Квантовый компьютер. Квантовый процессор: описание, принцип работы. Сложности, проблемы в создании квантового компьютера

Начало продаж своего 2000-кубитного квантового компьютера D-Wave 2000Q и уже продала первую модель за 15 миллионов долларов.

Покупателем стала фирма Temporal Defense Systems, занимающаяся вопросами кибербезопасности. Джеймс Буррел (James Burrell), технический директор TDS, говорит , что компания планирует использовать D-Wave 2000Q для разработки новых решений защиты от угроз и идентификации киберпреступников.

Система от D-Wave хранит данные, используя кубиты. Они кодируют информацию нулем, единицей или обоими состояниями одновременно, в отличие от традиционных систем. По этой причине D-Wave способен управлять огромными комбинациями состояний, что позволяет более эффективно решать определенный класс задач.

D-Wave представили свой квантовый компьютер публике еще в сентябре прошлого года, заявив, что новое решение будет содержать 2 тысячи кубитов. Это в два раза больше, чем у квантового компьютера предыдущего поколения - D-Wave X2, запущенного в августе.

D-wave 2000Q представляет собой так называемый адиабатический компьютер, работающий по принципу квантового отжига .

Это квантовая система из большого числа компонентов и контролируемых параметров. Охлаждая её до очень низкой температуры (компьютер предыдущей модели функционировал при температуре в 15 милликельвинов - порядка -273 °C), разработчики предполагают, что система достигает минимальной энергии, и затем, медленно меняя заданные параметры, используют законы квантовой механики для перевода системы из исходного состояния в новое состояние минимальной энергии за счет квантового туннелирования.

В качестве особенности нового D-Wave приводится возможность настраивать частоту отжига отдельных кубитов для повышения производительности. Также новый компьютер сочетает квантовые и классические алгоритмы работы для оптимизации выборки результатов вычислений.

В интервью для N+1 Алексей Устинов, руководитель группы «Сверхпроводящие квантовые цепи» в Российском квантовом центре, рассказал, для чего можно использовать D-Wave. Одна из сфер применения - оптимизация функции затрат.

У вас имеется много параметров, много целей. Скажем, вам нужно посетить миллион клиентов в разных местах, при этом оптимизировав дорогу, расходы, время и так далее.

В пресс-релизе представители D-Wave отметили , что 2000Q способен решать более сложные проблемы по сравнению с предшественником. Также более высокая производительность должна подстегнуть развитие таких сфер, как кибербезопасность, машинное обучение, биотехнологии. В компании отмечают, что специализированные алгоритмы могут выполняться в 1 тыс. и даже 10 тыс. раз быстрее, чем на классических серверах.

При этом D-Wave не только поставляет решения для своих клиентов, но и предлагает арендовать мощности квантовой машины для удаленной работы.

P.S. А вот о чем еще мы пишем в нашем блоге:

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями - квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки - квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Квантовый процессор на пяти кубитах от IBM

Дальше - больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер - тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности - от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников - материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы - они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин - компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо - привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты - нули и единички, - то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно - кубиты). Сам кубит - вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу - уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств - лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью - разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете - пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело - теоретически придумать кубит, и совсем другое - воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита - нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи - все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер - все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера - вопрос стратегической важности.

Не пропустите лекцию:

January 29th, 2017

Для меня словосочетание "квантовый компьютер" сравнимо например с "фотонным двигателем", т.е это что то очень сложное и фантастическое. Однако читаю сейчас в новостях - "квантовый компьютер продается любому желающему". Странно, то ли под этим выражением теперь подразумевают что то другое, то ли это просто фейк?

Давайте разберемся подробнее...


КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.


В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.


Основа алгоритма Шора: способность кубитов хранить несколько значений одновременно)

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических.


Если сказать простыми словами, то: "квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Другими словами, если вы посчитаете 2+2, то 4 получится только с некоторой долей точности. Точно 4 вы не получите никогда. Логика его процессора совсем не похожа на привычный нам процессор.

Существуют методы посчитать результат с заранее оговоренной точностью, естественно с увеличением затрат машинного времени.
Этой особенностью и определяется перечень задач. И эта особенность не афишируется, а у публики создается впечатление, что квантовый компьютер, это тоже, что и обычный PC (те же 0 и 1), только быстрый и дорогой. Это принципиально не так.

Да, и еще момент — для квантового компьютера и квантовых вычислений в целом, особенно для того, чтобы использовать "мощь и быстродействие" квантовых вычислений — нужны особые, специально под специфику квантовых вычислений разработанные алгоритмы и модели. Поэтому сложность применения квантового компьютера не только в наличии "железа", но и в составлении новых, до сих пор не применявшихся методик расчета. "

А теперь снова перейдем к практической реализации квантового компьютера: уже ведь некоторое время существует и даже продается коммерческий 512-кубитный процессор D-Wave !!!

Вот, он, казалось бы, настоящий прорыв!!! И группа солидных ученых в не менее солидном журнале Physical Review убедительно свидетельствует, что в D-Wave действительно обнаружены эффекты квантовой сцепленности.

Соответственно, данное устройство с полным основанием имеет право именоваться настоящим квантовым компьютером, архитектурно вполне допускает дальнейшее наращивание числа кубитов, а, значит, имеет замечательные перспективы на будущее… (T. Lanting et al. Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X 4, 021041 (2014) (http://dx.doi.org/10.1103/PhysRevX.4.021041))

Правда, чуть позже, другая группа солидных ученых в не менее солидном журнале Science, изучавшие ту же самую вычислительную систему D-Wave, оценивали ее сугубо практически: насколько хорошо это устройство выполняет свои вычислительные функции. И эта группа ученых столь же обстоятельно и убедительно, как и первая, демонстрирует, что в реальных проверочных тестах, оптимально подходящих для этой конструкции, квантовый компьютер D-Wave не дает никакого выигрыша в скорости по сравнению с компьютерами обычными, классическими. (T.F. Ronnow, M. Troyer et al. Defining and detecting quantum speedup. SCIENCE, Jun 2014 Vol. 344 #6190 (http://dx.doi.org/10.1126/science.1252319))

По сути дела, для дорогущей, но специализированной "машины будущего" не нашлось задач, где она могла бы продемонстрировать свое квантовое превосходство. Иначе говоря, оказывается под большим сомнением сам смысл весьма недешевых усилий по созданию подобного устройства…
Итоги таковы: сейчас в научном сообществе уже нет никаких сомнений, что в процессоре компьютера D-Wave работа элементов действительно происходит на основе реальных квантовых эффектов между кубитами.

Но (и это чрезвычайно серьезное НО) ключевые особенности в конструкции процессора D-Wave таковы, что при реальной эксплуатации вся его квантовая физика не дает никакого выигрыша в сравнении с обычным мощным компьютером, имеющим специальное программное обеспечение, заточенное под решение задач оптимизации.

Попросту говоря, не только ученые, тестирующие D-Wave, пока не смогли увидеть ни одной реальной задачи, где квантовый компьютер мог бы убедительно продемонстрировать свое вычислительное превосходство, но даже сама компания-изготовитель понятия не имеет, что это может быть за задача…

Все дело в особенностях конструкции 512-кубитного процессора D-Wave, который собирается из групп по 8 кубитов. При этом, внутри этих групп по 8 кубитов они все напрямую сообщаются между собой, а вот между этими группами связи очень слабые (в идеале же ВСЕ кубиты процессора должны напрямую сообщаться между собой). Это, конечно, ОЧЕНЬ существенно снижает сложность построения квантового процессора... НО, отсюда нарастает масса прочих проблем, замыкающихся в финале и на очень недешевую в эксплуатации криогенную аппаратуру, охлаждающую схему до сверхнизких температур.

Так что же нам предлагают сейчас?

Канадская компания D-Wave объявила о начале продаж своего анонсированного в сентябре прошлого года квантового компьютера D-Wave 2000Q. Придерживаясь собственного аналога закона Мура, в соответствии с которым количество транзисторов на интегральной схеме удваивается каждые два года, D-Wave разместила на КПУ (квантовом процессорном устройстве) 2,048 кубитов. Динамика роста числа кубитов на КПУ за последние годы выглядит так:

2007 — 28

— 2013 — 512
— 2014 — 1024
— 2016 — 2048.

Причем в отличие от традиционных процессоров, ЦПУ и ГПУ, удвоение кубитов сопровождается не 2-кратным, а 1000-кратным ростом производительности. По сравнению с компьютером, имеющим традиционную архитектуру и конфигурацию в виде одноядерного ЦПУ и 2500-ядерного ГПУ, разница в быстродействии составляет от 1,000 до 10,000 раз. Все эти цифры безусловно впечатляют, но есть несколько «но».

Во-первых, D-Wave 2000Q стоит чрезвычайно дорого — $15 млн. Это довольно массивное и сложное устройство. Его мозгом является КПУ из цветного металла под названием ниобий, сверхпроводниковые свойства которого (необходимые для квантовых компьютеров) возникают в вакууме при близкой к абсолютному нулю температуре ниже 15 милликельвинов (это в 180 раз ниже температуры в открытом космосе).

Поддержание такой экстремально низкой температуры требует больших затрат энергии, 25 кВт. Но все же, согласно производителю, это в 100 раз меньше, чем у эквивалентных по производительности традиционных суперкомпьютеров. Так что производительность D-Wave 2000Q на один ватт потребляемой энергии в 100 раз выше. Если компании удастся и дальше следовать своему «закону Мура», то в её будущих компьютерах эта разница будет расти в геометрической прогрессии, с сохранением энергопотребления на нынешнем уровне.

Во-первых, у квантовых компьютеров весьма специфическое назначение. В случае D-Wave 2000Q речь идет о т.н. адиабатических компьютерах и решении задач квантовой нормализации. Они, в частности, возникают в следующих областях:

Машинное обучение:

Выявление статистических аномалий
— нахождения сжатых моделей
— распознавание изображений и образов
— тренировка нейросетей
— проверка и утверждение программного обеспечения
— классификация безструктурных данных
— диагностика ошибок в схеме

Безопасность и планирование

Обнаружение вирусов и взлома сети
— распределение ресурсов и нахождение оптимальных путей
— определение принадлежности множеству
— анализ свойств графика
— факторизация целых чисел (применяется в криптографии)

Финансовое моделирование

Выявление рыночной нестабильности
— разработка торговых стратегий
— оптимизация торговых траекторий
— оптимизация ценообразования активов и хеджирования
— оптимизация портфолио

Здравоохранение и медицина

Выявление мошенничества (вероятно речь идет о медицинских страховках)
— генерирование таргетной («молекулярно-прицельной») лекарственной терапии
— оптимизация лечения [рака] методом радиотерапии
— создание моделей протеина.

Первым покупателем D-Wave 2000Q стала компания TDS (Temporal Defense Systems), занятая в области кибер-безопасности. Вообще же продукцией D-Wave пользуются такие компании и учреждения как Lockheed Martin, Google, Исследовательский центр Эймса при НАСА, Университет Южной Калифорнии и Лос-Аламосская национальная лаборатория при Министерстве энергетики США.

Таким образом, речь идет о редкой (D-Wave является единственной в мире компанией, выпускающей коммерческие образцы квантовых компьютеров) и дорогой технологии с довольно узким и специфическим применением. Но темпы роста её производительности потрясают воображение, и если эта динамика сохранится, то благодаря адиабатическим компьютерам D-Wave (к которой со временем возможно присоединятся и другие компании) в ближайшие годы нас могут ожидать настоящие прорывы в науке и технике. Особый интерес вызывает сочетание квантовых компьютеров с такой перспективной и быстро развивающейся технологией как искусственный интеллект — тем более, что в этом видит перспективу такой авторитетный специалист как Энди Рубин.

Да, кстати, вы знали, что Корпорация IBM разрешила пользователям интернета бесплатно подключаться к построенному ей универсальному квантовому компьютеру и экспериментировать с квантовыми алгоритмами. Этому устройству не хватит мощности, чтобы взламывать криптографические системы с открытым ключом, но если планы IBM осуществятся, то появление более сложных квантовых компьютеров не за горами.

Квантовый компьютер, к которому IBM открыла доступ, содержит пять кубитов: четыре служат для работы с данными, а пятый — для коррекции ошибок во время вычислений. Коррекция ошибок — главное нововведение, которым гордятся его разработчики. Она упростит увеличение количества кубитов в будущем.

В IBM подчёркивают, что её квантовый компьютер является универсальным и способен исполнять любые квантовые алгоритмы. Это отличает его от адиабатических квантовых компьютеров, которые разрабатывает компания D-Wave. Адиабатические квантовые компьютеры предназначены для поиска оптимального решения функций и не подходят для других целей.

Считается, что универсальные квантовые компьютеры позволят решать некоторые задачи, которые не под силу обычным компьютерам. Наиболее известный пример такой задачи — разложение чисел на простые множители. Обычному компьютеру, даже очень быстрому, понадобятся сотни лет, чтобы отыскать простые множители большого числа. Квантовый компьютер найдёт их при помощи алгоритма Шора почти так же быстро, как происходит умножение целых чисел.

Невозможность быстрого разложения чисел на простые множители — это основа криптографических систем с открытым ключом. Если эту операцию научатся выполнять с той скоростью, которую обещают квантовые алгоритмы, то о большей части современной криптографии придётся забыть.

На квантовом компьютере IBM можно запустить алгоритм Шора, но пока кубитов не станет больше, пользы от этого мало. В течение следующих десяти лет ситуация изменится. К 2025 году в IBM планируют построить квантовый компьютер, содержащий от пятидесяти до ста кубитов. По мнению специалистов, уже при пятидесяти кубитах квантовые компьютеры смогут решать некоторые практические задачи.

Вот еще немного интересного про компьютерные технологии: почитайте, как , а вот А еще оказывается можно и что это за

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония , более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году , когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году . Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет .

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. , выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера – это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов . В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем , который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование ;
  2. основано на таком свойстве как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin , специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35 . Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать , особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут , которые и составляют принцип работы квантового компьютера.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: