Динамическое выделение памяти. Выделение памяти в Си (функция malloc) Зарезервированное ключевое слово для динамического выделения памяти

Программа может хранить информацию в основной памяти компьютера двумя основными спо­собами. Первый из них использует глобальные и локальные переменные, включая массивы, струк­туры и классы. В случае глобальных и статических локальных переменных место хранения инфор­мации фиксируется на все время выполнения программы. В случае локальных переменных память выделяется в стеке. Хотя в Borland С++ работа с этими переменными реализована очень эффек­тивно, их использование требует от программиста знать заранее размер памяти, который потре­буется в ходе выполнения программы.

Вторым способом хранения информации служит использование системы динамического выде­ления памяти Borland С++. В этом методе память для хранения информации выделяется из сво­бодной области памяти по мере надобности и возвращается назад, т.е. освобождается, когда надобность в ней исчезла. Область свободной памяти лежит между областью памяти, где разме­щается программа, и стеком. Эта область называется кучей (heap) и используется для запросов на динамическое выделение памяти.

Преимуществом использования динамической памяти служит то, что одна и та же память мо­жет быть использована для хранения различной информации в процессе исполнения программы. Поскольку память выделяется для определенной цели и освобождается, когда ее использование завершилось, то можно использовать ту же самую память в другой момент времени для других целей в другой части программы. Другим преимуществом динамического выделения памяти явля­ется возможность создания с ее помощью связанных списков, двоичных деревьев и других дина­мических структур данных.

Ядром динамического выделения памяти языка С являются функции malloc() и free(), являющиеся частями стандартной библиотеки. Всякий раз, когда функцией malloc() осуществляется запрос на выделение памяти, выделяется порция имеющейся в наличии свободной памяти. Всякий раз, когда эта память освобождается с помощью функции free(), эта память возвращается назад системе.

Язык С++ определяет два оператора динамического выделения памя­ти - new и delete.

Стандарт ANSI С определяет только четыре функции динамического выделения памяти: calloc(), malloc(), free() и realloc(). Однако Borland С++ содержит несколько других функций динамичес­кого выделения памяти. При компиляции кода для современной 32-разрядной модели памяти, память являет­ся плоской и обычно используются только четыре стандартные функции выделения памяти.

Стандарт ANSI С определяет, что заголовочная информация, необходимая для динамического выделения памяти, содержится в файле stdlib.h. Однако Borland С++ позволяет использовать заго­ловочные файлы stdlib.h или alloc.h. Здесь мы используем заголовочный файл stdlib.h, поскольку это обеспечивает переносимость. Некоторые другие функции динамического выделения памяти требуют заголовочных файлов alloc.h, malloc.h или dos.h. Необходимо обращать особое внимание на то, какой заголовочный файл необходим для использования каждой функции.

Итак. третий тип, самый интересный в этой теме для нас – динамический тип памяти.

Как мы работали с массивами раньше? int a Как мы работаем сейчас? Выделяем столько, сколько нужно:

#include < stdio.h> #include < stdlib.h> int main () { size_t size; // Создаём указатель на int // – по сути, пустой массив. int *list; scanf (" %lu " , &size); // Выделяем память для size элементов размером int // и наш "пустой массив" теперь ссылается на эту память. list = (int *)malloc (size * sizeof (int )); for (int i = 0 ; i < size; ++i) { scanf (" %d " < size; ++i) { printf (" %d " , *(list + i)); } // Не забываем за собой прибраться! free (list); } // *

Void * malloc(size_t size);

Но в общем и целом это функция, выделяет size байт неинициализированной памяти (не нули, а мусор).

Если выделение прошло успешно, то возвращается указатель на самый первый байт выделенной памяти.

Если неуспешно – NULL. Также errno будет равен ENOMEM (эту замечательную переменную мы рассмотрим позднее). То есть правильнее было написать:

#include < stdio.h> #include < stdlib.h> int main () { size_t size; int *list; scanf (" %lu " , &size); list = (int *)malloc (size * sizeof (int )); if (list == NULL ) { goto error; } for (int i = 0 ; i < size; ++i) { scanf (" %d " , list + i); } for (int i = 0 ; i < size; ++i) { printf (" %d " , *(list + i)); } free (list); return 0 ; error: return 1 ; } // *

Очищать NULL указатель не нужно

#include < stdlib.h> int main () { free (NULL ); }

– в том же clang всё пройдёт нормально (сделает ничто), но в более экзотических случаях вполне может крэшнуть программу.

Рядом с malloc и free в мане можно увидеть ещё:

    void * calloc (size_t count, size_t size);

    Равно как и malloc выделит память под count объектов размером по size байт. Выделяемая память инициализируется нулями.

    void * realloc (void *ptr, size_t size);

    Перевыделяет (если может) память, на которую указывает ptr , в размере size байт. Если не хватает места для увеличения выделенной памяти, на которое указывает ptr , realloc создает новое выделение (аллокацию), копирует старые данные, на которые указывает ptr , освобождает старое выделение и возвращает указатель на выделенную память.

    Если ptr равен NULL , realloc идентичен вызову malloc .

    Если size равен нулю, а ptr не NULL , выделяется кусок памяти минимального размера, а исходная освобождается.

    void * reallocf (void *ptr, size_t size);

    Придумка из FreeBSD API. Как и realloc , но если не сможет перевыделить, очищает принятый указатель.

    void * valloc (size_t size);

    Как и malloc , но выделенная память выравнивается по границе страницы.

В С++, как и во многих других языках, память можно выделять статически (память выделяется до начала выполнения программы и освобождается после завершения программы) или динамически (память выделяется и освобождается в процессе выполнения программы).

Статическое выделение памяти выполняется для всех глобальных и локальных переменных, имеющих явные описания в программе (без использования указателей). В этом случае механизм выделения памяти определяется расположением описания переменной в программе и спецификатором класса памяти в описании. Тип переменной определяет размер выделяемой области памяти, но механизм выделения памяти от типа не зависит. Имеется два основных механизма статического выделения памяти.

· Память под каждую из глобальных и статических (объявленных со спецификатором static) переменных выделяется до начала выполнения программы в соответствии с описанием типа. От начала до конца выполнения программы данные переменные связаны с выделенной для них областью памяти. Таким образом, они имеют глобальное время жизни, при этом область видимости у них различная.

· Для локальных переменных, объявленных внутри какого-либо блока и не имеющих спецификатора static, память выделяется другим способом. До начала выполнения программы (при её загрузке) выделяется довольно объёмная область памяти, называемая стеком (иногда используют термины стек программы или стек вызовов , чтобы сделать различие между стеком как абстрактным типом данных). Размер стека зависит от среды разработки, например, в MS Visual C++ по умолчанию под стек выделяется 1 мегабайт (это значение поддаётся настройке). В процессе выполнения программы при входе в определённый блок выделяется память в стеке для локализованных в блоке переменных (в соответствии с описанием их типа), при выходе из блока эта память освобождается. Данные процессы выполняются автоматически, поэтому локальные переменные в С++ часто называют автоматическими .

При вызове функции в стеке выделяется память для её локальных переменных, параметров (в стек помещается значение или адрес параметра), результата функции и сохранения точки возврата – адреса в программе, куда нужно вернуться при завершении работы функции. При завершении работы функции все связанные с ней данные удаляются из стека.

Использование термина "стек" объяснить легко – при принятом подходе к выделению и освобождению памяти переменные, которые помещаются в стек последними (это переменные, локализованные в самом глубоко вложенном блоке), удаляются из него первыми. То есть, выделение и освобождение памяти происходит по принципу LIFO (LAST IN – FIRST OUT, последним пришёл – первым вышел). Это и есть принцип работы стека. Стек как динамическую структуру данных и его возможную реализацию мы рассмотрим в следующем разделе.



Во многих случаях статическое выделение памяти ведет к ее неэффективному использованию (особенно это характерно для массивов больших размеров), т. к. не всегда выделенная статически область памяти реально заполняется данными. Поэтому в С++, как и во многих языках, есть удобные средства динамического формирования переменных. Суть динамического выделения памяти заключается в том, что память выделяется (захватывается) по запросу из программы и освобождается также по запросу. При этом размер памяти может определяться типом переменной или явно указываться в запросе. Такие переменные называются динамическими . Возможности создания и использования динамических переменных тесно связаны с механизмом указателей.

Суммируя всё сказанное выше, можно представить следующую схему распределения памяти в процессе исполнения программы (рисунок 2.1). Расположение областей друг относительно друга на рисунке довольно условное, т.к. детали выделения памяти берёт на себя операционная система.

Рисунок 2.1 – схема распределения памяти

В заключение этого раздела коснёмся одной болезненной проблемы в процессе работы со стеком – возможности его переполнения (эта аварийная ситуация обычно называется Stack Overflow ). Причина, породившая проблему, понятна – ограниченный объём памяти, которая выделяется под стек при загрузке программы. Наиболее вероятные ситуации для переполнения стека – локальные массивы больших размеров и глубокая вложенность рекурсивных вызовов функций (обычно возникает при неаккуратном программировании рекурсивных функций, допустим, забыта какая-либо терминальная ветвь).



Для того, чтобы лучше понять проблему переполнения стека, советуем провести такой нехитрый эксперимент. В функции main объявите массив целых чисел размером, допустим, на миллион элементов. Программа скомпилируется, но при её запуске возникнет ошибка переполнения стека. Теперь добавьте в начало описания массива спецификатор static (или вынесите описание массива из функции main ) – программа заработает!

Ничего чудесного в этом нет – просто теперь массив помещается не в стек, а в область глобальных и статических переменных. Размер памяти для этой области определяет компилятор – если программа скомпилировалась, значит, она будет работать.

Тем не менее, объявлять в программе статически формируемые массивы огромных размеров, как правило, нет необходимости. В большинстве случаев более эффективным и гибким способом будет динамическое выделение памяти для таких данных.

С++ поддерживает три основных типа выделения (или ещё «распределения» ) памяти , с двумя из которых, мы уже знакомы:

Статическое выделение памяти выполняется для и переменных. Память выделяется один раз, при запуске программы, и сохраняется на протяжении работы всей программы.

Автоматическое выделение памяти выполняется для и . Память выделяется при входе в блок, в котором находятся эти переменные, и удаляется при выходе из него.

Динамическое выделение памяти является темой этого урока.

Динамическое выделение переменных

Как статическое, так и автоматическое распределение памяти имеют два общих свойства:

Как работает динамическое выделение памяти?

На вашем компьютере имеется память (возможно, большая её часть), которая доступна для использования программами. При запуске программы ваша операционная система загружает эту программу в некоторую часть этой памяти. И эта память, используемая вашей программой, разделена на несколько частей, каждая из которых выполняет определённую задачу. Одна часть содержит ваш код, другая используется для выполнения обычных операций (отслеживание вызываемых функций, создание и уничтожение глобальных и локальных переменных и т.д.). Мы поговорим об этом позже. Тем не менее, большая часть доступной памяти просто находится там, ожидая запросов на выделение от программ.

Когда вы динамически выделяете память, то вы просите операционную систему зарезервировать часть этой памяти для использования вашей программой. Если ОС может выполнить этот запрос, то возвращается адрес этой памяти обратно в вашу программу. С этого момента и в дальнейшем ваша программа сможет использовать эту память, как только пожелает. Когда вы уже выполнили всё, что было необходимо, с этой памятью, то её нужно вернуть обратно в операционную систему, для распределения между другими запросами.

В отличие от статического или автоматического выделения памяти, программа самостоятельно отвечает за запрос и обратный возврат динамически выделенной памяти.

Освобождение памяти

Когда вы динамически выделяете переменную, то вы также можете её инициализировать посредством или uniform инициализации (в С++11):

int *ptr1 = new int (7); // используем прямую инициализацию int *ptr2 = new int { 8 }; // используем uniform инициализацию

Когда уже всё, что нужно было, выполнено с динамически выделенной переменной - нужно явно указать С++ освободить эту память. Для переменных это выполняется с помощью оператора delete :

// Предположим, что ptr ранее уже был выделен с помощью оператора new delete ptr; // возвращаем память, на которую указывал ptr, обратно в операционную систему ptr = 0; // делаем ptr нулевым указателем (используйте nullptr вместо 0 в C++11)

Оператор delete на самом деле ничего не удаляет. Он просто возвращает память, которая была выделена ранее, обратно в операционную систему. Затем операционная система может переназначить эту память другому приложению (или этому же снова).

Хотя может показаться, что мы удаляем переменную , но это не так! Переменная-указатель по-прежнему имеет ту же область видимости, что и раньше, и ей можно присвоить новое значение, как и любой другой переменной.

Обратите внимание, удаление указателя, не указывающего на динамически выделенную память, может привести к проблемам.

Висячие указатели

C++ не предоставляет никаких гарантий относительно того, что произойдёт с содержимым освобождённой памяти или со значением удаляемого указателя. В большинстве случаев память, возвращаемая операционной системе, будет содержать те же значения, которые были у неё до освобождения , а указатель так и останется указывать на только уже освобождённую (удалённую) память.

Указатель, указывающий на освобождённую память, называется висячим указателем . Разыменование или удаление висячего указателя приведёт к неожиданным результатам. Рассмотрим следующую программу:

#include int main() { int *ptr = new int; *ptr = 8; // помещаем значение в выделенную ячейку памяти delete ptr; // возвращаем память обратно в операционную систему. ptr теперь является висячим указателем std::cout << *ptr; // разыменование висячего указателя приведёт к неожиданным результатам delete ptr; // попытка освободить память снова приведёт к неожиданным результатам также return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

* ptr = 8 ; // помещаем значение в выделенную ячейку памяти

delete ptr ; // возвращаем память обратно в операционную систему. ptr теперь является висячим указателем

std :: cout << * ptr ; // разыменование висячего указателя приведёт к неожиданным результатам

delete ptr ; // попытка освободить память снова приведёт к неожиданным результатам также

return 0 ;

В программе выше значение 8, которое ранее было присвоено динамической переменной, после освобождения может и далее находиться там, а может и нет. Также возможно, что освобождённая память уже могла быть выделена другому приложению (или для собственного использования операционной системы), и попытка доступа к ней приведёт к тому, что операционная система автоматически прекратит выполнение вашей программы.

Процесс освобождения памяти может также привести и к созданию нескольких висячих указателей. Рассмотрим следующий пример:

#include int main() { int *ptr = new int; // динамически выделяем целочисленную переменную int *otherPtr = ptr; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr delete ptr; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели ptr = 0; // ptr теперь уже nullptr // Однако otherPtr по-прежнему является висячим указателем! return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

int * otherPtr = ptr ; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr

delete ptr ; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели

ptr = 0 ; // ptr теперь уже nullptr

// Однако otherPtr по-прежнему является висячим указателем!

return 0 ;

Во-первых, старайтесь избегать ситуаций, когда несколько указателей указывают на одну и ту же часть выделенной памяти. Если это невозможно, то проясните, какой указатель из всех «владеет» памятью (и отвечает за её удаление), а какие указатели просто получают доступ к ней.

Во-вторых, когда вы удаляете указатель, и, если он не выходит из сразу же после удаления, то его нужно сделать нулевым, т.е. присвоить значение 0 (или в С++11). Под «выходом из области видимости сразу же после удаления» имеется в виду, что вы удаляете указатель в самом конце блока, в котором он объявлен.

Правило: Присваивайте удалённым указателям значение 0 (или nullptr в C++11), если они не выходят из области видимости сразу же после удаления.

Оператор new

При запросе памяти из операционной системы в редких случаях она может быть не доступной (т.е. её может и не быть в наличии).

По умолчанию, если оператор new не сработал, память не выделилась, то генерируется исключение bad_alloc . Если это исключение будет неправильно обработано (а именно так и будет, поскольку мы ещё не рассматривали исключения и их обработку), то программа просто прекратит своё выполнение (произойдёт сбой) с ошибкой необработанного исключения.

Во многих случаях процесс генерации исключения оператором new (как и сбой программы) нежелателен, поэтому есть альтернативная форма оператора new, которая возвращает нулевой указатель, если память не может быть выделена. Нужно просто добавить константу std::nothrow между ключевым словом new и типом данных:

int *value = new (std::nothrow) int; // указатель value станет нулевым, если динамическое выделение целочисленной переменной не выполнится

В примере выше, если new не возвратит указатель с динамически выделенной памятью, то возвратится нулевой указатель.

Разыменовывать его также не рекомендуется, так как это приведёт к неожиданным результатам (скорее всего, к сбою в программе). Поэтому наилучшей практикой является проверка всех запросов на выделение памяти, для обеспечения того, что эти запросы будут выполнены успешно и память выделится:

int *value = new (std::nothrow) int; // запрос на выделение динамической памяти для целочисленного значения if (!value) // обрабатываем случай, когда new возвращает null (т.е. память не выделяется) { // Обработка этого случая std::cout << "Could not allocate memory"; }

Поскольку не выделение памяти оператором new происходит крайне редко, то обычно программисты забывают выполнять эту проверку!

Нулевые указатели и динамическое выделение памяти

Нулевые указатели (указатели со значением 0 или nullptr) особенно полезны в процессе динамического выделения памяти. Их наличие как бы сообщаем нам: «Этому указателю не выделено никакой памяти». А это, в свою очередь, можно использовать для выполнения условного выделения памяти:

// Если ptr-у до сих пор не выделено памяти, то выделяем её if (!ptr) ptr = new int;

Удаление нулевого указателя ни на что не влияет. Таким образом, в следующем нет необходимости:

if (ptr) delete ptr;

if (ptr )

delete ptr ;

Вместо этого вы можете просто написать:

delete ptr ;

Если ptr не является нулевым, то динамически выделенная переменная будет удалена. Если значением указателя является нуль, то ничего не произойдёт.

Утечка памяти

Динамически выделенная память не имеет области видимости, т.е. она остаётся выделенной до тех пор, пока не будет явно освобождена или пока ваша программа не завершит своё выполнение (и операционная система очистит все буфера памяти самостоятельно). Однако указатели, используемые для хранения динамически выделенных адресов памяти, следуют правилам области видимости обычных переменных. Это несоответствие может вызвать интересное поведение. Например:

void doSomething() { int *ptr = new int; }

Работа с динамической памятью зачастую является узким местом во многих алгоритмах, если не применять специальные ухищрения.

В статье я рассмотрю парочку таких техник. Примеры в статье отличаются (например, от ) тем, что используется перегрузка операторов new и delete и за счёт этого синтаксические конструкции будут минималистичными, а переделка программы - простой. Также описаны подводные камни, найденные в процессе (конечно, гуру, читавшие стандарт от корки до корки, не удивятся).

0. А нужна ли нам ручная работа с памятью?

В первую очередь проверим, насколько умный аллокатор может ускорить работу с памятью.

Напишем простые тесты для C++ и C# (C# известен прекрасным менеджером памяти, который делит объекты по поколениям, использует разные пулы для объектов разных размеров и т.п.).

Class Node { public: Node* next; }; // ... for (int i = 0; i < 10000000; i++) { Node* v = new Node(); }

Class Node { public Node next; } // ... for (int l = 0; l < 10000000; l++) { var v = new Node(); }

Несмотря на всю «сферично-вакуумность» примера, разница по времени получилась в 10 раз (62 ms против 650 ms). Кроме того, c#-пример закончен, а по правилам хорошего тона в c++ выделенные объекты надо удалить, что ещё больше увеличит отрыв (до 2580 ms).

1. Пул объектов

Очевидное решение - забрать у ОС большой блок памяти и разбить его на равные блоки размера sizeof(Node), при выделении памяти брать блок из пула, при освобождении - возвращать в пул. Пул проще всего организовать с помощью односвязного списка (стека).

Поскольку стоит задача минимального вмешательства в программу, всё что можно будет сделать, это добавить примесь BlockAlloc к классу Node:
class Node: public BlockAlloc

Прежде всего нам понадобится пул больших блоков (страниц), которые забираем у ОС или C-runtime. Его можно организовать поверх функций malloc и free, но для большей эффективности (чтобы пропустить лишний уровень абстракции), используем VirtualAlloc/VirtualFree. Эти функции выделяют память блоками, кратными 4K, а также резервируют адресное пространство процесса блоками, кратными 64K. Одновременно указывая опции commit и reserve, мы перескакиваем ещё один уровень абстракции, резервируя адресное пространство и выделяя страницы памяти одним вызовом.

Класс PagePool

inline size_t align(size_t x, size_t a) { return ((x-1) | (a-1)) + 1; } //#define align(x, a) ((((x)-1) | ((a)-1)) + 1) template class PagePool { public: void* GetPage() { void* page = VirtualAlloc(NULL, PageSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); pages.push_back(page); return page; } ~PagePool() { for (vector::iterator i = pages.begin(); i != pages.end(); ++i) { VirtualFree(*i, 0, MEM_RELEASE); } } private: vector pages; };

Затем организуем пул блоков заданного размера

Класс BlockPool

template class BlockPool: PagePool { public: BlockPool() : head(NULL) { BlockSize = align(sizeof(T), Alignment); count = PageSize / BlockSize; } void* AllocBlock() { // todo: lock(this) if (!head) FormatNewPage(); void* tmp = head; head = *(void**)head; return tmp; } void FreeBlock(void* tmp) { // todo: lock(this) *(void**)tmp = head; head = tmp; } private: void* head; size_t BlockSize; size_t count; void FormatNewPage() { void* tmp = GetPage(); head = tmp; for(size_t i = 0; i < count-1; i++) { void* next = (char*)tmp + BlockSize; *(void**)tmp = next; tmp = next; } *(void**)tmp = NULL; } };

Комментарием // todo: lock(this) помечены места, которые требуют межпоточной синхронизации (например, используйте EnterCriticalSection или boost::mutex).

Объясню, почему при «форматировании» страницы не ипользуется абстракция FreeBlock для добавления блока в пул. Если бы было написано что-то вроде

For (size_t i = 0; i < PageSize; i += BlockSize) FreeBlock((char*)tmp+i);

То страница по принципу FIFO оказалась бы размеченной «наоборот»:

Несколько блоков, затребованных из пула подряд, имели бы убывающие адреса. А процессор не любит ходить назад, от этого у него ломается Prefetch (UPD : Не актуально для современных процессоров). Если же делать разметку в цикле
for (size_t i = PageSize-(BlockSize-(PageSize%BlockSize)); i != 0; i -= BlockSize) FreeBlock...
то цикл разметки ходил бы по адресам назад.

Теперь, когда приготовления сделаны, можно описать класс-примесь.
template class BlockAlloc { public: static void* operator new(size_t s) { if (s != sizeof(T)) { return::operator new(s); } return pool.AllocBlock(); } static void operator delete(void* m, size_t s) { if (s != sizeof(T)) { ::operator delete(m); } else if (m != NULL) { pool.... static void* operator new(size_t, void* m) { return m; } // ...and the warning about missing placement delete... static void operator delete(void*, void*) { } private: static BlockPool pool; }; template BlockPool BlockAlloc::pool;

Объясню, зачем нужны проверки if (s != sizeof(T))
Когда они срабатывают? Тогда, когда создаётся/удаляется класс, отнаследованный от базового T.
Наследники будут пользоваться обычными new/delete, но к ним также можно примешать BlockAlloc. Таким образом, мы легко и безопасно определяем, какие классы должны пользоваться пулами, не боясь сломать что-то в программе. Множественное наследование также прекрасно работает с этой примесью.

Готово. Наследуем Node от BlockAlloc и заново проводим тест.
Время теста теперь - 120 ms. В 5 раз быстрее. Но в c# аллокатор всё же лучше. Наверное, там не просто связный список. (Если же сразу после new сразу вызывать delete, и тем самым не тратить много памяти, умещая данные в кеш, получим 62 ms. Странно. В точности, как у.NET CLR, как будто он возвращает освободившиеся локальные переменные сразу в соответствующий пул, не дожидаясь GC)

2. Контейнер и его пёстрое содержимое

Часто ли попадаются классы, которые хранят в себе массу различных дочерних объектов, таких, что время жизни последних не дольше времени жизни родителя?

Например, это может быть класс XmlDocument, наполненный классами Node и Attribute, а также c-строками (char*), взятыми из текста внутри нод. Или список файлов и каталогов в файловом менеджере, загружаемых один раз при перечитывании каталога и больше не меняющихся.

Как было показано во введении, delete обходится дороже, чем new. Идея второй части статьи в том, чтобы память под дочерние объекты выделять в большом блоке, связанном с Parent-объектом. При удалении parent-объекта у дочерних будут, как обычно, вызваны деструкторы, но память возвращать не потребуется - она освободиться одним большим блоком.

Создадим класс PointerBumpAllocator, который умеет откусывать от большого блока куски разных размеров и выделять новый большой блок, когда старый будет исчерпан.

Класс PointerBumpAllocator

template class PointerBumpAllocator { public: PointerBumpAllocator() : free(0) { } void* AllocBlock(size_t block) { // todo: lock(this) block = align(block, Alignment); if (block > free) { free = align(block, PageSize); head = GetPage(free); } void* tmp = head; head = (char*)head + block; free -= block; return tmp; } ~PointerBumpAllocator() { for (vector::iterator i = pages.begin(); i != pages.end(); ++i) { VirtualFree(*i, 0, MEM_RELEASE); } } private: void* GetPage(size_t size) { void* page = VirtualAlloc(NULL, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); pages.push_back(page); return page; } vector pages; void* head; size_t free; }; typedef PointerBumpAllocator<> DefaultAllocator;

Наконец, опишем примесь ChildObject с перегруженными new и delete, обращающимися к заданному аллокатору:

Template struct ChildObject { static void* operator new(size_t s, A& allocator) { return allocator.AllocBlock(s); } static void* operator new(size_t s, A* allocator) { return allocator->AllocBlock(s); } static void operator delete(void*, size_t) { } // *1 static void operator delete(void*, A*) { } static void operator delete(void*, A&) { } private: static void* operator new(size_t s); };

В этом случае кроме добавления примеси в child-класс необходимо будет также исправить все вызовы new (или воспользоваться паттерном «фабрика»). Синтаксис оператора new будет следующим:

New (… параметры для оператора…) ChildObject (… параметры конструктора…)

Для удобства я задал два оператора new, принимающих A& или A*.
Если аллокатор добавлен в parent-класс как член, удобнее первый вариант:
node = new(allocator) XmlNode(nodename);
Если аллокатор добавлен как предок (примесь), удобнее второй:
node = new(this) XmlNode(nodename);

Для вызова delete не предусмотрен специальный синтаксис, компилятор вызовет стандартный delete (отмеченный *1), независимо от того, какой из операторов new был использован для создания объекта. То есть, синтаксис delete обычный:
delete node;

Если же в конструкторе ChildObject (или его наследника) происходит исключение, вызывается delete с сигнатурой, соответствующей сигнатуре оператора new, использованном при создании этого объекта (первый параметр size_t будет заменён на void*).

Размешение оператора new в секции private защищает от вызова new без указания аллокатора.

Приведу законченный пример использования пары Allocator-ChildObject:

Пример

class XmlDocument: public DefaultAllocator { public: ~XmlDocument() { for (vector::iterator i = nodes.begin(); i != nodes.end(); ++i) { delete (*i); } } void AddNode(char* content, char* name) { char* c = (char*)AllocBlock(strlen(content)+1); strcpy(c, content); char* n = (char*)AllocBlock(strlen(name)+1); strcpy(n, content); nodes.push_back(new(this) XmlNode(c, n)); } class XmlNode: public ChildObject { public: XmlNode(char* _content, char* _name) : content(_content), name(_name) { } private: char* content; char* name; }; private: vector nodes; };

Заключение. Статья была написана 1.5 года назад для песочницы, но увы, не понравилась модератору.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: