Использование фильтров Винера. Кафедра систем сбора и обработки данных

Концепции оптимального линейного оценивания являются фундаментальными при любом рассмотрении адаптивных фильтров. Процесс адаптивной фильтрации включает два этапа проведения оценивания: 1) оценивание искомого выхода фильтра и 2) оценивание весов фильтра, необходимых для достижения вышеупомянутой цели. Второй из этих двух этапов необходим вследствие того, что в случае адаптивной фильтрации характеристики входного сигнала априорно не известны.

Наиболее широко распространенным типом структуры адаптивного фильтра является структура, в которой используется архитектура с конечной импульсной характеристикой (КИХ). Эти фильтры должны сходится к решению с помощью оптимального нерекурсивного устройства оценки, причем решение задается уравнением Винера – Хопфа.

Синтез КИХ и БИХ устройств оценки существенно зависит от определения стоимостной функции, в соответствии с которым качество оценивания характеризуется разностью между выходным сигналом устройства оценки и истинным параметром, подлежащим оцениванию:

Здесь e(n) – ошибка оценивания; x(n) – случайная величина, которую необходимо оценить и которая может быть детерминированной, а – оценка , выполненная с помощью нашей системы оценивания, причем

т.е. x(n) – линейная функция последовательности входных сигналов y(n) и набора весов фильтра h(n) . Наблюдаемую последовательность сигналов y(n) в общем виде можно представить как исходную последовательность x(n) , искаженную адаптивным белым шумом v(n) с дисперсией σ v 2:

. (5.26)

Наиболее употребительным при проведении оптимального оценивания является метод наименьших квадратов (МНК). Среднеквадратическая ошибка определяется как

Она минимизируется относительно весовых коэффициентов устройства оценки для получения оптимального оценивания по критерию МНК. Следует отметить, что можно применять не только описанную функцию стоимости. Альтернативными будут такие функции, как абсолютная величина ошибки и нелинейная пороговая функция. Такая функция ошибки используется в том случае, когда имеется приемлемый интервал ошибок (т.е. существует заданная допустимая ошибка). При использовании критерия наименьшего среднеквадратичного малые ошибки вносят меньший вклад, чем большие ошибки (в противоположность критерию абсолютной величины ошибки, который дает одинаковый вес для всех ошибок).

Рис. 5.9. Обобщенный нерекурсивный фильтр или устройство оценки.

В нерекурсивном устройстве оценки оценка x(n) определяется в виде конечного линейного полинома y(n) :

, (5.28)

где h k – отдельные веса в структуре нерекурсивного фильтра КИХ-типа, показанного на рис. 5.9. Выражение (5.28) можно переписать в матрично-векторной системе обозначений:

И ,

а верхний индекс Т обозначает транспонирование матрицы. Тогда функция среднеквадратичной ошибки принимает вид

Это выражение описывает стандартную поверхность квадратичной ошибки с одним единственным минимумом. Дифференцирование (5.30) по дает

. (5.31)

а допуская, что (5.31) равно нулю, имеем

(5.32)

Полагая, что весовой вектор и вектор сигнала Y(n) не коррелированы, получаем

Члены математического ожидания, входящие в (5.33), можно определить следующим образом:

P=E{x(n)Y(n)} – взаимная корреляция между входным сигналом и оцениваемым параметром;

R=E{Y(n)Y T (n)} – автокорреляционая матрица входной сигнальной последовательности.

Тогда (5.33) можно переписать в виде

P T =H T opt R. (5.34)

Уравнение (5.34) является общеизвестным уравнением Винера – Хопфа, которое дает оптимальное (по методу наименьших квадратов) винеровское решение для H.

Условие оптимальности фильтра. Фильтр Колмогорова-Винера является оптимальным фильтром формирования из входного сигнала x(t) выходного сигнала z(t) при известной форме полезного сигнала s(t), который содержится во входном сигнале в сумме с шумами. В качестве критерия его оптимизации используется среднее квадратическое отклонение сигнала y(t) на выходе фильтра от заданной формы сигнала z(t). Подставим уравнение свертки (12.2.1) в раскрытой форме весового суммирования в выражение (12.2.2") и получим отклонение e 2 выходного сигнала y(k) = h(n)③x(k-n) от заданной формы выходного сигнала z(k) по всем точкам массива данных:

В частном случае воспроизведения формы полезного сигнала в качестве функции z(k) принимается функция s(k). Минимум выражения (12.3.1) определяет значения коэффициентов h(n) оптимального фильтра. Для нахождения их значений продифференцируем выражение (12.3.1) по коэффициентам фильтра и приравняем полученные уравнения нулю. В итоге получаем:

где - корреляционная функция входного сигнала, - взаимная корреляционная функция сигналов z(k) и x(k). Отсюда:

h n R(m-n) = B(m), n = m = 0,1,2, ... , M. (12.3.2)

В краткой форме символической записи:

h(n) ③ R(m-n) = B(m). (12.3.3)

Другими словами, свертка функции отклика оптимального фильтра с функцией автокорреляции входного сигнала должна быть равна функции взаимной корреляции выходного и входного сигналов.

Система линейных уравнений фильтра. Выражение (12.3.2) может быть записано в виде системы линейных уравнений - однострочных равенств левой и правой части для фиксированных значений координаты m коэффициентов фильтра. При расчете симметричных фильтров, не сдвигающих фазы выходного сигнала, фильтр может вычисляться только одной половиной своих значений:

m=0: h o R(0)+ h 1 R(1)+ h 2 R(2)+ h 3 R(3)+ ...+ h M R(M) = B(0), (12.3.3")

m=1: h o R(1)+ h 1 R(0)+ h 2 R(1)+ h 3 R(2)+ ...+ h M R(M-1) = B(1),

m=2: h o R(2)+ h 1 R(1)+ h 2 R(0)+ h 3 R(1)+ ...+ h M R(M-2) = B(2),

..............................................................................................................

m=M: h o R(M)+ h 1 R(M-1)+ h 2 R(M-2)+ .... + h M R(0) = B(M).

Решение данной системы уравнений относительно значений h i дает искомый оператор фильтра.

При расчете каузальных (односторонних) фильтров выходной сигнал z(t) следует задавать со сдвигом вправо по оси координат таким образом, чтобы значимая часть функции взаимной корреляции B(m) полностью располагалась в правой части системы уравнений (12.3.3").

Отметим, что R(m) = R s (m)+R q (m), где R s - функция автокорреляции сигнала, R q - функция автокорреляции шума, а B(m) = B zs (m)+B zq (m), где B zs - функция взаимной корреляции сигналов z(k) и s(k), B zq - функция взаимной корреляции сигнала z(k) и помех q(k). Подставляя данные выражения в (12.3.3), получаем:



h(n) ③ = B zs (m)+B zq (m). (12.3.4)

Частотная характеристика фильтра находится преобразованием Фурье левой и правой части уравнения (12.3.4):

H(w) = W zs (w)+W zq (w),

H(w) = / , (12.3.5)

где W s (w) ó R s (m) и W q (w) ó R q (m) - энергетические спектры (плотности мощности) сигнала и помех, W zs (w) ó B zs (m) - взаимный энергетический спектр входного и выходного сигналов, W zq (w) ó B zq (m) - взаимный энергетический спектр выходного сигнала и помех.

В геофизической практике обычно имеет место статистическая независимость полезного сигнала, а, следовательно, и сигнала z(k), от шумов, при этом B zq = 0 и фильтр называют оптимальным по сглаживанию шумов при заданной форме выходного сигнала:

H(w) = W zs (w) / , (12.3.6)

Фильтр (12.3.6) оптимален в том смысле, что максимизирует отношение мощности сигнала к мощности шума по всему интервалу сигнала, но не в каждой индивидуальной точке.

Выражения (12.3.5-12.3.6), как правило, всегда имеют решение. Однако это не означает возможность формирования фильтром любой заданной формы выходного сигнала. Из чисто практических соображений можно сразу предполагать, что если спектр заданного сигнала z(t) больше значимой части спектра полезного сигнала s(t), то оператор фильтра попытается сформировать требуемые высокие частоты заданного сигнала из незначимых частот спектра полезного сигнала, что может потребовать огромных коэффициентов усиления на этих частотах, под действие которых попадут и частотные составляющие шумов. Результат такой операции непредсказуем. Эти практические соображения можно распространить и на все частотные соотношения входного и выходного сигналов линейных фильтров: значимые гармоники спектров выходных сигналов должны формироваться из значимых гармоник спектров входных сигналов.

Если заданная форма сигнала z(k) совпадает с формой полезного сигнала s(k), то B(m) = B ss = R s и фильтр называют фильтром воспроизведения полезного сигнала :

H(w) = W s (w) / , (12.3.7)

Выражения (12.3.6-12.3.7) достаточно наглядно демонстрируют физический смысл формирования передаточной функции фильтра. При воспроизведении сигнала частотная функция взаимной корреляции входного сигнала с выходным W zs (плотность взаимной мощности) повторяет частотную функцию автокорреляции W s (плотность мощности сигнала). Плотность мощности статистических шумов W q распределена по частотному диапазону равномерно, в отличие от плотности мощности сигнала W s , которая, в зависимости от формы сигнала, может занимать любые частотные интервалы спектрального диапазона. Частотная передаточная функция фильтра воспроизведения сигнала формируется отношением W s (w)/. На частотах, где сосредоточена основная энергия сигнала, имеет место W s (w)>>W q (w) и H(w) Þ 1 (как минимум, больше 0.5). Там, где значение W s (w) становится меньше W q , коэффициент передачи фильтра становится меньше 0.5, и в пределе H(w)=0 на всех частотах, где полностью отсутствуют частотные составляющие сигнала.

Аналогичный процесс имеет место и при формировании произвольного сигнала z(t) на выходе фильтра, только в этом случае из частот входного сигнала устанавливаются на выделение и усиление частоты взаимной мощности входного и выходного сигнала, необходимые для формирования сигнала z(t), причем коэффициент на этих частотах может быть много больше 1, а подавляться могут не только шумы, но и частоты основного сигнала, если их нет в сигнале z(t).

Таким образом, оптимальные фильтры учитывают особенности спектрального состава сигналов и способны формировать передаточные функции любой сложности на выделение полезных частот сигналов из любых диапазонов спектра с максимальных подавлением шумов на всех частотах спектрального диапазона, не содержащих полезных сигналов, при этом границы усиления-подавления устанавливаются автоматически по заданному уровню шумов.

Задание мощности шумов. Следует внимательно относиться к заданию функции шумов Wq(w). При полной неопределенности шума необходимо, как минимум, выполнять оценку его дисперсии s 2 и распространять на весь частотный диапазон с соответствующей нормировкой на его величину (2Wq(w) dw = s 2), т.е. считать его белым шумом. При известной функции полезного сигнала в зарегистрированной реализации значение дисперсии шумов в первом приближении может быть оценено по разности дисперсий реализации и функции полезного сигнала. Можно выполнить и выделение шумов из входного сигнала в отдельный шумовой массив, например, вейвлетным преобразованием. Однако использовать выделенный шум непосредственно для вычисления функции Wq(w) допустимо только по достаточно представительной реализации при условии стационарности и эргодичности шума. В противном случае функция Wq(w) будет отображать только распределение шумов в зарегистрированной реализации сигнала, а соответственно фильтр будет оптимален только к этой реализации, что не гарантирует его оптимальности к любой другой реализации. Но для обработки единичной зарегистрированной реализации сигнала такой метод не только вполне допустим, но и может существенно повысить точность формирования выходного сигнала.

Эффективность фильтра. Из выражений (12.3.5-12.3.7) следует, что с позиции минимального искажения полезного сигнала при максимальном подавлении шумов фильтр Колмогорова-Винера эффективен в тем большей степени, чем больше отношение сигнал/шум на входе фильтра. В пределе, при W q (w)<>W s (w) имеем H(w) Þ 0 и сигнал будет сильно искажен, но никакой другой фильтр лучшего результата обеспечить не сможет.

Пример. Расчет оптимального фильтра воспроизведения сигнала. Выполняется в среде Mathcad.

Форма входного сигнала считается известной и близка к гауссовой. На входной сигнал наложен статистический шум с равномерным распределением мощности по всему частотному диапазону (белый шум), некоррелированный с сигналом, и функцию Wzq принимаем равной нулю. Для наглядного просмотра связи параметров фильтра с параметрами сигнала задаем модели сигналов в двух вариантах:

K:= 1000 k:= 0 .. K A:= 50

s1 k:= A·exp[-0.0005·(k-500) 2 ] s2 k:= A·exp[-0.00003·(k-500) 2 ] Ü информационные сигналы

Q:= 30 q k:= rnd(Q) – Q/2 x1 k:= s1 k + q k x2 k:= s2 k + q k Ü входные сигналы

Рис. 12.3.1. Модельные сигналы.

В качестве выходных сигналов задаем те же самые функции s1 и s2. Быстрым преобразованием Фурье вычисляем спектры сигналов и формируем спектры плотности мощности:

S1:= CFFT(s1) S2:= CFFT(s2) Q:= CFFT(q) Ü спектры сигналов

Ü спектры мощности

Ds1:= var(s1) Ds2:= var(s2) Dx1:= var(x1) Dx2:= var(x2) Dq:= var(q) Ü дисперсии

Ds1 = 124.308 Ds2 = 310.264 Dx1 = 202.865 Dx2 = 386.78 Dq = 79.038 Ü информация

mean(Wq) = 0.079 Wq1:= (Dx1 – Ds1)/(K+1) Wq1 = 0.078 Ü информация

Wq2:= (Dx2 – Ds2)/(K+1) Wq2 = 0.076 Ü информация

Wq k:= Wq1 Ü замена на постоянное распределение

Для воспроизведения сигналов вычисления функций Wzs не требуется, т.к. Wzs = Ws. Вычисление Wq также имеет только информативный характер.

Передаточные функции оптимальных фильтров (приведены на рис. 12.3.2):

Рис. 12.3.2. Передаточные функции оптимальных фильтров

в сопоставлении с нормированными модулями спектров сигналов

Как следует из рисунка 12.3.2, для плавных монотонных функций, основная энергия которых сосредоточена в низкочастотной части спектра, передаточные функции оптимальных фильтров, по существу, представляют собой низкочастотные сглаживающие фильтры с автоматической подстройкой граничной частоты пропускания под основные частоты входного сигнала. Операторы фильтров можно получить обратным преобразованием Фурье:

h1:= ICFFT(H1)/(K+1) h2:= ICFFT(H2)/(K+!) Ü обратное преобразование Фурье

Рис. 12.3.3. Импульсные отклики фильтров.

Оператор фильтра, в принципе, бесконечен. В данном случае, при использовании БПФ максимальное число отсчетов равно К/2 = 500. Усечение размеров оператора может выполняться по типовым методам с применением весовых функций (в расчете операторы нормируются к 1, весовые функции не применяются).

N1:= 160 n1:= 0 .. N1 N2 ;= 500 n2:= 0 .. N2 Ü размеры и нумерация операторов

hm1:= h1 0 + 2·h1 n 1 hm1=0.988 h1:= h1/hm1 Ü нормировка

hm2:= h2 0 + 2·h2 n 2 hm2=1.001 h2:= h2/hm2 Ü нормировка

Ü свертка

Рис. 12.3.4. Проверка действия оптимальных фильтров.

Коэффициент усиления дисперсии помех Þ Kd:= (h 0) 2 + 2·h n Kd1=0.021 Kd2= 0.0066

Среднеквадратическое отклонение воспроизведения сигнала:

e1= 1.238 e2 = 0.701

Проверка действия оператора фильтра приведена на рис. 12.3.4.

Особую эффективность оптимальный фильтр имеет при очистке от шумов сигналов, имеющих достаточно сложный спектральный состав. Оптимальный фильтр учитывает конфигурацию спектра сигнала и обеспечивает максимальное подавление шумов, в том числе внутри интервала основного частотного диапазона сигнала. Это наглядно видно на рис. 12.3.5 для сигнала, близкого к прямоугольному, спектр которого имеет кроме основной низкочастотной части затухающие боковые осцилляции. Расчет фильтра выполнялся по методике, приведенной в примере 1.

Рис. 12.3.5. Оптимальная фильтрация сигнала со сложным спектральным составом.

Рис. 12.3.6. Оптимальная фильтрация радиоимпульса.

На рис. 12.3.6 приведен пример фильтрации оптимальным фильтром радиоимпульса. Основной пик спектра радиоимпульса находится в области несущей частоты, а боковые полосы определяются формой модулирующего сигнала, в данном случае – прямоугольного импульса. На графике модулей сигнала и передаточной функции фильтра можно видеть, что оптимальный фильтр превратился в полосовой фильтр, при этом учитывается форма боковых полос спектра сигнала.

Фильтры прогнозирования и запаздывания. Если в правой части уравнения (12.3.3) желаемым сигналом задать входной сигнал со сдвигом на величину kDt, то при этом B(m) = R(m+k) и уравнение принимает вид:

h(n) ③ R(m-n) = R(m+k). (12.3.8)

При k > 0 фильтр называется фильтром прогнозирования и вычисляет будущие значения сигнала по его предшествующим значениям. При k < 0 фильтр является фильтром запаздывания. Реализация фильтра заключается в решении соответствующих систем линейных уравнений для каждого заданного значения k. Фильтр может использоваться для интерполяции геофизических полей, в том числе в наперед заданные точки, а также для восстановления утраченных данных.

Другая постановка задачи при расчете по критерию минимума дисперсии ошибки заключается в том, что ставится вопрос о нахождении оптимальной структуры и значений параметров системы автоматического управления, при которых обеспечивается получение теоретического минимума среднеквадратичной ошибки при заданных вероятностных характеристиках полезного сигнала (задающего воздействия) и помехи Эта задача будет решена, если найти, например, частотную передаточную функцию замкнутой системы для непрерывной системы или для дискретной системы (рис. 4.1). Передаточной функции может быть поставлена в соответствие передаточная функция а передаточной функции - функция Задача относится к категории вариационных задач в открытой области, т. е. без ограничений на фазовые координаты системы и управляющие воздействия.

Для решения этой задачи требуется знание статистических характеристик полезного входного сигнала (задающего воздействия) и помехи на входе системы (или помехи, пересчитанной на вход системы). При этом предполагается, что на систему управления заранее не налагается никаких ограничений в смысле обязательного использования реальных элементов (чувствительных элементов, усилителей, исполнительных элементов и др.) с заданными Характеристиками.

Запишем критерий оптимальности в задаче Н. Винера. При поступлении на вход системы аддитивной смеси полезного сигнала и помехи (рис. 4.1)

представляющих собой стационарные случайные функции с нулевыми математическими ожиданиями и известными

корреляционными функциями, требуется найти частотную передаточную функцию замкнутой системы или ей соответствующую физически реализуемую весовую функцию осуществляющую требуемое линейное преобразование входного сигнала

где - заданный линейный оператор, и обеспечивающую минимум дисперсии ошибки (4.4):

Если то это будет задача оптимального сглаживания, т. е. выделения сигнала из аддитивной смеси полезного сигнала и помехи. При равенстве помехи нулю решение задачи сглаживания имеет тривиальный вид:

Рис. 4.1. Оптимальный фильтр Винера

В задачах оптимального статистического упреждения где - время упреждения. Решение получается нетривиальным даже в случае отсутствия помехи. В задачах дифференцирования сигнала при наличии помех заданный линейный оператор имеет вид Но где - порядок отыскиваемой производной.

После нахождения оптимальной передаточной функции или конструктор должен попытаться реализовать ее посредством использования тех элементов, которыми он располагает и из которых должна быть построена система управления. Так как в большинстве практических случаев точное воспроизведение оптимальной передаточной функции оказывается невозможным, то приходится использовать квазиоптимальную, или субоптимальную, систему, более или менее близко совпадающую по своим параметрам с оптимальной.

Груздев А. А. группа 4676

Обычно изображения, сформированные различными информационными системами, искажаются действием помех. Это затрудняет как их визуальный анализ человеком-оператором, так и автоматическую обработку в ЭВМ. При решении некоторых задач обработки изображений в роли помех могут выступать и те или иные компоненты самого изображения. Например, при анализе космического снимка земной поверхности может стоять задача определения границ между ее отдельными участками - лесом и полем, водой и сушей и т.п. С точки зрения этой задачи отдельные детали изображения внутри разделяемых областей являются помехой.

Ослабление действия помех достигается фильтрацией. При фильтрации яркость (сигнал) каждой точки исходного изображения, искаженного помехой, заменяется некоторым другим значением яркости, которое признается в наименьшей степени искаженным помехой. Изображение часто представляет собой двумерную функцию пространственных координат, которая изменяется по этим координатам медленнее (иногда значительно медленнее), чем помеха, также являющаяся двумерной функцией. Это позволяет при оценке полезного сигнала в каждой точке кадра принять во внимание некоторое множество соседних точек, воспользовавшись определенной похожестью сигнала в этих точках. В других случаях, наоборот, признаком полезного сигнала являются резкие перепады яркости. Однако, как правило, частота этих перепадов относительно невелика, так что на значительных промежутках между ними сигнал либо постоянен, либо изменяется медленно. И в этом случае свойства сигнала проявляются при наблюдении его не только в локальной точке, но и при анализе ее окрестности. Понятие окрестности является достаточно условным. Она может быть образована лишь ближайшими по кадру соседями, но могут быть окрестности, содержащие достаточно много и достаточно сильно удаленных точек кадра. В этом последнем случае, конечно, степень влияния далеких и близких точек на решения, принимаемые фильтром в данной точке кадра, будет совершенно различной.



Таким образом, идеология фильтрации основывается на рациональном использовании данных как из рабочей точки, так и из ее окрестности. В этом проявляется существенное отличие фильтрации от рассмотренных выше поэлементных процедур: фильтрация не может быть поэлементной процедурой обработки изображений.

Задача заключается в том, чтобы найти такую рациональную вычислительную процедуру, которая позволяла бы достигать наилучших результатов. Общепринято при решении этой задачи опираться на использование вероятностных моделей изображения и помехи, а также на применение статистических критериев оптимальности. Причины этого понятны это случайный характер как информационного сигнала, так и помехи и это стремление получить минимальное в среднем отличие результата обработки от идеального сигнала. Многообразие методов и алгоритмов связано с большим разнообразием сюжетов, которые приходится описывать различными математическими моделями. Кроме того, применяются различные критерии оптимальности, что также ведет к разнообразию методов фильтрации. Наконец, даже при совпадении моделей и критериев очень часто из-за математических трудностей не удается найти оптимальную процедуру. Сложность нахождения точных решений порождает различные варианты приближенных методов и процедур.

Общая структура адаптивного фильтра показана на рисунке. Входной дискретный сигнал x(k) обрабатывается дискретным фильтром, в результате чего получается выходной сиг нал y(k). Этот выходной сигнал сравнивается с образцовым сигналом d(k), разность между ними образует сигнал ошибки e(k). Задача адаптивного фильтра - минимизировать ошибку воспроизведения образцового сигнала. С этой целью блок адаптации после обработки каждого отсчета анализирует сигнал ошибки и дополнительные данные, поступающие из фильтра, используя результаты этого анализа для подстройки параметров коэффициентов фильтра.

При синтезе фильтра Винера учитывается информация о спектральной плотности мощности изображения и шума. Поэтому он менее подвержен влиянию помех и нулей передаточной функции искажающей системы. Частотная характеристика фильтра Винера:

где - спектральные плотности мощности периодически продолженных шума, наблюдаемого и исходного изображений, - взаимная спектральная плотность мощности исходного и наблюдаемого изображений, * - символ комплексного сопряжения.

Преобразуем передаточную функцию фильтра Винера:

1. При отсутствии шума фильтр Винера переходит в инверсный фильтр. Следовательно, в области низких частот, где, как правило, отношение сигнал/шум велико передаточные функции этих фильтров практически совпадают.

2. При уменьшении спектральной плотности мощности исходного изображения передаточная функция фильтра Винера стремится к 0. Для изображения это характерно на высоких частотах.

3. На частотах, соответствующих нулям передаточной функции формирующей системы, передаточная функция фильтра Винера также равна 0.

Основным недостатком фильтра Винера остается наличие краевых эффектов, проявляющихся в виде осциллирующей помехи (ряби или полос).

Ниже приведены одномерные сечения типичных передаточных функций винеровских фильтров (сплошная линия). Здесь же для сравнения приведены сечения передаточных функций инверсных фильтров и, которые обозначены штриховой линией.

Рассмотрим результаты моделирования винеровского алгоритма восстановления. На рис. 2.а и 4.а приведены результаты искажения изображений «Сатурн» и «Часы» сверткой с гауссовской ФРТ () с последующим «обрезанием» краев и добавлением аддитивного дельта-коррелированного шума (). На рис. 3.а и 5.б приведены изображения, полученные в результате смаза () изображений «Сатурн» и «Часы» () также с последующим «обрезанием» краев и добавлением аддитивного дельта-коррелированного шума ().

Размеры всех наблюдаемых и восстановленных изображений равны 170х170 элементов. Результаты восстановления винеровским фильтром изображения «Сатурн» (рис. 2.б и рис. 3.б) свидетельствуют о том, что фильтр Винера значительно лучше подавляет шумы. Осциллирующая помеха на результатах восстановления изображения «Часы» (рис. 4.б и рис. 5.в) вызвана краевыми эффектами. Ее уровень существенно меньше, чем при инверсной фильтрации. Однако винеровский фильтр лишь частично компенсирует краевые эффекты, которые делают качество восстановления неудовлетворительным.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: