Кто разработчик протокола tcp ip. Основы сетей и протоколов интернет

Серверы, которые реализуют эти протоколы в корпоративной сети, предоставляют клиенту IP-адрес, шлюз, маску сети, серверы имен и даже принтер. Пользователям не обязательно конфигурировать свои хосты вручную для того, чтобы использовать сеть.

Операционная система QNX Neutrino реализует еще один протокол автоматического конфигурирования под названием AutoIP, который является проектом комитета IETF по автоматической настройке. Этот протокол используется в небольших сетях для назначения хостам IP-адресов, локальных для канала (link-local ). Протокол AutoIP самостоятельно определяет IP-адрес, локальный для канала, используя схему согласования с другими хостами и не обращаясь к центральному серверу.

Использование протокола PPPoE

Сокращение PPPoE расшифровывается как "Point -to -Point Protocol over Ethernet" (протокол соединения "точка-точка" через среду Ethernet). Этот протокол инкапсулирует данные для передачи через сеть Ethernet с мостовой топологией.

PPPoE представляет собой спецификацию подключения пользователей сети Ethernet к Интернету через широкополосное соединение, например, выделенную цифровую абонентскую линию, беспроводное устройство или кабельный модем. Использование протокола PPPoE и широкополосного модема обеспечивает пользователям локальной компьютерной сети индивидуальный аутентифицированный доступ к высокоскоростным сетям передачи данных.

Протокол PPPoE объединяет технологию Ethernet с протоколом PPP, что позволяет эффективно создавать отдельное соединение с удаленным сервером для каждого пользователя. Управление доступом, учет соединений и выбор поставщика услуг определяется для пользователей, а не для узлов сети. Преимущество этого подхода заключается в том, что ни телефонная компания, ни поставщик услуг Интернета не должен обеспечивать для этого какую-либо специальную поддержку.

В отличие от коммутируемых соединений, соединения через цифровую абонентскую линию и кабельный модем всегда активны. Поскольку физическое соединение с удаленным поставщиком услуг совместно используется несколькими пользователями, необходим метод учета, который регистрирует отправителей и адресатов трафика, а также производит начисления пользователям. Протокол PPPoE позволяет пользователю и удаленному узлу, которые участвуют в сеансе связи, узнавать сетевые адреса друг друга во время начального обмена, который называется обнаружением (discovery ). После того как сеанс между отдельным пользователем и удаленным узлом (например, поставщиком услуг Интернета) установлен, за этим сеансом можно вести наблюдение для того, чтобы производить начисления. Во многих домах, гостиницах и корпорациях общий доступ к Интернету предоставляется через цифровые абонентские линии с использованием технологии Ethernet и протокола PPPoE.

Соединение через протокол PPPoE состоит из клиента и сервера. Клиент и сервер работают с использованием любого интерфейса, который близок к спецификациям Ethernet. Этот интерфейс применяется для выдачи клиентам IP-адресов с привязкой этих IP-адресов к пользователям и, по желанию, к рабочим станциям, вместо аутентификации на основе только рабочей станции. Сервер PPPoE создает соединение "точка-точка" для каждого клиента.

Установка сеанса PPPoE

Для того чтобы создать сеанс PPPoE, следует воспользоваться сервисом pppoed . Модуль io-pkt-* п редоставляет службы протокола PPPoE. Сначала необходимо запустить io-pkt-* с подходящим драйвером . Пример :

Протокол TCP/IP или как работает Интернет для чайников:
В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP - это простой набор хорошо известных правил обмена информацией.
Вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта - при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий? Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола? Вот для того, чтобы не быть лохом необходимо понимание сути. Основе информации дают вам возможность чувствовать себя уверенно и свободно - быстро решать проблемы, грамотно формулировать вопросы и нормально общаться с техподдержкой.

Принципы работы интернет-протоколов TCP/IP по своей сути просты и напоминают работу советской почты:
Сначала вы пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

Адрес отправителя:
От кого: Иванов Иван Иванович
Откуда: Ивантеевка, ул. Большая, д. 8, кв. 25
Адрес получателя:
Кому: Петров Петр Петрович
Куда: Москва, Усачевский переулок, д. 105, кв. 110

Рассмотрим взаимодействие компьютеров и приложений в сети Интернет, да и в локальной сети тоже. Аналогия с обычной почтой будет почти полной.
Каждый компьютер (он же: узел, хост) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP (Internet Pointer), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр.). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP - к порту 21 и так далее. Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом: "адрес дома" = "IP компьютера", а "номер квартиры" = "номер порта"

Адрес отправителя (Source address):
IP: 82.146.49.55
Port: 2049
Адрес получателя (Destination address):
IP: 195.34.32.116
Port: 53
Данные пакета:
...
Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Комбинация "IP адрес и номер порта" - называется "сокет" .
В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер»: "клиент" запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер - 80-й порт и пр. Большинство программ на домашнем компьютере являются клиентами - например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр. Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере. Однако человеку запоминать цифровые IP адреса трудно - куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано - любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 82.146.49.55 можно использовать имя www.ofnet.ru. А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Набираем в адресной строке браузера доменное имя www.yandex.ru и жмем. Далее операционная система производит следующие действия:
- Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53.
Порт 53 соответствует DNS-серверу - приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени. Диалог следующий: Какой IP адрес соответствует имени www.yandex.ru? Ответ: 82.146.49.55.
- Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы www.yandex.ru. 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия - http://www.yandex.ru:80 .
- Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML - языке разметки текста, который понимает браузер. Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем мне это знать?
Например, вы заметили странное поведение своего компьютера - непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» - «Выполнить» - набираем cmd - «Ок»). В консоли набираем команду netstat -an и жмем. Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов.
Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.
Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (брандмауэра) - программа (часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов "своих" и "вражеских". Например, ваш фаерволл сообщает, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Все эти знания крайне полезны при общении с техподдержкой - список портов , с которыми вам придется столкнуться:
135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты.
21 - порт FTP сервера.
25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента.
110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента.
80 - порт WEB-сервера.
3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:
127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера.
0.0.0.0 - так обозначаются все IP-адреса.
192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.

Что такое маска подсети и шлюз по умолчанию , он же роутер и маршрутизатор? Эти параметры задаются в настройках сетевых подключений. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с бумажной почтой). Итак:
TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).
IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. Помимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту=приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.
TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.
TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).
UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).
Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.

Как посмотреть текущие соединения? - с помощью команды netstat -an (параметр n указывает выводить IP адреса вместо доменных имен). Запускается эта команда следующим образом: «Пуск» - «Выполнить» - набираем cmd - «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем. Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов. Например получаем:

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.
91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.
Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

(с) Вольные сокращения статьи мои.
(с) Дубровин Борис

Лекция 3. Стек TCP/IP. Базовые протоколы TCP/IP

Протокол TCP/IP является базовым транспортным сетевым прото- колом. Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие.

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Стек протоколов TCP/IP имеет четыре уровня (рисунок 3.1).

Рисунок 3.1 – Стек TCP/IP

Уровень IV соответствует уровню доступа к сети, который работает на основе стандартных протоколах физического и канального уровня, таких, как Ethernet, Token Ring, SLIP, PPP и других. Протоколы этого уровня отвечают за пакетную передачу данных в сети на уровне аппаратных средств.

Уровень III обеспечивает межсетевое взаимодействие при передаче пакетов данных из одной подсети в другую. При этом работает протокол IP.

Уровень II является основным и работает на базе протокола управления передачей TCP. Этот протокол необходим для надежной передачи сообщений между размещенными на разных машинах прикладными программами за счет образования виртуальных соединений между ними.

Уровень I – прикладной. Стек TCP/IP существует давно и он включает в себя большое количество протоколов и сервисов прикладного уровня (протокол передачи файлов FTP, протокол Telnet, протокол Gopher для доступа к ресурсам всемирного пространства GopherSpace, самый известный протокол HTTP для доступа к удаленным гипертекстовым базам данных во всемирный паутине и др.).

Все протоколы стека можно разделить на две группы: протоколы передачи данных, передающие полезные данные между двумя сторонами; служебные протоколы, необходимые для корректной работы сети.

Служебные протоколы обязательно используют какой-либо протокол передачи данных. Например, служебный протокол ICMP использует протокол IP. Интернет – совокупность всех связных компьютерных сетей, использующих протоколы стека TCP/IP.

Функции транспортного уровня. Протоколы TCP, UDP.

Четвертый уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Транспортным уровнем предоставляются следующие виды услуг:

– установление транспортного соединения;

– передача данных;

– разрыв транспортного соединения.

Функции, выполняемые транспортным уровнем:

– преобразование транспортного адреса в сетевой;

– мультиплексирование транспортных соединений в сетевые;

– установление и разрыв транспортных соединений;

– упорядочивание блоков данных по отдельным соединениям;

– обнаружение ошибок и необходимый контроль за качеством услуг;

– восстановление после ошибок;

– сегментирование, объединение и сцепление;

– управление потоком данных по отдельным соединениям;

– супервизорные функции;

– передача срочных транспортных блоков данных.

Протокол управления передачей TCP предоставляет надежную службу доставки пакетов, ориентированную на установление соединения.

Протокол TCP:

– гарантирует доставку IP-датаграмм;

– выполняет разбиение на сегменты и сборку больших блоков данных, отправляемых программами;

– обеспечивает доставку сегментов данных в нужном порядке;

– выполняет проверку целостности переданных данных с помощью контрольной суммы;

– посылает положительные подтверждения, если данные получены успешно. Используя избирательные подтверждения, можно также посылать отрицательные подтверждения для данных, которые не были получены;

– предлагает предпочтительный транспорт для программ, которым требуется надежная передача данных с установлением сеанса связи, например для баз данных «клиент-сервер» и программ электронной почты.

TCP основан на связи «точка – точка» между двумя узлами сети. TCP получает данные от программ и обрабатывает их как поток байтов. Байты группируются в сегменты, которым TCP присваивает последовательные номера, необходимые для правильной сборки сегментов на узле-приемнике.

Чтобы два узла TCP могли обмениваться данными, им нужно сначала установить сеанс связи друг с другом. Сеанс TCP инициализируется с помощью процесса, называемого трехэтапным установлением связи, котором синхронизируются номера последовательности и передается управляющая информация, необходимая для установления виртуального соединения между узлами. По завершении этого процесса установления связи начинается пересылка и подтверждение пакетов в последовательном порядке между этими узлами. Аналогичный процесс используется TCP перед прекращением соединения для того, чтобы убедиться, что оба узла закончили передачу и прием данных (рисунок 3.2).


Рисунок 3.2 – Формат заголовка сегмента TCP

Поля порт источника и порт получателя занимают по 2 байта и идентифицируют процесс-отправитель процесс-получатель. Поля порядковый номер и номер подтверждения (длины по 4 байта) нумеруют каждый отправленный или полученный байт данных. Реализуются как целые числа без знака, которые сбрасываются, когда достигают максимального значения. Каждая сторона ведет собственную порядковую нумерацию. Поле длина заголовка занимает 4 бита и представляет собой длину заголовка TCP-сегмента, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле параметры. Поле резерв занимает 6 бит. Поле флаги занимает 6 бит и содержит шесть 1-битовых флагов:

– флаг URG (Urgent Pointer – указатель точности) устанавливается в 1 в случае использования поля указатель на срочные данные;

– флаг ACK (Acknowledgment – подтверждение) устанавливается в 1 в случае, если поле номер подтверждения содержит данные. В противном случае это поле игнорируется;



– флаг PSH (Push – выталкивание) означает, что принимающий стек TCP должен немедленно информировать приложение о поступивших данных, а не ждать пока буфер заполнится;

– флаг RST (Reset – сброс) используется для отмены соединения: из-за ошибки приложения, отказа от неверного сегмента, попытки создать соединение при отсутствии затребованного сервиса;

– флаг SYN (Synchronize – синхронизация) устанавливается при инициировании соединения и синхронизации порядкового номера;

– флаг FIN (Finished – завершение) используется для разрыва соединения. Он указывает, что отправитель закончил передачу данных.

Поле размер окна (длина 2 байта) содержит количество байт, которое может быть послано после байта, получение которого уже подтверждено. Поле контрольная сумма (длина 2 байта) служит для повышения надежности. Оно содержит контрольную сумму заголовка, данных и псевдозаголовка. При выполнении вычислений поле контрольная сумма устанавливается равным нулю, а поле данных дополняется нулевым байтом, если его длина представляет собой нечетное число. Алгоритм вычисления контрольной суммы просто складывает все 16-разрядные слова в дополнительном коде, а затем вычисляет дополнение для всей суммы.

Протокол UDP, являясь дейтаграммным протоколом, реализует сервис по возможности, то есть не гарантирует доставку своих сообщений, а, следовательно, никоим образом не компенсирует ненадежность дейтаграммного протокола IP. Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой. Каждая дейтаграмма переносит отдельное пользовательское сообщение. Это приводит к ограничению: длина дейтаграммы UDP не может превышать длины поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня. Поэтому если UDP-буфер переполняется, то данные приложения отбрасываются. Заголовок UDP-пакета, состоящий из четырех 2-байтовых полей, содержит поля порт источника, порт получателя, длина UDP и контрольная сумма (рисунок 3.3).

Поля порт источника и порт получателя идентифицируют передающий и получающий процессы. Поле длина UDP содержит длину пакета UDP в байтах. Поле контрольная сумма содержит контрольную сумму пакета UDP, вычисляемую по всему пакету UDP с добавленным псевдозаголовком.

Рисунок 3.3 – Формат заголовка пакета UDP

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Каким протоколом в OSI является TCP/IP?

2. Для чего предназначена архитектура протоколов TCP/IP?

3. Какие уровни имеет стек TCP/IP?

4. Какие функции выполняет протокол управления передачей TCP?

5. Какие отличия существуют между протоколами TCP и UDP?

UNIX , что способствовало росту популярности протокола, так как производители включали TCP/IP в набор программного обеспечения каждого UNIX -компьютера. TCP/IP находит свое отображение в эталонной модели OSI , как это показано на рисунке 3.1 .

Вы видите, что TCP/IP располагается на третьем и четвертом уровнях модели OSI . Смысл этого состоит в том, чтобы оставить технологию работы LAN разработчикам. Целью TCP/IP является передача сообщений в локальных сетях любого типа и установка связи с помощью любого сетевого приложения.

Протокол TCP/IP функционирует за счет того, что он связан с моделью OSI на двух самых нижних уровнях - на уровне передачи данных и физическом уровне. Это позволяет TCP/IP находить общий язык практически с любой сетевой технологией и, как результат, с любой компьютерной платформой. TCP/IP включает в себя четыре абстрактных уровня, перечисленных ниже.


Рис. 3.1.

  • Сетевой интерфейс. Позволяет TCP/IP активно взаимодействовать со всеми современными сетевыми технологиями, основанными на модели OSI.
  • Межсетевой. Определяет, как IP управляет пересылкой сообщений через маршрутизаторы сетевого пространства, такого как интернет.
  • Транспортный. Определяет механизм обмена информацией между компьютерами.
  • Прикладной. Указывает сетевые приложения для выполнения заданий, такие как пересылка, электронная почта и прочие.

Благодаря своему широкому распространению протокол TCP/IP фактически стал интернет -стандартом. Компьютер , на котором реализована сетевая технология , основанная на модели OSI ( Ethernet или Token Ring ), имеет возможность устанавливать связь с другими устройствами. В "Основы организации сети" мы рассматривали уровни 1 и 2 при обсуждении LAN -технологий. Теперь мы перейдем к стеку OSI и посмотрим, каким образом компьютер устанавливает связь в интернете или в частной сети. В этом разделе рассматривается протокол TCP/IP и его конфигурации.

Что такое TCP/IP

То, что компьютеры могут общаться между собой, само по себе представляется чудом. Ведь это компьютеры от разных производителей, работающие с различными операционными системами и протоколами. При отсутствии какой-то общей основы такие устройства не смогли бы обмениваться информацией. При пересылке по сети данные должны иметь такой формат, который был бы понятен как отправляющему устройству, так и принимающему.

TCP/IP удовлетворяет этому условию за счет своего межсетевого уровня. Этот уровень напрямую совпадает с сетевым уровнем эталонной модели OSI и основан на фиксированном формате сообщений, называемом IP-дейтаграммой. Дейтаграмма - это нечто вроде корзины, в которую помещена вся информация сообщения. Например, при загрузке веб-страницы в браузер то, что вы видите на экране, доставлено по частям дейтаграммой.

Легко перепутать дейтаграммы с пакетами. Дейтаграмма - это информационная единица, в то время как пакет - это физический объект сообщения (созданный на третьем и более высоких уровнях), который действительно пересылается в сети. Хотя некоторые считают эти термины взаимозаменяемыми, их различие на самом деле имеет значение в определенном контексте - не здесь, конечно. Важно понять то, что сообщение разбивается на фрагменты, передается по сети и собирается заново на принимающем устройстве.


Положительным в таком подходе является то, что если один-единственный пакет будет испорчен во время передачи, то потребуется повторная передача только этого пакета, а не сообщения целиком. Другой положительный момент состоит в том, что ни одному хосту не приходится ждать неопределенно долгое время, пока не закончится передача на другом хосте, чтобы послать свое собственное сообщение.

TCP и UDР

При пересылке IP-сообщения по сети используется один из протоколов транспортировки: TCP или UDР. TCP (Transmission Control Protocol) составляет первую половину аббревиатуры TCP/IP. Протокол пользовательских дейтаграмм (User Datagram Protocol, UDР) используется вместо ТСР для транспортировки менее важных сообщений. Оба протокола служат для корректного обмена сообщениями в сетях TCP/IP. Между этими протоколами есть одно существенное различие.

ТСР называют надежным протоколом, так как он связывается с получателем для проверки факта получения сообщения.

UDР называют ненадежным протоколом, так как он даже не пытается устанавливать связь с получателем, чтобы убедиться в доставке.


Важно помнить, что для доставки сообщения можно воспользоваться только одним протоколом. Например, при загрузке веб-страницы доставкой пакетов управляет ТСР без всякого вмешательства UDP. С другой стороны, простой протокол передачи файлов (Trivial File Transfer Protocol, TFTP) загружает или отправляет сообщения под контролем протокола UDP.

Используемый способ транспортировки зависит от приложения - это может быть электронная почта, НТТР, приложение, отвечающее за сетевую работу, и так далее. Разработчики сетевых программ используют UDP везде, где только можно, так как этот протокол снижает избыточный трафик. Протокол ТСР прилагает больше усилий для гарантированной доставки и передает гораздо больше пакетов, чем UDP. На рисунке 3.2 представлен список сетевых приложений, и показано, в каких приложениях применяется ТСР, а в каких - UDP. Например, FTP и TFTP делают практически одно и то же. Однако TFTP, в основном, применяется для загрузки и копирования программ сетевых устройств. TFTP может использовать UDP, потому что при неудачной доставке сообщения ничего страшного не происходит, поскольку сообщение предназначалось не конечному пользователю, а администратору сети, уровень приоритета которого гораздо ниже. Другим примером является сеанс голосовой видеосвязи, в котором могут быть задействованы порты как для ТСР-сессий, так и для UDP. Так, сеанс TCP инициируется для обмена данными при установке телефонной связи, в то время как сам телефонный разговор передается посредством UDP. Это связано со скоростью потоковой передачи голоса и видео. В случае потери пакета не имеет смысла повторно посылать его, так как он уже не будет соответствовать потоку данных.


Рис. 3.2.
Формат IP-дейтаграммы

IP-пакеты можно разбивать на дейтаграммы. Формат дейтаграммы создает поля для полезной нагрузки и для данных управления передачей сообщения. На рисунке 3.3 показана схема дейтаграммы.

Примечание. Пусть вас не вводит в заблуждение величина поля данных в дейтаграмме. Дейтаграмма не перегружена дополнительными данными. Поле данных является на самом деле самым большим полем дейтаграммы.


Рис. 3.3.

Важно помнить, что IP-пакеты могут иметь различную длину. В "Основы организации сети" говорилось о том, что информационные пакеты в сети Ethernet имеют размер от 64 до 1400 байт. В сети Token Ring их длина составляет 4000 байт, в сети ATM - 53 байта.

Примечание. Использование в дейтаграмме байтов может привести вас в недоумение, так как передача данных чаще связана с такими понятиями, как мегабиты и гигабиты в секунду. Однако в связи с тем, что компьютеры предпочитают работать с байтами данных, в дейтаграммах также используются байты.

Если вы еще раз посмотрите на формат дейтаграммы на рисунке 3.3 , то заметите, что крайние поля слева имеют постоянную величину. Так происходит, потому что центральный процессор, работающий с пакетами, должен знать, где начинается каждое поле. Без стандартизации этих полей конечные биты будут представлять собой мешанину из нулей и единиц. В правой части дейтаграммы находятся пакеты переменной длины. Назначение различных полей дейтаграммы состоит в следующем.

  • VER . Версия протокола IP, используемого станцией, где появилось исходное сообщение. Текущей версией IP является версия 4. Это поле обеспечивает одновременное существование различных версий в межсетевом пространстве.
  • HLEN. Поле информирует получающее устройство о длине заголовка, чтобы центральный процессор знал, где начинается поле данных.
  • Service type (Тип сервиса). Код, сообщающий маршрутизатору о типе управления пакетом с точки зрения уровня сервиса (надежность, первоочередность, отсрочка и т. д.).
  • Length (Длина). Общее количество байт в пакете, включая поля заголовка и поле данных.
  • ID, frags и frags offset. Эти поля указывают маршрутизатору, как следует проводить фрагментацию и сборку пакета и как компенсировать различия в размере кадров, которые могут возникать во время прохождения пакета по сегментам локальной сети с различными сетевыми технологиями (Ethernet, FDDI и т.д.).
  • TTL. Аббревиатура для Time to Live (Время жизни) - число, которое уменьшается на единицу при каждой последующей пересылке пакета. Если время жизни становится равным нулю, то пакет прекращает существование. TTL предотвращает возникновение циклов и бесконечное блуждание потерянных пакетов в межсетевом пространстве.
  • Protocol. Протокол транспортировки, который следует использовать для передачи пакета. Чаще всего в этом поле указывается протокол TCP, но могут быть использованы и другие протоколы.
  • Header checksum . Контрольная сумма - это число, которое используется для проверки целостности сообщения. Если контрольные суммы всех пакетов сообщения не совпадают с правильным значением, то это означает, что сообщение было искажено.
  • Source IP address (Адрес отправителя). 32-битный адрес хоста, отправившего сообщение (обычно персональный компьютер или сервер).
  • Destination IP address (Адрес получателя). 32-битный адрес хоста, которому отправлено сообщение (обычно персональный компьютер или сервер).
  • IP options. Используются для тестирования сети или других специальных целей.
  • Padding. Заполняет все неиспользованные (пустые) позиции битов, чтобы процессор мог правильно определить позицию первого бита в поле данных.
  • Data. Полезная нагрузка отправленного сообщения. Например, в поле данных пакета может содержаться текст электронного письма.

Как говорилось ранее, пакет состоит из двух основных компонентов: данных об обработке сообщения, размещенных в заголовке, и собственно информации. Информационная часть находится в секторе полезной нагрузки. Можете представить себе этот сектор в виде грузового отсека космического корабля. Заголовок - это все бортовые компьютеры шаттла в кабине управления. Он распоряжается всей информацией, необходимой всевозможным маршрутизаторам и компьютерам на пути следования сообщения, и используется для поддержания определенного порядка сборки сообщения из отдельных пакетов.

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: