Новые процессоры ARM готовы к приложениям ИИ. Процессоры ARM: особенности архитектуры, отличия и перспективы

Первые чипы ARM появились еще три десятилетия назад благодаря стараниям британской компании Acorn Computers (ныне ARM Limited), но долгое время пребывали в тени своих более именитых собратьев – процессоров архитектуры х86. Все перевернулось с ног на голову с переходом IT-индустрии в пост-компьютерную эпоху, когда балом стали править уже не ПК, а мобильные гаджеты.

Особенности архитектуры ARM

Начать стоит, пожалуй, с того, что в процессорной архитектуре x86, которую сейчас используют компании Intel и AMD, применяется набор команд CISC (Complex Instruction Set Computer), хоть и не в чистом виде. Так, большое количество сложных по своей структуре команд, что долгое время было отличительной чертой CISC, сначала декодируются в простые, и только затем обрабатываются. Понятное дело, на всю эту цепочку действий уходит немало энергии.

В качестве энергоэффективной альтернативы выступают чипы архитектуры ARM с набором команд RISC (Reduced Instruction Set Computer). Его преимущество в изначально небольшом наборе простых команд, которые обрабатываются с минимальными затратами. Как результат, сейчас на рынке потребительской электроники мирно (на самом деле, не очень мирно) уживаются две процессорные архитектуры – х86 и ARM, каждая из которых имеет свои преимущества и недостатки.


Архитектура х86 позиционируется как более универсальная с точки зрения посильных ей задач, включая даже столь ресурсоемкие, как редактирование фотографий, музыки и видео, а также шифрование и сжатие данных. В свою очередь архитектура ARM «выезжает» за счет крайне низкого энергопотребления и в целом-то достаточной производительности для важнейших на сегодня целей: прорисовки веб-страниц и воспроизведения медиaконтента.


Бизнес-модель компании ARM Limited

Сейчас компания ARM Limited занимается лишь разработкой референсных процессорных архитектур и их лицензированием. Создание же конкретных моделей чипов и их последующее массовое производство – это уже дело лицензиатов ARM, которых насчитывается превеликое множество. Есть среди них как известные лишь в узких кругах компании вроде STMicroelectronics, HiSilicon и Atmel, так и IT-гиганты, имена которых у всех на слуху – Samsung, NVIDIA и Qualcomm. С полным списком компаний-лицензиатов можно ознакомиться на соответствующей странице официального сайта ARM Limited .


Столь большое число лицензиатов вызвано в первую очередь обилием сфер применения ARM-процессоров, причем мобильные гаджеты – это лишь вершина айсберга. Недорогие и энергоэффективные чипы используется во встраиваемых системах, сетевом оборудовании и измерительных приборах. Платежные терминалы, внешние 3G-модемы и спортивные пульсометры – все эти устройства основаны на процессорной архитектуре ARM.


По подсчетам аналитиков, сама ARM Limited зарабатывает на каждом произведенном чипе $0,067 в виде роялти. Но это сильно усредненная сумма, ведь по себестоимости новейшие многоядерные процессоры значительно превосходят одноядерные чипы устаревшей архитектуры.

Однокристальная система

С технической точки зрения называть чипы архитектуры ARM процессорами не совсем верно, ведь помимо одного или нескольких вычислительных ядер они включают целый ряд сопутствующих компонентов. Более уместными в данном случае являются термины однокристальная система и система-на-чипе (от англ. system on a chip).

Так, новейшие однокристальные системы для смартфонов и планшетных компьютеров включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиоокодек и опционально модули беспроводной связи. Узкоспециализированные чипы могут включать дополнительные контроллеры для взаимодействия с периферийными устройствами, например датчиками.


Отдельные компоненты однокристальной системы могут быть разработаны как непосредственно ARM Limited, так и сторонними компаниями. Ярким тому примером являются графические ускорители, разработкой которых помимо ARM Limited (графика Mali) занимаются Qualcomm (графика Adreno) и NVIDIA (графика GeForce ULP).

Не стоит забывать и про компанию Imagination Technologies, которая ничем другим, кроме проектирования графических ускорителей PowerVR, вообще не занимается. А ведь именно ей принадлежит чуть ли не половина глобального рынка мобильной графики: гаджеты Apple и Amazon, планшетники Samsung Galaxy Tab 2, а также недорогие смартфоны на базе процессоров MTK.

Устаревшие поколения чипов

Морально устаревшими, но все еще широко распространенными процессорными архитектурами являются ARM9 и ARM11, которые принадлежат к семействам ARMv5 и ARMv6 соответственно.

ARM9 . Чипы ARM9 могут достигать тактовой частоты 400 МГц и, скорее всего, именно они установлены внутри вашего беспроводного маршрутизатора и старенького, но все еще надежно работающего мобильного телефона вроде Sony Ericsson K750i и Nokia 6300. Критически важным для чипов ARM9 является набор инструкций Jazelle, который позволяет комфортно работать с Java-приложениями (Opera Mini, Jimm, Foliant и др.).

ARM11 . Процессоры ARM11 могут похвастаться расширенным по сравнению с ARM9 набором инструкций и куда более высокой тактовой частотой (вплоть до 1 ГГц), хотя для современных задач их мощности тоже не достаточно. Тем не менее, благодаря невысокому энергопотреблению и, что не менее важно, себестоимости, чипы ARM11 до сих пор применяются в смартфонах начального уровня: Samsung Galaxy Pocket и Nokia 500.

Современные поколения чипов

Все более-менее новые чипы архитектуры ARM принадлежат к семейству ARMv7, флагманские представители которого уже достигли отметки в восемь ядер и тактовой частоты свыше 2 ГГц. Разработанные непосредственно ARM Limited процессорные ядра принадлежат к линейке Cortex и большинство производителей однокристальных систем используют их без существенных изменений. Лишь компании Qualcomm и Apple создали собственные модификации на основе ARMv7 – первая назвала свои творения Scorpion и Krait, а вторая – Swift.


ARM Cortex-A8. Исторически первым процессорным ядром семейства ARMv7 было Cortex-A8, которое легло в основу таких известных SoC своего времени как Apple A4 (iPhone 4 и iPad) и Samsung Hummingbird (Samsung Galaxy S и Galaxy Tab). Оно демонстрирует примерно вдвое более высокую производительность по сравнению с предшествующим ARM11. К тому же, ядро Cortex-A8 получило сопроцессор NEON для обработки видео высокого разрешения и поддержку плагина Adobe Flash.

Правда, все это негативно сказалось на энергопотреблении Cortex-A8, которое значительно выше чем у ARM11. Несмотря на то, что чипы ARM Cortex-A8 до сих пор применяются в бюджетных планшетниках (однокристальная система Allwiner Boxchip A10), их дни пребывания на рынке, по всей видимости, сочтены.

ARM Cortex-A9. Вслед за Cortex-A8 компания ARM Limited представила новое поколение чипов – Cortex-A9, которое сейчас является самым распространенным и занимает среднюю ценовую нишу. Производительность ядер Cortex-A9 выросла примерно втрое по сравнению с Cortex-A8, да еще и появилась возможность объединять их по два или даже четыре на одном чипе.

Сопроцессор NEON стал уже необязательным: компания NVIDIA в своей однокристальной системе Tegra 2 его упразднила, решив освободить побольше места для графического ускорителя. Правда, ничего хорошего из этого не вышло, ведь большинство приложений-видеопроигрывателей все равно ориентировались на проверенный временем NEON.


Именно во времена «царствования» Cortex-A9 появились первые реализации предложенной ARM Limited концепции big.LITTLE, согласно которой однокристальные системы должны иметь одновременно мощные и слабые, но энергоэффективные процессорные ядра. Первой реализацией концепции big.LITTLE стала система-на-чипе NVIDIA Tegra 3 с четырьмя ядрами Cortex-A9 (до 1,7 ГГц) и пятым энергоэффективным ядром-компаньоном (500 МГц) для выполнения простеньких фоновых задач.

ARM Cortex-A5 и Cortex-A7. При проектировании процессорных ядер Cortex-A5 и Cortex-A7 компания ARM Limited преследовала одно и ту же цель – добиться компромисса между минимальным энергопотреблением ARM11 и приемлемым быстродействием Cortex-A8. Не забыли и про возможность объединения ядер по два-четыре – многоядерные чипы Cortex-A5 и Cortex-A7 мало-помалу появляются в продаже (Qualcomm MSM8625 и MTK 6589).


ARM Cortex-A15. Процессорные ядра Cortex-A15 стали логическим продолжением Cortex-A9 – как результат, чипам архитектуры ARM впервые в истории удалось примерно сравниться по быстродействию с Intel Atom, а это уже большой успех. Не зря ведь компания Canonical в системных требования к версии ОС Ubuntu Touch с полноценной многозадачностью указала двухъядерный процессор ARM Cortex-A15 или аналогичный Intel Atom.


Очень скоро в продажу поступят многочисленные гаджеты на базе NVIDIA Tegra 4 с четырьмя ядрами ARM Cortex-A15 и пятым ядром-компаньоном Cortex-A7. Вслед за NVIDIA концепцию big.LITTLE подхватила компания Samsung: «сердцем» смартфона Galaxy S4 стал чип Exynos 5 Octa с четырьмя ядрами Cortex-A15 и таким же количеством энергоэффективных ядер Cortex-A7.


Дальнейшие перспективы

Мобильные гаджеты на базе чипов Cortex-A15 еще толком не появились в продаже, а основные тенденции дальнейшего развития архитектуры ARM уже известны. Компания ARM Limited уже официально представила следующее семейство процессоров ARMv8, представители которого в обязательном порядке будут 64-разрядными. Открывают новую эпоху RISC-процессоров ядра Cortex-A53 и Cortex-A57: первое энергоэффективное, а второе высокопроизводительное, но оба способны работать с большими объемами оперативной памяти.

Производители потребительской электроники семейством процессоров ARMv8 пока особо-то не заинтересовались, но на горизонте вырисовались новые лицензиаты, планирующие вывести чипы ARM на серверный рынок: AMD и Calxeda. Идея новаторская, но вполне имеет право на жизнь: те же графические ускорители NVIDIA Tesla, состоящие из большого числа простых ядер, на практике доказали свою эффективность как серверных решений.

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

Cortex-A5;
Cortex-A7;
Cortex-A8;
Cortex-A9;
Cortex-A12;
Cortex-A15;
Cortex-A53;

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Cortex-A5

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Cortex-A7

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Cortex-A8

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

Cortex-A12

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

Cortex-A15

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Cortex-A53

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании , который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет на производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).

Процессоры ARM – что это такое и «с чем их едят». Появление на рынке производительных мобильных процессоров во многом стало настоящим революционным прорывом. Можно сказать, впервые у x86-архитектуры появился весомый конкурент, который если на первых этапах и занимал только лишь соседствующую нишу, то уже сегодня начинает всерьез теснить позиции долгожителя компьютерной индустрии.

Но в чем же отличие? Что такое архитектура ARM и чем она отличается от x86? В последней, используемой в процессорах Intel и AMD, применяется набор CISC-команд. Обработка на их основе очень функциональна, открывает просторы для программистов и разработчиков железа, но требует немалого количества энергоресурсов. Суть CISC, грубо говоря, заключается в том, что каждая поступаемая команда декодируется в простейший элемент и только потом обрабатывается.

В ARM все иначе. Она действует на основе RISC-команд, которые уже содержат готовый набор простейших элементов. Это уменьшает процессорную гибкость, но в разы увеличивается скорость обработки данных, и соответственно, уменьшает энергозатраты такого процессора.

Отсюда и получается, что x86 – это универсальная архитектура, пригодная для решения многих задач, в то время как ARM требует более тонкой заточки железа и возможности такой архитектуры несколько более ограничены. Однако возможности ARM становятся все более масштабными. Уже сейчас такие процессоры пригодны для стандартной офисной работы, воспроизведения медиа-контента, работы в интернете.

ARM быстро развивается, чему способствует и тот факт, что над данной технологией по франчайзингу трудятся десятки конкурентных брендов, в то время как над x86-архитектурой трудятся всего две корпорации, представители которых едва ли не прямо говорят о том, что в сегменте застой… а про ARM такого не скажешь.

Говоря о том, что такое чипы ARM следует отметить такой момент, как комплексность предлагаемых современных мобильных систем. ARM – это не просто один процессор. Как правило, в него входят: контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиоокодек и опционально модули беспроводной связи. Такая система называется однокристальной. Другими словами, ARM – это чип на чипе.

На сегодняшний день ARM насчитывают несколько процессорных поколений:

ARM9 . Чипы ARM9 могут достигать тактовой частоты 400 МГц. Эти чипы морально устарели, но по прежнему пользуются спросом. Например, в беспроводных маршрутизаторах и терминалах оплаты. Набор простых команд такого чипа позволяет с легкостью запускать многие Java-приложения.

ARM11 . Процессоры ARM11 могут похвастаться более полным набором простых команд, расширяющих их функционал и высокой тактовой частотой (вплоть до 1 ГГц). Благодаря невысокому энергопотреблению и низкой себестоимости чипы ARM11 до сих пор применяются в смартфонах начального уровня.

ARMv7. Современные чипы архитектуры ARM принадлежат к семейству ARMv7, флагманские представители которого уже достигли отметки в восемь ядер и тактовой частоты свыше 2 ГГц. Разработанные непосредственно ARM Limited процессорные ядра принадлежат к линейке Cortex и большинство производителей однокристальных систем используют их без существенных изменений.

ARM Cortex-A8. Исторически первым процессорным ядром семейства ARMv7 было Cortex-A8, которое легло в основу таких известных SoC своего времени как Apple A4 (iPhone 4 и iPad) и Samsung Hummingbird (Samsung Galaxy S и Galaxy Tab). Оно демонстрирует примерно вдвое более высокую производительность по сравнению с предшествующим ARM11, и увы, более высокое энергопотребление, что делает данный чип ныне крайне непопулярным.

ARM Cortex-A9. Вслед за Cortex-A8 компания ARM Limited представила новое поколение чипов – Cortex-A9, которое сейчас является самым распространенным и занимает среднюю ценовую нишу. Производительность ядер Cortex-A9 выросла примерно втрое по сравнению с Cortex-A8, да еще и появилась возможность объединять их по два или даже четыре на одном чипе.

ARM Cortex-A5 и Cortex-A7. При проектировании процессорных ядер Cortex-A5 и Cortex-A7 компания ARM Limited преследовала одно и ту же цель – добиться компромисса между минимальным энергопотреблением ARM11 и приемлемым быстродействием Cortex-A8. Не забыли и про возможность объединения ядер по два-четыре – многоядерные чипы Cortex-A5 и Cortex-A7 мало-помалу появляются в продаже (Qualcomm MSM8625 и MTK 6589).

ARM Cortex-A15. Процессорные ядра Cortex-A15 стали логическим продолжением Cortex-A9 – как результат, чипам архитектуры ARM впервые в истории удалось примерно сравниться по быстродействию с Intel Atom, а это уже большой успех. Не зря ведь компания Canonical в системных требования к версии ОС Ubuntu Touch с полноценной многозадачностью указала двухъядерный процессор ARM Cortex-A15 или аналогичный Intel Atom.

Чипы ARM ждет великое будущее. Количество команд, частота работы, количество ядер активно растут, а энергопотребление продолжает оставаться на низком уровне. В будущем чипы ARM станут пригодными для полноформатной многозадачности, ныне свойственной лишь x86-системам. Однако, даже с условиями нынешнего вектора развития, говорить о том, что сегмент потребительской электроники полностью перейдет на чипы ARM – пока рано. И дело здесь, прежде всего, в цене. Стоимость мобильных чипов растет с геометрической прогрессией, в то время, как x86 продолжает дешеветь. Именно фактор цены наряду с разницей в функциональности, которая несколько будет преодолена, и складывается вполне понятный прогноз того, что развитые ARM-системы не скоро одержат безоговорочную победу в гонке за своего потребителя…

Название ARM, безусловно, слышали все, кто интересуется мобильными технологиями. Многие понимают данную аббревиатуру как тип процессора для смартфонов и планшетов, другие уточняют, что это вовсе не процессор, а его архитектура. И уж точно мало, кто вникал в историю появления ARM. В этой статье мы попробуем разобраться во всех этих нюансах и расскажем зачем нужны процессоры ARM современным гаджетам.

Краткий экскурс в историю

По запросу «ARM» Википедия выдает два значения этой аббревиатуры: Acorn RISC Machine и Advanced RISC Machines. Начнем по порядку. В 1980-х годах в Великобритании была основана компания Acorn Computers, которая начинала свою деятельность созданием персональных компьютеров. В то время Acorn еще называли «британской Apple». Решающим периодом для компании стал конец 80-х годов, когда ее главный инженер воспользовался решением двух выпускников местного университета, придумавших новый вид процессорной архитектуры с сокращенным набором команд (RISC). Так появился первый компьютер на базе процессора Acorn Risc Machine. Успех не заставил себя долго ждать. В 1990 году британцы заключили договор с Apple и вскоре начали работу над новой версией чипсета. В итоге команда разработчиков сформировала компанию под названием Advanced RISC Machines по аналогии с процессором. Чипы с новой архитектурой также стали именоваться Advanced Risc Machine или сокращенно ARM.

С 1998 года Advanced Risc Machine стала называться ARM Limited. На текущий момент компания не занимается производством и продажей собственных процессоров. Основным и единственным направлением деятельности ARM Limited является разработка технологий и продажа лицензий различным компаниям на использование архитектуры ARM. Некоторые производители покупают лицензию на готовые ядра, другие – так называемую «архитектурную лицензию» на производство процессоров с собственными ядрами. Среди таких компаний значатся Apple, Samsung, Qualcomm, nVidia, HiSilicon и другие. По некоторым данным, ARM Limited зарабатывает на каждом таком процессоре $0,067. Эта цифра усредненная и к тому же устаревшая. С каждым годом ядер в чипсетах становится все больше, и новые многоядерные процессоры превосходят по себестоимости устаревшие образцы.

Технические особенности чипов ARM

Существует два типа современных процессорных архитектур: CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). К архитектуре CISC относится семейство процессоров x86 (Intel и AMD), к архитектуре RISC – семейство ARM. Основным формальным отличием RISC от CISC и, соответственно, x86 от ARM является сокращенный набор команд, используемый в RISC-процессорах. Так, например, каждая инструкция в CISC-архитектуре трансформируется в несколько RISC-команд. В добавок, RISC-процессоры используют меньше транзисторов и, таким образом, потребляют меньше энергии.


Основным приоритетом ARM-процессоров является отношение производительности к потреблению энергии. ARM имеет большее соотношение производительности на ватт чем x86. Вы можете получить необходимую мощность из 24 ядер x86 или из сотен маленьких ядер ARM с низким энергопотреблением. Разумеется, один даже самый мощный процессор на архитектуре ARM никогда не будет сопоставим по мощности с Intel Core i7. Но тот же Intel Core i7 нуждается в активной системе охлаждения и никогда не поместится в корпус телефона. Здесь ARM вне конкуренции. С одной стороны, это выглядит привлекательным вариантом для построения суперкомпьютера с использованием миллиона ARM-процессоров вместо тысячи процессоров x86. С другой стороны, нельзя однозначно сравнивать две архитектуры. В чем-то преимущество будет за ARM, а в чем-то – за x86.

Однако называть чипы архитектуры ARM процессорами не совсем корректно. Кроме нескольких процессорных ядер, они также включают другие компоненты. Наиболее подходящим будет термин «однокристальная система» или «система на кристалле» (SoC). Современные однокристальные системы для мобильных устройств включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиокодек и модули беспроводной связи. Как уже было сказано ранее, отдельные компоненты чипсета могут быть разработаны сторонними производителями. Наиболее ярким примером этого являются графические ядра, разработкой которых кроме ARM Limited (графика Mali), занимаются Qualcomm (Adreno), NVIDIA (GeForce ULP) и Imagination Technologies (PowerVR).


На практике это выглядит следующим образом. Большинство бюджетных мобильных устройств на Android поставляются с чипсетами производства компании MediaTek , которая практически неизменно следует инструкциям ARM Limited и комплектует их ядрами Cortex-A и графикой Mali (реже PowerVR).


А-бренды для своих флагманских устройств зачастую используют чипсеты производства Qualcomm . К слову, последние чипы Qualcomm Snapdragon ( , ) оснащены полностью кастомными ядрами Kryo – для центрального процессора и Adreno – для графического ускорителя.


Что касается Apple , то для iPhone и iPad компания использует собственные чипы А-серии с графическим ускорителем PowerVR, производством которых занимаются сторонние компании. Так, в установлен 64-битный четырехъядерный процессор A10 Fusion и графический процессор PowerVR GT7600.


Актуальной на момент написания статьи считается архитектура процессоров семейства ARMv8 . В ней впервые стал использоваться 64-битный набор инструкций и появилась поддержка более 4 ГБ оперативной памяти. Архитектура ARMv8 имеет обратную совместимость с 32-битными приложениями. Наиболее эффективным и самым мощным процессорным ядром, разработанным ARM Limited, на данный момент является Cortex-A73 , и большинство производителей однокристальных систем используют его без изменений.


Cortex-A73 обеспечивает на 30% более высокую производительность по сравнению с Cortex-А72 и поддерживает полный набор ARMv8-архитектуры. Максимальная частота процессорного ядра составляет 2,8 ГГц.

Сфера использования ARM

Наибольшую славу ARM принесло развитие мобильных устройств. В преддверии массового производства смартфонов и другой портативной техники энергоэффективные процессоры пришлись как нельзя кстати. Кульминацией развития ARM Limited стал 2007 год, когда британская компания возобновила партнерство с Apple, а спустя некоторое время купертиновцы представили свой первый iPhone с процессором на архитектуре ARM. В последующем однокристальная система на базе архитектуры ARM стала неизменным компонентом практически всех смартфонов, представленных на рынке.


Портфолио компании ARM Limited не ограничивается только ядрами семейства Cortex-A. Фактически, под маркой Cortex существует три серии процессорных ядер, которые обозначаются буквами A, R, M. Семейство ядер Cortex-А , как мы уже знаем, является наиболее мощными. Их в основном используют в смартфонах, планшетах, ТВ-приставках, спутниковых ресиверах, автомобильных системах, робототехнике. Процессорные ядра Cortex-R оптимизированы для выполнения высокопроизводительных задач в режиме реального времени, поэтому такие чипы встречаются в медицинском оборудовании, автономных системах безопасности, носителях информации. Основной задачей семейства Cortex-M является простота и низкая стоимость. Технически это самые слабые процессорные ядра с наиболее низким энергопотреблением. Процессоры на базе таких ядер используются практически везде, где от устройства требуется минимальная мощность и низкая стоимость: сенсоры, контроллеры, сигнализации, дисплеи, умные часы и другая техника.

В общем, большинство современных устройств от маленьких до больших, нуждающихся в центральном процессоре, используют чипы ARM. Огромным плюсом при этом является тот факт, что архитектура ARM поддерживается множеством операционных систем на платформе Linux (в том числе Android и Chrome OS), iOS, и Windows (Windows Phone).

Конкуренция на рынке и перспективы на будущее

Стоит признать, на данный момент у ARM нет серьезных конкурентов. И по большому счету это связано с тем, что компания ARM Limited в определенное время сделала правильный выбор. А ведь в самом начале своего пути компания выпускала процессоры для ПК и даже пыталась конкурировать с Intel. После того, как ARM Limited поменяла направление своей деятельности, ей также было непросто. Тогда программный монополист в лице Microsoft, заключив партнерское соглашение с Intel, не оставил никаких шансов другим производителям, в том числе и ARM Limited – ОС Windows просто не работала на системах с процессорами ARM. Как бы парадоксально это не звучало, но сейчас ситуация может кардинально измениться, и уже ОС Windows готова поддерживать процессоры на этой архитектуре.


На волне успехов чипов ARM компания Intel предприняла попытку создать конкурентоспособный процессор и вышла на рынок с чипом Intel Atom . Для этого ей потребовалось гораздо больше времени, нежели ARM Limited. В производство чипсет поступил в 2011 году, но, как говорится, поезд уже ушел. Intel Atom является CISC-процессором с архитектурой x86. Инженеры компании добились более низкого энергопотребления, нежели в ARM, однако на текущий момент разнообразный мобильный софт имеет плохую адаптацию к архитектуре x86.


В прошлом году Intel отказалась от нескольких ключевых решений в дальнейшем развитии мобильных систем. Фактически компания для мобильных устройств, поскольку они стали нерентабельными. Единственным крупным производителем, который комплектовал свои смартфоны чипсетами Intel Atom, был ASUS. Однако массовое использование Intel Atom все же получил в нетбуках, неттопах и других портативных устройствах.


Положение ARM Limited на рынке уникальное. На данный момент практически все производители пользуются ее разработками. При этом у компании нет собственных заводов. Это не мешает ей стоять в одном ряду с Intel и AMD. История ARM включает еще один любопытный факт. Не исключено, что сейчас технология ARM могла бы принадлежать компании Apple, которая стояла в основе формирования ARM Limited. По иронии судьбы в 1998 году купертиновцы, переживая кризисные времена, продали свою долю. Теперь Apple вынуждена наряду с другими компаниями покупать лицензию на процессоры ARM, используемые в iPhone и iPad.

Сейчас процессоры ARM способны выполнять серьезные задачи. В ближайшей перспективе – использование их в серверах, в частности такие решения уже имеют дата-центры Facebook и PayPal. В эпоху развития интернета вещей (IoT) и «умных» бытовых устройств чипы ARM получили еще большую востребовательность. Так что самое интересное у ARM еще впереди.

Мы уже давно знаем, что в конце 2013—начале 2014 года мы увидим первые процессоры ARM, поддерживающие 64-битный набор инструкций ARMv8. Однако что это будут за CPU, пока оставалось загадкой. Во время прошедшей конференции ARM TechCon британский разработчик чипов представил два своих новых процессора Cortex-A53 и Cortex-A57, которые смогут найти применение не только на мобильном рынке — прежде всего они создаются для рынка микросерверов. Кстати, этим чипам придётся столкнуться в конкурентной борьбе с Intel, которая тоже на конец 2013 или первый квартал 2014 года готовит выход специальной платформы Bay Trail (процессоры носят кодовое имя Valleyview) для рынка микросерверов.

Конференция TechCon 2012 вообще оказалась богатой на громкие анонсы, в отличие от прошлых лет. Чего стоит только анонс о поставках в 2014 году компанией AMD гибридных 64-битных процессоров x86/ARM для серверов под брендом Opteron. Хотя данных об этих чипах пока нет, можно предположить, что речь идёт о совмещении 64-битных энергоэффективных ядер Jaguar с ядрами ARMv8, использовании оптической связи SeaMicro Freedom Fabric и, вероятно, графики Volcanic Islands.

Второе заметное событие конференции — это демонстрация компаниями Cadence и IBM тестового чипа ARMv8 на базе 14-нм техпроцесса с применением FinFET (так называемых 3D-транзисторов) и FD-SOI (следующее поколение технологии «кремний на изоляторе»). Комбинация FinFET и FD-SOI рассматривается в качестве серьёзного преимущества над техпроцессами конкурирующей фабрики TSMC. Развёртывание массового 14-нм производства IBM, GlobalFoundries и Samsung Electronics можно ждать в 2014 году. Три упомянутых компании являются членами Common Platform Alliance и совместно разрабатывают новые технологические нормы. Массовое производство 14-нм кремниевых пластин FinFET/FD-SOI будет впервые налажено на фабриках IBM и GlobalFoundries в штате Нью-Йорк, а также на заводе Samsung в Техасе.

Наконец, гвоздём программы стал анонс настоящих наследников популярных процессорных ядер Cortex-A9 (2009 год) и Cortex-A15 (2012 год). Новые ядра получили имена соответственно Cortex-A53 и Cortex-A57. Это первые эталонные решения, которые основаны на восьмом поколении архитектуры ARM (64-битный набор инструкций ARMv8) и нацелены на рынок мощных смартфонов, планшетов, гибридных мобильных продуктов и, конечно, на применение в секторе высокоплотных серверов.

Согласно данным ARM, ядро Cortex-A53 является «самым эффективным процессором ARM из когда-либо созданных»: оно способно предоставить производительность на уровне Cortex-A9, имея при этом поддержку 64-битных инструкций и полную совместимость с ARMv7. При производстве на том же 32-нм техпроцессе ядро Cortex-A53 будет занимать на 40% меньше площади по сравнению с Cortex-A9. Если же сравнивать 20-нм ядро Cortex-A53 с 32-нм Cortex-A9, то первое будет в 4 раза меньше. ARM также утверждает, что на момент выхода ядро будет потреблять в 4 раза меньше энергии по сравнению с современными ядрами Cortex-A9 при условии одинаковой производительности.

При этом чип Cortex-A57 называется «наиболее совершенным высокопроизводительным процессором ARM. В это охотно верится, ибо ARM обещает утроенную по отношению к современным ядрам Cortex-A15 производительность в 32-битном режиме и 5-кратное превосходство по энергоэффективности. Масштабируемость Cortex-A57 позволяет создавать кристаллы с 16 и более ядрами. В пресс-релизе компания указывает на то, что при производительности старых ПК, ядро Cortex-A57 имеет энергопотребление мобильных устройств. Также ARM указывает на поддержку специальных инструкций, позволяющих ускорять шифрование в 10 раз.

ARM отмечает, что ядра Cortex-A57 и Cortex-A53 могут работать как отдельно, так и в связке по технологии big.LITTLE (наподобие связки Cortex-A15 и Cortex-A7), благодаря чему можно добиться оптимальной производительности и энергоэффективности.

Основные особенности Cortex-A53:

  • 40-битная виртуальная адресация памяти;
  • поддержка до 1 Тбайт ОЗУ (от LPDDR3 до DDR4);
  • от 8 до 64 Кбайт кеш-памяти L1 для инструкций и 8—64 Кбайт кеш-памяти L1 для данных;
  • математический сопроцессор

Основные особенности Cortex-A57:

  • поддержка исполнения команд с изменением последовательности;
  • ядро ARMv8 с поддержкой 32- и 64-битных расчётов;
  • 44-битная виртуальная адресация памяти;
  • поддержка до 16 Тбайт ОЗУ (от LPDDR3 до DDR4);
  • 48 Кбайт кеш-памяти L1 для инструкций и 32 Кбайт кеш-памяти L1 для данных;
  • мультимедийный SIMD-движок NEON;
  • математический сопроцессор;
  • от 128 Кбайт до 2 Мбайт кеш-памяти L2 (с поддержкой ECC);
  • 128-бит CoreLink Interconnect (CCI-400 и CCN-504).

ARM сообщила имена шести компаний, которые будут использовать ядра Cortex-A53/A57 в своих чипах: это AMD, Broadcom, Calxeda, HiSilicon/Huawei, Samsung Electronics и STMicroelectronics. Таким образом, как минимум можно ждать новых мобильных чипов с Cortex-A53/A57 и графикой Mali-T600 от Huawei и Samsung. Ожидать появления первых таких процессоров следует в 2014 году.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: