществляется при помощи функции reshape, которая преобразует вектор входных отсчетов в матрицу, последовательно заполняя её сверху вниз, справа налево.

2) Разбиение фильтра-прототипа на полифазные фильтры. Осуществляется при помощи функций reshape и flipud, последняя функция переворачивает матрицу (от англ. flip up down).

3) Полифазная фильтрация каналов. Осуществляется функцией filter.

4) Модуляция посредствам ДПФ. Осуществляется функцией fft.

Функция синтезатора полифазной реализации - dft02s (X, h), как и для прямой реализации, выполняет действия обратные функции анализатора, на входе функции X - матрица с сигналами каналов, h - коэффициенты фильтра-прототипа.

Основные этапы выполняемые функцией синтезатора:

1) Определение количества каналов.

2) Обратное ДПФ, осуществляется функцией ifft.

3) Разбиение фильтра-прототипа на полифазные фильтры.

4) Полифазная фильтрация каналов

5) Синтезированный сигнал - интерполяция.

В Приложении В представлен листинг алгоритмов реализации банков цифровых фильтров в среде Matlab.

В качестве входного сигнала используется ЛЧМ сигнал, так как этот сигнал используется в системе ДИСС в качестве зондирующего и по его форме и спектру легче оценить воздействие на него банка фильтров.

Линейно-частотная модуляция (ЛЧМ) сигнала - это вид частотной модуляции, при которой частота несущего сигнала изменяется по линейному закону.

Изменение частоты f(t) внутри импульсов с ЛЧМ происходит согласно формуле:

где - центральное значение несущей частоты;

База (крутизна изменения частоты) ЛЧМ сигнала;

Длительность сигнала;

Максимальное и минимальное значение частоты радиосигнала.

Фаза сигнала с ЛЧМ определяется как:

Тогда ЛЧМ сигнал описывается следующим выражением:

где - амплитуда; - начальная фаза .

Основные параметры разрабатываемого банка ЦФ:

Частота дискретизации fs=102 МГц;

Количество каналов k=16;

Количество коэффициентов фильтра прототипа n=768.

4 . Практическая реализация банка цифровых фильтров

4.1 Структура и описание ПЛИС

В настоящее время существует большое количество производителей ПЛИС (Altera, Xilinx, Actel, Atmel, Gray, National Instuments и др.), но лидерами в производстве ПЛИС являются фирмы Altera и Xilinx.

При выборе элементной базы ПЛИС учитываются следующие факторы:

· быстродействие,

· низкая стоимость,

· более совершенное программное обеспечение (ПО).

Продукты фирмы Altera имеют более совершенное ПО (Quartus II), чем продукты фирмы Xilinx (ISE). Поэтому используется ПЛИС Altera. В таблице 4.1.1 представлены сравнительные характеристики семейств Cyclone.

Таблица 4.1.1 - Сравнительные характеристики семейств Cyclone

Выбор элементной базы ПЛИС производится между семейством Cyclone и Cyclone II, т.к. производительности этих СБИС вполне хватит для реализации поставленной задачи. Если сравнивать производительность наилучшей модели первого поколения Cyclone и младшую модель второго поколения, то стоимость младшей модели Cyclone II будет значительно ниже. Разработка банка цифровых фильтров будет основана на ПЛИС фирмы Altera семейства Cyclone II.

Семейство Cyclone II - второе поколение дешевых FPGA фирмы Altera. Они на 30% дешевле и в три раза более емкие, чем микросхемы первого поколения. Данные ПЛИС выпускаются на 300-мм пластинах по
90-нм технологическому процессу (в то время как Cyclone - по технологии 130 нм) с напряжением питания ядра 1.2 В. Cyclone II имеют также и больше функциональности, в том числе, встроенные умножители, поддержку большего числа стандартов ввода / вывода, интерфейсов с новыми устройствами памяти. Они содержат до 68 тысяч логических элементов, до 622 пользовательских линий ввода / вывода и до 1.1 Мбит встроенной памяти в различных конфигурациях, включая двухпортовые и однопортовые RAM, ROM и FIFO. Особенностью семейства Cyclone II является наличие встроенных умножителей 18 х 18, каждый из которых может использоваться как два умножителя 9 х 9. Блоки ввода / вывода микросхем Cyclone II поддерживают различные стандарты, в том числе и дифференциальные. Для семейства Cyclone II оптимизировано уже более 40 IP-компонент от Altera и AMPP (Altera Megafunction Partners Program).

Отличительные особенности:

1) Архитектура семейства Cyclone II содержит от 4608 до 68416 логических элементов;

2) М4К встроенные блоки памяти;

3) До 1.1 Мбит встроенной RAM памяти;

4) Тактовая частота 260 МГц;

5) Встроенные умножители;

6) Поддержка дифференциальных быстродействующих каналов, включая LVDS (311 MbPS), mini-LVDS, RSDS, LVPECL;

7) Поддержка быстродействующей внешней памяти, включая DDR2, DDR и SDR SDRAM;

8) Питание портов I/O 1.5, 1.8, 2.5 или 3.3 В;

9) Поддержка интерфейса JTAG;

10) До четырех ФАПЧ (PLL) на микросхему с умножением частоты и сдвигом фаз;

11) Питание ядра 1.2 В.

Таблица 4.1.2 - Обзор семейства Cyclone II.

Устройство

Логические элементы

Блоки ОЗУ М4К

Всего ОЗУ, бит

Встроенные умножители 18 х 18

Максимальное количество

пользовательских выводов

Дифференциальные каналы

Для реализации цифрового фильтра для системы ДИСС выбрана СБИС EP2C35F484I8. Обозначение СБИС состоит из следующих составных частей и обозначает:

EP2C - Altera Cyclone второго поколения;

35 - Примерно 35 000 логических элементов;

F - Тип корпуса: F = fineline (1,0 mm) BGA;

484 - Количество выводов корпуса;

I - Рабочая температура: Industrial (-40..+125°С);

8 - Градация быстродействия: 6, 7,8.

EP2C35 состоит из блоков ОЗУ М4К (M4K Blocks), встроенных умножителей (Embedded Multipliers), ФАПЧ (фазовая автоподстройка частоты) (PLL), блоков логических элементов (logic array), элементов ввода-вывода (IOEs).

Самым наименьшим элементом в архитектуре Cyclone II является логический элемент (LE). Основу логических элементов составляет функциональный генератор (Look-Up Table - LUT) .

Логический элемент Cyclone II может работать в различных режимах:

1. Нормальный режим используется для задач общей логики и комбинационных функций;

2. Арифметический режим используется для того, чтобы осуществить сумматоры, счетчики, аккумуляторы и компараторы.

16 логических элементов (LEs) образуют блоки логических элементов (Logic Array Blocks).

Cyclone II имеет 4 банка портов ввода / вывода. Каждый банк имеет свое питание VCCIO, поддерживает много стандартов с одинаковым уровнем питания и имеет вывод двойного назначения VREF.

По своей архитектуре микросхемы FPGA построены с использованием памяти Static RAM, то есть при каждом включении требуют «загрузки» выполняемой программы, следовательно, для работы фильтра потребуется наличие конфигурационного ПЗУ. Конфигурационные ПЗУ предназначены для загрузки статической памяти FPGA .

EP2C20F256I8 использует конфигурационное ПЗУ EPCS4- Flash микросхема. Она может программироваться в системе с использованием кабеля Byteblastertm II Download Cable или использовать специальный блок Altera Programming Unit (APU). EPCS4 имеют четырехпроводной интерфейс: (DCLK), Serial Data Output (DATA), AS Data input (ASDI) и Chip Select (Ncs). DCLK генерируется Cyclone FPGA (14-20 МГц) .

4.2 Особенности САПР ПЛИС

Программное обеспечение Altera Quartus II предоставляет полную мультиплатформенную среду проектирования, которая может быть легко перенастроена под конкретные требования. Это идеальная среда для проектирования на основе ПЛИС законченных систем на кристалле (SOPS). Программное обеспечение Quartus II включает в себя средства для всех фаз проектирования с применением ПЛИС как FPGA, так и CPLD структур .

Порядок работы с ПО Altera Quartus II включает следующие основные этапы:

1) Техническое задание;

2) Ввод описания проекта (поведенческое или структурное);

3) Моделирование (функциональное);

4) Синтез:

а) Преобразование описания проекта в схему на заданной элементной базе;

б) Оптимизация схемы с учётом ограничений по быстродействию и занимаемой площади ПЛИС;

5. Разводка и размещение внутренних ресурсов ПЛИС с учётом наложенных ограничений по быстродействию и занимаемые ресурсы;

6. Временной анализ - проверка соответствия созданной ПЛИС условиям быстродействия ТЗ;

7. Моделирование на вентильном уровне;

8. Тестирование и отладка ПЛИС в составе системы (ISP, JTAG, Signal tap) .

Для выполнения задания на дипломное проектирование необходимо последовательно выполнить указанные этапы, за исключением этапа тестирования и отладки, который не входит в задачи данного дипломного проекта.

В рамках пакета Quartus II создается проект (схемный, текстовый, комбинированный ввод проекта). Для создания сложных проектов существуют интегрированные средства помощи Mega Wizard & SOPC. Особенностью среды Quartus II является наличие системы синтеза, системы размещения внутренних ресурсов и разводки ПЛИС, системы моделирования, системы временного анализа и анализа потребляемой энергии, системы интеграции с другими САПР, средств оптимизации быстродействия LogicLock, интегрированных средств разработки ПО для микро-ЭВМ.

При схемном вводе описания проекта могут использоваться:

1) Простейшие логические элементы;

2) Параметризируемые модули;

3) Мегафункции Altera;

4) Ранее созданные компоненты (тестовым и др. способами).

В качестве аппаратурных языков описания схем, реализуемых в ПО Quartus II, используются языки VHDL или Verilog.

IP (Intellectual Property) ядра - логические блоки написанные на языках VHDL или Verilog, используются для сложных многокомпонентных проектов. Многие фирмы предлагают готовые, протестированные IP-ядра, реализующие различные алгоритмы и интерфейсы.

В состав IP входят мегафункции. Для задач цифровой фильтрации применяется мегафункция Mega Core FIR Compiler. Применение данной мегафункции позволяет быстро спроектировать цифровой фильтр исходя из заданных параметров.

4.3 Расчет и реализация банка цифровых фильтров в среде Quartus II v . 8 .1

Для начала работы в среде Quartus II необходимо создать новый проект (New Project Wizard). При создании проекта необходимо указать имя проекта, месторасположение проекта, тип ПЛИС, на котором будет выполнен проект.

Описание проекта будет реализовано на схемном вводе. В меню File->New-> Block Diagram/Schematic создается файл верхнего уровня для схемного описания проекта. Важно чтобы имя проекта совпадало с именем файла верней иерархии. Реализуемый проект состоит из двух блоков: фильтра-дециматора (фильтра-анализатора) и фильтра- интерполятора (фильтра-синтезатора). На примере рассматривается реализация фильтра-дециматора.

Для ускоренного создания проекта в появившемся окне необходимо нажать вкладку Symbol-> MegaWizard Plug-In Manadger.

Далее необходимо создать новую модель мегафункции. В следующем диалоговом окне необходимо указать путь и имя выходного файла, мегафункцию (FIR Compiler v8.1), а также следует выбрать семейство ПЛИС, на котором будет реализована данная мегафункция и язык описания (Verilog HDL).

Настройки поделены на две составляющие: создание и генерация коэффициентов мегафункцией (Floating Coefficient Set) или импорт коэффициентов из среды Matlab (Imported Coefficient Set).

Для генерации коэффициентов мегафункцией (fircompiler) необходимо в окне FilterType выбрать тип фильтра (Low Pass). Порядок фильтра, определяется количеством коэффициентов фильтра (Coefficients). Во вкладке Window Type выбирается метод, по которому будет осуществлен синтез АЧХ проектируемого фильтра. Синтез АЧХ осуществляется только методом окон. Этот недостаток компенсируется возможностью загрузки коэффициентов проектируемого фильтра, полученных, с использованием среды FDATool, входящий в Matlab. Во вкладках Cuttof Freq.1 и Sample Rate указывается граничная частота и частота дискретизации соответственно (50МГц и 102 МГц).

Во вкладке Rate Specification осуществляется выбор типа фильтра: дециматора, интерполятора. Во вкладке Factor выбирается индекс децимации / интерполяции (соответствует количеству каналов). Также в настройках можно выбрать разрядность входной шины данных, способ представления входных данных: signed - десятичное число со знаком, unsigned - десятичное число без знака, тип структуры проектируемого фильтра (полностью параллельная, последовательная), указать где будут храниться коэффициенты.

Далее проводится графический анализ влияния ошибок квантования коэффициентов фильтра на его АЧХ. Ошибки квантования - представление коэффициентов фиксированным набором битов, например 16 бит. Операции сложения и вычитания в формате с фиксированной запятой не приводят к необходимости округления результатов - они могут лишь вызвать переполнение. В отличие от сложения умножение чисел с фиксированной запятой приводит к увеличению числа значащих цифр результата и, следовательно, к необходимости округления. Если результат умножения по модулю не превышает единицы, то применение формата с плавающей запятой даст большую точность .

Однако операции сложения в формате с плавающей запятой могут приводить к потере точности. В данном случае выбирается опция преобразования из формата с плавающей запятой в формат с фиксированной запятой (закладка Floating point to fixed point conversion) c последующим масштабированием коэффициентов с точностью 16 бит. В соответствии с заданной точностью, мегафункция автоматически находит масштабный коэффициент.

На следующем этапе задается фактор интерполяции (или децимации) фильтра, если необходимо спроектировать интерполяционный или децимирующий фильтр (по умолчанию фактор задается равным 1). Следующий шаг - задание архитектуры проектируемого КИХ-фильтра (параллельная или последовательная) и конвейерных свойств фильтра: оптимизация по скорости работы (частоте) или по площади занимаемых ресурсов (число задействованных макроячеек) ПЛИС.

Реализация фильтра-интерполятора с помощью мегафункции будет аналогична.

Для создания входных и выходных выводов на разрабатываемой блок-схеме необходимо на панели инструментов выбрать вкладку Symbol. В левой части окна необходимо последовательно указать путь к библиотеке с нужными примитивами: altera/quartus81/libraries/primitives/pin/input. В правой части окна появится изображение выбранного примитива. В данном случае это входной вывод input. После нажатия клавиши ОК выбранный символ появится в основном поле программы. При таком вводе автоматически включается режим «Повторного ввода» (Repeat-insert-mode), при котором один символ можно вставить в несколько мест проекта. Введенный символ привязывается к курсору. Теперь при нажатии левой кнопки мыши символ вводится на указанное в данный момент место схемы. Далее его можно перевести в другое место схемы и там его аналогичным способом зафиксировать. Для завершения вставки достаточно нажать на клавиатуре клавишу ESC или на правую кнопку мыши.

Аналогичным образом вводятся все выводы, необходимые для создания проекта. После окончания ввода всех выводов необходимо перезаписать файл проекта.

Для данного проекта понадобится 3 входных вывода (вход для сброса, вход для синхроимпульса и вывод для входной последовательности) и один выходной вывод (для выходной последовательности).

После соединения всех выводов с функциональными блоками необходимо произвести компиляцию проекта, запустив полную компиляцию проекта, выбрав в меню «Обработка» (Processing) команду «Пуск компилятора» (Start Compilation). Компилятор пакета Quartus II состоит из ряда модулей, выполняющих следующие функции:

· проверка проекта на наличие ошибок;

· логический синтез;

· размещение и разводка проекта в ПЛИС;

· генерация выходных файлов для моделирования проекта;

· анализ временных характеристик;

· программирование.

В начале компиляции проекта из него извлекается информация об иерархических связях между составляющими его файлами, и описание проекта проверяется на наличие основных ошибок. Затем создается организационная карта проекта, и все файлы преобразуются в единую базу данных, с которой в последствие и будет работать система.

Компилятор создает файлы для программирования и конфигурирования ПЛИС фирмы Altera.

Промежуточные и окончательные результаты компиляции в системе Quartus II можно посмотреть в окне «Отчет о компиляции» (Compilation Report). На рисунке представлен отчет о компиляции проекта.

Отчет о компиляции проекта

Как видно из рисунка данный проект занимает 52% логических элементов ПЛИС, что означает наличие незадействованных ячеек, а следовательно, посредством перепрограммирования ПЛИС можно дополнить список функций реализуемых на ПЛИС.

После компиляции проекта доступно моделирование (Simulation), которое позволяет определить реакцию разработанного проекта на заданное входное воздействие, то есть позволяет убедиться в правильности его функционирования.

Цифровой банк фильтров имеет три входа и один выход. На вход clock подается последовательность синхроимпульсов, на вход reset единичный импульс для сброса предыдущих состояний ЦФ, на вход in_data подается сигнал, подлежащий фильтрации. С выхода out_data снимается отфильтрованный сигнал.

Список литературы

1. ДИСС - База знаний (электронный ресурс). - Режим доступа: http://www.avsim.su/wiki/ДИСС

2. Доплеровский измеритель скорости и сноса (электронный ресурс). - Режим доступа: http://ru.wikipedia.org/wiki/Доплеровский_измеритель_скорости_и_сноса

3. Л. Азаренков, И. Канатов, Д. Каплун. Банк Цифровых фильтров // Компоненты и технологии. - 2007. - №10. - С. 156-161

4. Цифровые банки фильтров: анализ, синтез и применение в мультимедиасистемах: Учеб. метод. пособие по курсу «Теория и применение ЦОС»/ Сост. и общ. ред. А.А. Петровский, М. Парфенюк, А. Борович, М.З. Лившиц. - Минск: БГУИР, 2006. - 82 с.

5. А. Беляев, Т. Солохина, В. Юдинцев. Современные устройства цифровой обработки сигналов. Вместе или врозь // Электроника: наука, технология, бизнес. - 2009. - №1

6. DSP модуль для обработки радиолокационных сигналов на основе TMS320C5410A и Altera Cyclone EP1C6T144 (электронный ресурс). - Режим доступа: http://cad.ntu-kpi.kiev.ua/~dsplab/ru/publish/C5410_and_Altera

7. А.Б. Сергиенко «Цифровая обработка сигналов» - СПб.: Питер, 2002. - 608 с.

8. Cyclone II Device Handbook - Altera corporation, 2008. - 470 с.

9. Линейная частотная модуляция (электронный ресурс). - Режим доступа:

http://ru.wikipedia.org/wiki/Линейная_частотная_модуляция

10. Общая технология проектирования в среде Quartus II: Учеб.метод. пособие по курсу «Схемотехническое проектирование ЭВС»/ Сост. и общ. ред. Ю.Ф. Опадчий. - Москва: МАТИ, 2005. - 79 с.: ил.

11. Quartus II Handbook Version 8.1 - Altera corporation, 2008. - 2496 с.

12. Андрей Строгонов. Проектирование цифровых фильтров в системе MATLAB/Simulink и САПР ПЛИС Quartus // Компоненты и технологии. - 2008. - №6. - С. 122-126.

13. Дубровский Н.А. Организация производства: Учеб.-метод. комплекс. - Новополоцк: УО «ПГУ», 2006. - 368 с.

15. Охрана труда: Учеб.-метод. комплекс/ сост. И.Н. Клышко, Н.С. Дмитриченко, Л.Д. Петрусенко; под общ. ред. И.Н. Клышко. - Новополоцк: ПГУ, 2006. - 196 с.

16. Защита населения и хозяйственных объектов в чрезвычайных ситуациях: Учеб.-метод. комплекс для студ. технических, финансово-экономических и юридических спец./ Сост. и общ. ред. Э.П. Калвана. - Новополоцк: ПГУ, 2005. - 356 с.

Размещено на Allbest.ru

Подобные документы

    Самолетные и вертолетные доплеровские измерители скорости и угла сноса (ДИСС). Разработка цифрового фильтра для системы ДИСС. Требования к разрабатываемому устройству. Теоретические основы реализации цифровой фильтрации. Экономическое обоснование проекта.

    дипломная работа , добавлен 11.02.2013

    Цифровой фильтр с заданными характеристиками: рабочие коэффициенты, передаточная функция, параметры и структура. Программная и аппаратная реализация спроектированного фильтра, его тестирование. Особенности режимов работы фильтра в полосе пропускания.

    контрольная работа , добавлен 19.09.2012

    Разработка общего алгоритма функционирования цифрового фильтра нижних частот. Разработка и отладка программы на языке команд микропроцессора, составление и описание электрической принципиальной схемы устройства. Быстродействие и устойчивость фильтра.

    курсовая работа , добавлен 28.11.2010

    Разработка математической модели цифрового фильтра нижних частот. Структурная и электрическая принципиальная схемы системы с обоснованием выбора элементов. Время выполнения программы работы цифрового фильтра. Оценка инструментальной погрешности системы.

    курсовая работа , добавлен 13.06.2016

    Нахождение коэффициентов фильтра с помощью программного пакета MatLab. Структурная схема прямой канонической формы фильтра. Листинг программного пакета visual DSP++. Построение амплитудно-частотной характеристики синтезированного фильтра, расчет графика.

    курсовая работа , добавлен 23.04.2013

    Расчет цифрового фильтра нижних частот с конечной импульсной характеристикой. Синтез фильтра методом окна (параболического типа). Свойства фильтра: устойчивость, обеспечение совершенно линейной фазочастотной характеристики. Нахождение спектра сигнала.

    курсовая работа , добавлен 07.07.2009

    Изучение сущности цифровой фильтрации - выделения в определенном частотном диапазоне с помощью цифровых методов полезного сигнала на фоне мешающих помех. Особенности КИХ-фильтров. Расчет цифрового фильтра. Моделирование работы цифрового фильтра в MatLab.

    курсовая работа , добавлен 21.09.2010

    Изучение методов цифровой фильтрации в обработке сигналов. Исследование способов синтеза бесконечной импульсной характеристики приборов для очищения жидкостей процеживанием. Особенность имитирования фильтров нижних частот в программной среде Matlab.

    дипломная работа , добавлен 20.05.2017

    Линейно частотно-манипулированные сигналы. Создание согласованного фильтра и его импульсной характеристики. Создание накопителя и прохождение через него. Функциональная схема цифрового согласованного обнаружителя сигналов. Создание ЛЧМ–сигнала.

    курсовая работа , добавлен 07.05.2011

    Расчет цифрового и аналогового фильтра-прототипа. Структурные схемы и реализационные характеристики фильтра. Синтез цифрового фильтра в системе программирования MATLAB. Частотные и импульсные характеристики цифрового фильтра, карта его нулей и полюсов.

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ДОПЛЕРОВСКИЕ ИЗМЕРИТЕЛИ
МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К лабораторной работе по разделу

"Доплеровские навигационные системы"
Составитель: Б.К. Метелев

УДК 629.7.052.3 (07)
Доплеровские измерители: Методические указания к лабораторным работам по разделу "Доплеровские навигационные системы" / Уфимск. гос. авиац. техн. ун-т; Сост. Б.К. Метелев. - Уфа, 1997. - 35 с.

Рассматриваются принцип работы, проверка общей работоспособности, настройка и отыскание неисправностей в доплеровском измерителе путевой скорости и угла сноса ДИСС-7.

Предназначены для студентов, проходящих обучение по профилю "Эксплуатация и ремонт радиоэлектронного оборудования летательных аппаратов".
Библиогр,: 3 назв.

Рецензенты: д-р техн. наук, проф. Ф.А. Шаймарданов, полковник В. А. Куклин
Содержание


Введение

4

1

Цель работы

5

2

Теоретическая часть

5

2.1

Общие сведения и классификация доплеровских измерителей путевой скорости и угла сноса

5

2.2

Назначение, ТТД, комплект ДИСС-7

7

2.3

Принцип работы ДИСС-7

10

2.4

Работа ДИСС-7 по структурной схеме

15

2.5

Боевое применение ДИСС-7

24

3

Меры безопасности при выполнении работы

25

4

Лабораторная установка

25

5

Указания по порядку выполнения работы

26

6

Контрольные вопросы для подготовки к выполнению работы

26

7

Практическая часть. Проверка параметров и исследование отдельных каскадов ДИСС-7

26

7.1

ДИСС-7. Формовка интеграторов блока ПК-5

27

7.2

Проверка и регулировка выходных параметров блока ПК-4

28

7.3

Проверка и регулировка выходных параметров блока ПК-7

29

7.4

Проверка работоспособности измерителя с помощью ПАК-ДИ-7 в ручном режиме

30

7.5

Полная проверка работоспособности ДИСС-7 с помощью ПАК-ДИ-7. Проверка состояния резерва

31

7.6

Проверка параметров токов коммутации лучей антенн

32

Список литературы

35

Введение

Методические указания к лабораторной работе по разделу "Доплеровские навигационные системы" предназначены для студентов 4 курса специальностей ПЭ, ИИТ, АСУ, ОВИ, ЭВМ, САПР.

Данные указания составлены на материале доплеровского измерителя самолетов последних поколений. Содержат общие методические указания, назначение, принцип действия, состав, описание работы структурной схемы, особенности конструкции и технической эксплуатации доплеровского измерителя ДИСС-7. Имеют достаточное количество иллюстраций.
^ 1 Цель работы.
Закрепить знания по теме "Доплеровские навигационные системы".

Привить практические навыки по проверке общей работоспособности, настройке и отысканию характерных неисправностей в доплеровском измерителе путевой скорости и угла сноса ДИСС-7.

Исследовать процессы, протекающие в схеме доплеровского измерителя.
^ 2 Теоретическая часть
2.1 Общие сведения и классификация доплеровских измерителей путевой скорости и угла сноса
С развитием авиационной техники увеличиваются требования к точности измерения навигационных параметров полета. Задачу увеличения точности позволили решить системы, работающие на использовании эффекта Доплера, получившие название доплеровских измерителей скорости и угла сноса – ДИСС.

На самолетах второго поколения устанавливались измерители ДИСС-1, ДИСС-ЗС, имеющие сложную антенную четырехлучевую симметричную систему, большой вес, до 78 кг и соответственно большие габариты.

На самолетах третьего поколения устанавливаются измерители ДИСС-7, ДИСС-013, имеющие несимметричную четырехлучевую и трехлучевую антенную систему, малый вес, до 28 кг и малые габариты.

Классификацию доплеровских измерителей можно провести по основным параметрам:

А) по характеру излучаемого сигнала:

1) импульсное излучение;

Достоинства:

Относительная простота;

Независимость результатов измерений от стабильности частоты передатчика;

Одна антенна;

Недостатки:

Увеличение погрешности измеряемых величин при полете над пересеченной местностью;

Невозможность измерения вертикальной составляющей скорости;

2) непрерывное излучение;

Достоинства:

Повышение чувствительности измерителя при одинаковой мощности излучаемого сигнала по сравнению с импульсным методом;

Малая погрешность измеряемых величин при полете над пересеченной местностью;

Возможность измерения вертикальной составляющей скорости.

Недостаток: требуется две антенны;

Б) по виду антенных систем:

1) однолучевые доплеровские измерители;

Достоинство: простота конструкции;

Недостатки:

Низкая точность измерения путевой скорости и угла сноса;

Зависимость измеряемых параметров от стабильности частоты передатчика.

2) многолучевые ДИСС (рисунок 2.1).

Рисунок 2.1
Достоинством односторонних двухлучевых ДИСС является высокая точность.

Недостатки:

Невозможность учета вертикальной составляющей скорости;

Влияние нестабильности частоты передатчика на измерение.

Достоинства двухсторонних двухлучевых ДИСС:

Простота выделения измеренного сигнала;

Отсутствие влияния нестабильности частоты передатчика на измерение;

Учет вертикальной составляющей скорости.

Недостатком является низкая точность измерения угла сноса, так как используется метод минимума.

3) Трехлучевые ДИСС обладают достоинствами двухлучевых и исключают их недостатки.

Недостатком данных измерителей является невозможность учета поправки измерения на характер отражающей поверхности.

Достоинства четырехлучевых симметричных ДИСС:

Высокая точность измерения параметров,

Все достоинства двухлучевых измерителей.

Недостатки:

Сложность антенной системы;

Не учитывается влияние характера отражающей поверхности на точность измерения параметров.

Достоинства четырехлучевых несимметричных ДИСС:

Возможность учесть поправку на характер отражающей поверхности,

Все достоинства трехлучевых ДИСС.

Недостаток: сложность антенной системы

Являясь автономной системой, ДИСС не зависит от дальности действия и высотности других систем Это важное достоинство доплеровского измерителя, который на летательном аппарате является самой точной системой измерения навигационных параметров.
^ 2.2 Назначение, ТТД, комплект ДИСС-7
2.2.1 Назначение ДИСС-7
Доплеровский измеритель путевой скорости и угла сноса ДИСС-7 предназначен для непрерывного автоматического вычисления составляющих вектора полной путевой скорости
, в самолетной системе координат XYZ.

Рисунок 2.2
Это эквивалентно измерению величины путевой скорости
, угла сноса
,и угла
, в вертикальной плоскости между векторами
и
, где - вектор путевой скорости, являющийся проекцией вектора полной путевой скорости
на горизонтальную плоскость (рисунок 2.2).

ДИСС-7 работает в составе пилотажно-навигационного комплекса ПНК и имеет следующие тактико-технические данные.
2.2.2 Тактико-технические данные ДИСС-7
- вид излучения – непрерывный;

Частота излучения высококачественных колебаний в нормальных климатических условиях -
МГц, где
МГц; в других климатических условиях -
МГц;

Мощность передатчика не < 2 Вт;

Диапазон измеряемых доплеровских частот 1,5 ÷ 32 кГц;

Частота коммутации лучей антенны 2,5 ± 0,25 Гц;

Время непрерывной работы 12 часов;

Высотность работы измеряется от 200 до 20000 м, при углах крена и тангажа не > ± 30 градусов и на высотах от 20000 до 30000 м при и не > ± 5 градусов;

При полете над водной поверхностью ДИСС-7 обеспечивает измерение при волнении не ниже 2 баллов;

Чувствительность приемника не хуже 113 дБ/мВт;

Погрешность измерения средней
не > 0,9%;

Масса измерителя 29 кг;

Габаритные размеры 666 х 406 х 231 мм;

Питающие напряжения:

~ 115 В, 400 Гц, при потреблении тока до 2 А;

27 В, при потреблении тока до 2,5 А;

Условия эксплуатации:

Температура окружающей среды, от минус 60 до плюс 60° С;

Относительная влажность воздуха при температуре + 35 °С не > 98%;

Давление воздуха, не < 15 мм рт. ст.
2.2.3 Комплект измерителя ДИСС-7
Блочный состав комплекта ДИСС-7 представлен в таблице 2.1.

Таблица 2.1


Наименования блока

Шифр блока

Масса, кг

Количество, шт

Антенный блок

ПК 1

8,7

1

Передатчик

ПК 2

1,67

2

Приемник

ПК 3

1,9

1

Блок питания (низковольтный)

ПК 4

1,6

1

Электронный блок

ПК 5

2,65

2

Блок питания (высоковольтный)

ПК 7

2,75

1

Блок коммутации

ПК 8

4,2

1

1. Антенный блок предназначен для излучения, приема сверхвысокочастотных сигналов и формирования четырехлучевой диаграммы направленности (рисунок 2.3).

Рисунок 2.3 - Проекции лучей на горизонтальную плоскость
Состоит из двух неподвижных антенн (передающей и приемной).

2. Передатчик предназначен для генерирования сверхвысокочастотных непрерывных колебаний. Передатчиков два (основной и резервный).

3. Приемник предназначен для выделения сигналов и их усиления.

4. Низковольтный блок питания предназначен для питания блоков измерителя стабилизированными напряжениями +10 В, -10 В, +1,2 В, нестабилизированными напряжениями +18 В и ±2 В.

5. Высоковольтный блок питания предназначен для питания передатчика стабилизированным током 70 мА при напряжении минус 550 В и постоянными напряжениями накала:

6,3 ± 0,35 В - при нагреве передатчика;

4,5 ± 0,35 В - при работе передатчика.

6 Электронный блок предназначен для выдачи:

А) импульсов по четырем каналам с частотами следования, равными средней частоте доплеровского спектра;

Б) напряжения поправки на характер отражающей поверхности;

В) сигнала "Память 5" при отсутствии слежения за частотой доплеровского сигнала;

Г) сигнала "Отказ ХОП" при неисправности вычислителя поправки ХОП. Электронных блоков два, основной и резервный.

7. Блок коммутации предназначен для синхронного переключения каналов обеих антенн, приемника и электронного блока, а также стробирования приемника и электронного блока на время переходных процессов при переключении каналов.

Собственного пульта управления ДИСС-7 не имеет, управление им осуществляется с пульта управления ПНК самолета.
^ 2.3 Принцип работы ДИСС-7
Работа измерителя ДИСС-7 основана на использовании эффекта Доплера в режиме непрерывного излучения.

Сущность эффекта Доплера заключается в отличии частоты сигнала f, излучаемого передатчиком измерителя ДИСС-7 летящего самолета, от частоты колебаний f ПР, отраженные от земной поверхности и принимаемых приемным устройством (f ПР =f±F Д).

Значение доплеровского сдвига частоты определяется равенством





(2.1)

где
- проекция полной путевой скорости самолета на направление излучения, - длина волны излучаемых передатчиком колебаний.

Для измерения вектора полной путевой скорости
необходимо измерять доплеровские частоты по трем некомпланарным (не лежащим в одной плоскости) лучам, поэтому в ДИСС-7 применена неподвижная относительно самолета антенная система, имеющая четыре луча (рисунок 2.4).

Рисунок 2.4
Лучи 1, 2, 3 предназначены для измерения составляющих вектора полной путевой скорости
, а луч 4 используется для автоматического формирования калибровочной поправки в зависимости от характера отражающей поверхности. Величина углов наклона лучей в ДИСС-7 выбрана:

Доплеровские сдвиги частот F Д1 , F Д2 , F Д3 , по соответствующим лучам, через проекции вектора на оси самолетной системы координат X, Y, Z
, определяются следующим образом:




(2.2)

W XS 1 - проекция на направление 1-го луча (рисунок 2.5),

W YS 1 - проекция
на направление 1-го луча (рисунок 2.6),

W ZS 1 - проекция
на направление 1-го луча (рисунок 2.7).

Определим значения W XS 1 , W YS 1 , W ZS 1 ,.

Рисунок 2.5
Согласно рисунку 2.5 имеем:

отсюда
,
т.о.

Рисунок 2.7
Согласно рисунку 2.7 имеем:

отсюда
,
, т.о.

F Д2 и F Д3 отрицательны, так как лучи 2 и 3 направлены назад, поэтому в расчетах удобнее использовать их модули.

Вычитая выражение (2.7) из выражения (2.6), определим составляющую вектора вдоль продольной оси самолета:

Складывая выражения (2.6) и (2.8), вычислим вертикальную составляющую вектора путевой скорости:





(2.11)

Таким образом, задача определения вектора путевой скорости самолета сводится к выделению и измерению средних частот Доплера от трех лучей антенны.

С учетом того, что в ДИСС-7
и
, на основании формул (2.9), (2.10), (2.11), получаем:








(2.12)




Полученные выражения представляют собой основные рабочие алгоритмы, на основании которых в ЭВМ или в специализированном аналоговом вычислителе В-144 определяется вектор полной путевой скорости.

Для определения угла сноса необходимо знать W X и W Z , а для определения необходимо знать и W Y (рисунок 2.2).

Однако выражение (2.12) является лишь первым приближением для вычисления вектора , так как в них не учтены:

А) Отклонение реальных углов лучей антенны от нормальных;

Б) Смещение доплеровских частот, определяемое характером отражающей поверхности;

В) Отклонение реальной частоты излучения колебаний от номинальной. Наиболее существенным источником погрешностей в ДИСС-7 является смещение средней F Д, определяемое характером отражающей поверхности.

Как известно, в результате изменения коэффициента отражения а в пределах антенного луча происходит деформация доплеровского спектра и смещение его максимума в сторону низких частот, зависит от угла падения , причем для разных отражающих поверхностей эта зависимость различна.

На рисунке 2.8 приведен примерный вид зависимости коэффициента отражения от угла падения.

Рисунок 2.8
Как видно, наиболее существенно сказывается зависимость от для морской поверхности.

Величина смещения средней
за счет изменения характера отражающей поверхности (например, переход от полета над сушей к полету над морем) различна и может достигать величины 0,03F Д, что приводит к значительным погрешностям в измерении , если не принимать специальных мер.

Если взять две точки на кривой
, соответствующие углам и , то по значению
можно найти
- калибровочную поправку. В ДИСС-7 для получения
используется луч 4 антенны с
.

Принимаемые сигналы по 1-му и 4-му лучу дают возможность выделить величину смещения средней F Д в виде напряжения
, где k 1 - постоянный коэффициент, равный 300 В; таким образом, в зависимости от
может меняться в пределах 0-8,8 В, это напряжение подается в ЭВМ или В-144 для устранения ошибки.
^ 2.4 Работа ДИСС-7 по структурной схеме
Структурная схема измерителя ДИСС-7 приведена на рисунке 2.9 и включает в себя:

Антенный блок ПК-1, состоящий из ответвителей канала передачи ВЧ сигнала и канала приема переключателей лучей передающей антенны, схемы контрольной разводки и самих антенн;

Передатчик ПК-2, основной и резервный;

Блок питания, включающий в себя высоковольтный блок питания ПК-7 и низковольтный ПК-4;

Блок коммутации ПК-8, состоящий из синхронизатора ПК-8-1, переключателя передатчиков ПК-8-2, переключателя электронных блоков ПК-8-3 и релейного переключателя токов коммутации;

Приемник ПК-3, состоящий из балансного модулятора, балансного смесителя, генератора опорной частоты, усилителя промежуточной частоты, второго смесителя, усилителя низкой частоты и схемы автоматической регулировки усиления;

Электронный блок ПК-5, состоящий из коммутатора, дискриминатора, схемы управления, автомата захвата, вычислителя поправки на характер окружающей поверхности и четырех перестраиваемых генераторов. Резервный электронный блок на схеме не показан.

Рассмотрим работу измерителя ДИСС-7 по структурной схеме в режимах "поиск" и "сопровождение".

Рисунок 2.9- Структурная схема измерителя ДИСС-7

Для согласования полосы пропускания дискриминатора в соответствии с принимаемым спектром частот доплеровского сигнала она изменяется. "Узкая" полоса соответствует нижним частотам рабочего диапазона, а ""широкая" - верхним F Д.

Переключение полосы пропускания осуществляется по сигналу "переключение полосы", поступающему из коммутатора.

В режиме "поиск" во всем диапазоне изменения частоты перестраиваемого генератора с коммутатора выдается сигнал, соответствующий "широкой" полосе пропускания дискриминатора.

Полоса пропускания дискриминатора в режиме "слежение" переключается. Сигнал включения "узкой" полосы пропускания выдается в виде постоянного положительного напряжения при уменьшении частоты перестраиваемого генератора ниже 3,8 кГц.

Сигнал включения "широкой" полосы пропускания выдается в виде постоянного отрицательного напряжения при увеличении частоты перестраиваемого генератора выше 4,6 кГц.

Электронный блок ПК-5 имеет четыре идентичных канала. При этом дискриминатор, схема управления, коммутатор и автомат захвата являются общими для всех четырех каналов.

Для временного разделения сигналов в общих приборах электронного блока из синхронизатора подаются импульсы коммутации. Импульсы коммутации U 1 , U 2 , U 3 , U 4 (рисунок 2.10) осуществляют последовательные во времени подключения:

А) перестраиваемых генераторов в один общий канал в коммутаторе;

Б) сигнала рассогласования с выхода дискриминатора по входам соответствующих перестраиваемых генераторов в схеме управления;

В) инерционных элементов в автомате захвата.

Для устранения влияния переходных процессов, возникающих при коммутации каналов, из синхронизатора подается стробимпульс U 0 (рисунок 2.10) на коммутатор, на автомат захвата и схему управления.

В 4-канальном электронном блоке изменение частоты каждого перестраиваемого генератора производится только при подаче на схему управления соответствующего импульса коммутации. Во время работы одного из перестраиваемых генераторов остальные запоминают значение частоты, равное ее величине в конце "своего" импульса коммутации. В результате увеличение или уменьшение частоты всех четырех перестраиваемых генераторов по всем каналам происходит ступенчато (рисунок 2.13).

Рисунок 2.13
С приближением частоты каждого перестраиваемого генератора к частоте доплеровского сигнала величина этих ""ступенек" уменьшается, и тогда электронный блок начинает следить за доплеровским сигналом, разница между Г ГЕН и F S составляет очень малую величину. Изменение направления перестраиваемых генераторов при отсутствии сигнала захвата происходит тогда когда частота одного из них достигает крайнего значения диапазона.

При работе четырех каналов полоса пропускания дискриминатора определяется положением средней частоты перестраиваемых генераторов, если сигнал захвата выдается по всем каналам. Если же автомат захвата не выдает сигнала захвата хотя бы по одному каналу, то выдается сигнал "память 5", который поступает в коммутатор, где формирует сигнал на включение широкой полосы дискриминатора. Сигнал "память 5" поступает также в переключатель электронных блоков, где используется для формирования сигнала "память".

Вычислитель поправки на характер отражающей поверхности (ХОП) производит сравнение мощностей сигналов, принятых по первому и четвертому лучам, и решает уравнение:

Где U 1 и U 4 - эффективные значения переменного напряжения на входе вычислителя поправки ХОП при работе первого и четвертого каналов;

К - коэффициент пропорциональности = 300 В,

U xon - постоянное напряжение, пропорциональное величине поправки на характер отражающей поверхности, может формироваться в диапазоне 0 8,8 В.

Для решения этого уравнения в вычислитель поправки ХОП подается сигнал с дискриминатора, а также импульсы коммутации 1 и 4 для выделения сигнала по первому и четвертому каналам Лучи 1 и 4 имеют разные углы визирования, соответствующие значениям углов падения, поэтому разность логарифмов коэффициентов отражения, соответствующих этим углам, пропорциональна поправке на ХОП.

При величине напряжения U xon , соответствующей нереальной величине отношения U 4 /U 1 , с выхода вычислителя поправки ХОП выдается сигнал "отказ ХОП", по которому включается сигнал "память 5" в переключателе электронных блоков.

При кратковременных кренах и тангажах самолета, когда информация U xon искажена, происходит запоминание (за счет большой постоянной времени) ранее вычисленного значения поправки на ХОП в приборе ПК-5-7 при подаче па него команды "сигнал сектора" из навигационно-пилотажного комплекса (НПК) в виде напряжения +27 В.

Напряжение поправки ХОП является выходным сигналом измерителя, поступающим в блок коммутации и далее в НПК для внесения поправки в значение путевой скорости самолета

Выходными сигналами являются и F ДВ (i=1..4) с выхода четырех перестраиваемых генераторов, поступающие также в блок коммутации Блок коммутации ПK-8 обеспечивает:

А) электрическое соединение всех блоков, входящих в измеритель, подключение измерителя «Выход ДИСС-7» к потребителям (ПК-8-3 - переключатель электронных блоков);

Б) подключение резервных блоков ПК-2 и ПК-5 при выходе из строя основных (ПК-8-2 - переключатель передатчиков и ПК-8-1 - синхронизатор);

В) формирование сигнала "Память" (ПК-8-3).
Для кратковременного выключения работающего передатчика из пульта управления НПК или прибора автоматического контроля ПАК-ДИ-7 подается команда "выключение памяти" в виде подачи напряжения +27 В, по которой переключатель передатчиков выдает команду "выключение высокого", снимая высокое напряжение с передатчика и подавая на него напряжение накала 6,3В.

Для принудительного переключения передатчиков на переключатель с ПАК-ДИ-7 подается команда "переключение передатчиков". По этой команде переключатель передатчиков выдает сигналы:

А) "выключение высокого" на схему" переключения;

Б) "выключение основного" на схему переключения канала "переключатель" или "выключение резерва" на переключатель 3 в зависимости от того, какой передатчик был включен до подачи команды.

Переключатель электронных блоков ПК-8-3 обеспечивает:

А) согласование выходного сопротивление электронного блока по сигналам F 1 , F 2 , F 3 , F 4 с входным сопротивлением потребителя этих сигналов ДИСС-7),

Б) формирование сигнала "память" при:

Наличии сигнала "память 5" из автомата захвата,

Отсутствии сигнала "отказ ХОП" с вычислителя поправки электронного блока;

Подаче команды "выключение памяти" (+ 27 В из ПУ НПК);

В) переключение с работающего блока на неработающий при:

Наличии сигнала "память 5" с работающего электронного блока в течение 60-80 с;

Отсутствии, сигнала F с выхода хотя бы одного перестраиваемого генератора при отсутствии сигнала "память";

Появлении сигнала ""отказ ХОП"

В зависимости от подключенного в данный момент основного или резервного электронных блоков на переключатель электронных блоков подается соответственно "память 5" (осн) или "памятъ5" (рез) при отсутствии захвата хотя бы по одному каналу. При наличии же захвата по всем каналам сигнал "память 5" снимается.

Отсутствие сигнала "память" на переключателе электронных блоков свидетельствует об исправной работе измерителя.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: