Определение значения. Функция. Область определения и область значений функции. Графики функции


Л.является создателем основ современного р.яз.Изучение языка для Л было важной сферой интересов.Он сам знал 8 языков.Многие изучил самостоятельно.Во время детства Л. культурно -официальным языком Российской империи считался церковнославянский.
Учась в Германии,Л.видел силу единого литературного нем.яз.Это он проецировал на русскую реальность.К середине 18 российская элита была двуязычна.Одновременно функционировали 2 языка,но в разных сферах жизни:церковнославянский и русский.Первый был престижен,употреблялся в небытовых,высоких сферах: в церкви,в книгах,в госдокументах,в образовании и науке.А русский имел статус непрестижного и использовался в повседневной жизни,в записках,в договорах,объявлениях и др.) Р.яз не имел официального статуса,не преподавался в школах.Элита называла его мужицким,грубым,невыразительным Иностранцы,посетившие империю,говорили,что там разговаривать надо по - русски,писать - по - словенски.
Письменный яз той эпохи - это смесь церковнославянизмов,простонародных слов,диалектов,архаизмов,вульгаризмов, заимствований Научных,специальных терминов не было в языке.
Элита говорила на иностранных языках (так как Пётр прорубил окно в Европу).Одним словом язык не имел системы.логики,стройности.
Великая миссия Л. в том,что он создал работы по лингвистике,которые определили законы и правила развития русского языка.
Какую же миссию выполнил М.В.Ломоносов в отношении русского языка и шире культуры? Об этом говорят названия его языковедческих работ: 
Краткое руководство к риторике (1743); 
Риторика (1748); 
Российская грамматика (1755).
Эти работы объединены в один том ППС.
Главный труд Л. как лингвиста "Российская грамматика"Это первая полная,нормативная грамматика р.яз,заложившая основы современного р. яз.Л. в ней ясно определил нормы яз,звуковой состав,произношение,правописание и грамматику (учение о частях речи)За основу взял московское наречие.Л.говорил: «Московское наречие не только для важности столичного города, но и для своей отменной красоты прочим справедливо предпочитается».
Его труд был очень востребован.За 30 лет переиздавалась Грамматика 5 раз.
Л разработал стилистическую систему яз,известную как теорию 3-х штилей: высокого,среднего и низкого,Л. определил сферу употребления каждого стиля.
Р.яз для Л. -объект реформации,систематизации,кодификации.Учёный и на практике дал образцы употребления языка: в научных трудах,публичных лекциях,трактатах,стихотворениях.Именно после Л. появились первые общенациональные классики:Фонвизин,Карамзин,Державин,И мировые:Пушкин,Лермонтов,Гоголь
Л.боролся за расширение применения р.яз.в сфере науки.В стенах Академии наук зазвучала русская речь:Л. выхлопотал разрешение читать лекции по физике и химии на русском яз,развивая терминологию.,научный стиль,.
Русская грамматика"Л. послужила образцом для написания многих грамматик других народов.
"Таким образом, филологическая деятельность М.В.Ломоносова дала большой импульс не только изучению русского языка, но и многих других языков российской державы"

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)= . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Пример.

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является отрезок .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) промежутках (a; b) , .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Пример.

Определите множество значений функции на интервале (-2; 2) .

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0 ), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

Пример.

Укажите множество значений функции тангенса y = tgx на интервале .

Решение.

Производная функции тангенса на интервале положительна , что указывает на возрастание функции. Исследуем поведение функции на границах интервала:

Таким образом, при изменении аргумента от к значения функции возрастают от минус бесконечности к плюс бесконечности, то есть, множество значений тангенса на этом интервале есть множество всех действительных чисел .

Пример.

Найдите область значений функции натурального логарифма y = lnx .

Решение.

Функция натурального логарифма определена для положительных значений аргумента . На этом интервале производная положительна , это говорит о возрастании функции на нем. Найдем односторонний предел функции при стремлении аргумента к нулю справа, и предел при x стремящемся к плюс бесконечности:

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Пример.

Решение.

Эта функция определена для всех действительных значений x . Определим точки экстремума, а также промежутки возрастания и убывания функции.

Следовательно, функция убывает при , возрастает при , x = 0 - точка максимума, соответствующий максимум функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Теперь хорошо видно, что область значений функции есть .

Нахождение множества значений функции y = f(x) на промежутках требует аналогичных исследований. Не будем сейчас подробно останавливаться на этих случаях. В примерах ниже они нам еще встретятся.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

Пример.

Найдите область значений функции .

Решение.

Знаменатель нашей функции не должен обращаться в ноль, то есть, .

Сначала найдем множество значений функции на открытом луче .

Производная функции отрицательна на этом промежутке, то есть, функция убывает на нем.

Получили, что при стремлении аргумента к минус бесконечности значения функции асимптотически приближаются к единице. При изменении x от минус бесконечности до двух значения функции убывают от одного до минус бесконечности, то есть, на рассматриваемом промежутке функция принимает множество значений . Единицу не включаем, так как значения функции не достигают ее, а лишь асимптотически стремятся к ней на минус бесконечности.

Действуем аналогично для открытого луча .

На этом промежутке функция тоже убывает.

Множество значений функции на этом промежутке есть множество .

Таким образом, искомая область значений функции есть объединение множеств и .

Графическая иллюстрация.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Пример.

Найдите область значений функции синуса y = sinx .

Решение.

Эта функция периодическая с периодом два пи. Возьмем отрезок и определим множество значений на нем.

Отрезку принадлежат две точки экстремума и .

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

Следовательно, .

Пример.

Найдите область значения функции .

Решение.

Мы знаем, что областью значений арккосинуса является отрезок от нуля до пи, то есть, или в другой записи . Функция может быть получена из arccosx сдвигом и растяжением вдоль оси абсцисс. Такие преобразования на область значений не влияют, поэтому, . Функция получается из растяжением втрое вдоль оси Оy , то есть, . И последняя стадия преобразований – это сдвиг на четыре единицы вниз вдоль оси ординат. Это нас приводит к двойному неравенству

Таким образом, искомая область значений есть .

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Пример.

Определите область значений функции .

Решение.

Запишем исходную функцию в виде . Областью значений степенной функции является промежуток . То есть, . Тогда

Следовательно, .

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения. В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них. Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: