Что дает термопаста. Как выбрать термопасту, и что это вам даст

Перед тем, как наносить термопасту на процессор, следует разобраться, как часто это делается и зачем. Следующим этапом является правильный выбор изолирующего материала. И, наконец, последним – сам процесс нанесения, сравнительно несложный, но всё равно требующий соблюдения определённых правил, не всегда известных неспециалистам.

Необходимость в смене термопасты

Процессор является одной из важнейших деталей компьютера. С его помощью выполняются миллионы и даже миллиарды операций в секунду, в результате чего происходит перегрев. Избежать критической ситуации, когда температура процессора приводит к сбоям в работе, помогает использование вентиляторов с радиаторами. Излишки тепла передаются кулеру, более плотный контакт с которым обеспечивается специальным изолятором – термопастой. То же самое касается видеокарты, которая перегревается при длительной работе (кроме вариантов с пассивным охлаждением, когда радиатор уже прикреплён к графическому процессору).

Если пасту не применять, может произойти примерно следующее:

  • Перегретый процессор вызовет зависание системы, снижая удобство работы и даже приводя к риску потери информации;
  • Полностью выйдет из строя материнская плата, приведя к необходимости серьёзного ремонта компьютера.

Первый раз пасту наносят сразу же после установки процессора на плату, если сборка выполняется самостоятельно. Для уже собранного и находящегося на гарантии ПК и, тем более, ноутбука так делать не следует из-за возможности потерять право на бесплатное сервисное обслуживание.

В дальнейшем термопасту меняют в среднем раз в год для мощных и, особенно, разогнанных процессоров, как центральных, так и графических. Для менее производительных чипов можно наносить материал реже. Поводом же для досрочной замены является замедление работы устройства, необъяснимые перезагрузки и зависания.

Выбирая подходящий для смазки процессора изолятор, не стоит обращать внимание на дешёвые варианты типа КТП-8. Тем более что рынке термопаст есть более эффективные материалы, созданные в течение нескольких последних лет.

Большая часть материалов сделана с использованием силикона и оксида цинка. Хотя упаковка некоторых видов паст содержит информацию о наличии в составе серебряных, керамических или карбоновых частиц. Они увеличивают площадь соприкосновения процессора с радиатором, повышая надёжность системы.

Примечание! Для самых мощных процессоров стоит применять материалы, содержащие медь и золото. Эти металлы обладают максимальной теплопроводностью среди всех, из которых делают пасту.

Этапы нанесения

Даже зная, как правильно наносить пасту и имея правильно выбранный материал, можно совершить ошибку, которая приведёт к нарушению работы процессора. Поэтому в процессе работы следует соблюдать определённые правила:

  • Паста наносится равномерно и распределяется по всей площади смазываемого процессора и той части радиатора, которая с ним соприкасается;
  • Толщина слоя должна быть минимальной – практически прозрачной, позволяющей увидеть написанные на детали символы;
  • В термопасте не может быть пропусков и разрывов, приводящих к уменьшению контакта.

Шаг 1. Подготовительные работы

Перед началом работы по смазыванию процессора требуется отключить его от сети и снять все детали, мешающие добраться до самого чипсета. В том числе, стенку системного блока, радиатор и его кулер. Для ноутбука следует дополнительно извлечь аккумулятор.

Шаг 2. Очистка от старых остатков

Сняв систему охлаждения, убирают остатки засохшего материала, оставшегося с прошлого раза. Делают это и с новым процессором, на который уже нанесена термопаста – обычно при продаже используются самые дешёвые и малоэффективные варианты.

Важно! Для удаления пасты с чипсета и радиатора необходимо пользоваться ватными палочками или хлопковыми салфетками.

Проще всего удалять смазку с использованием изопропилового спирта или спиртового раствора (70–90%), в котором смачиваются используемые для протирки материалы. Для не до конца засохшего изолятора также можно использовать линейку, а для затвердевшего – обычный школьный ластик. Последний способ занимает относительно много времени, которое требуется для натирания до блеска металлической части, однако процессор в результате остаётся целым.

Необходимость тщательного удаления вызвана неровностями поверхности процессора и радиатора, в результате чего на них могут оставаться микроскопические частицы, отрицательно влияющие на теплопроводность.

Шаг 3. Нанесение и распределение материала

Первым этапом нанесения является помещение небольшой капли пасты в центральную часть поверхности смазываемой детали – то есть процессора. Радиатор кулера вообще не требует смазки, так как имеет площадь больше, чем общая поверхность соприкосновения. И, нанося на него изолятор, можно потратить лишний материал и даже замкнуть контакты на материнской плате.

Распределять пасту по процессору следует с помощью:

  • Пластиковой карты или другого небольшого предмета с той же толщиной (например, Sim-картой);
  • Специальной кисточки (лопатки), иногда продающейся вместе с термопастой или покупающейся отдельно;
  • Надетыми на пальцы резиновыми перчатками.

Если же материал случайно вышел за пределы процессора, его следует аккуратно удалить с помощью специального раствора.

Для каждого вида пасты ответ на вопрос, каким слоем её нанести, разный. Для обычного материала это примерно 0,5 мм. Для пасты, в состав которой входят драгоценные металлы, около 1 мм. Иногда одной выдавленной из тюбика капли может не хватить для смазки. В этом случае наносят вторую и повторяют те же действия.

Шаг 4. Завершение работы

После того как паста нанесена, работа заканчивается. Теперь необходимо установить кулер на чипсет до защёлкивания специальных креплений и вернуть всю конструкцию на материнскую плату. После этого вентилятор подключают к питанию, и собирают обратно компьютер или ноутбук.

После включения ПК следует проверить в BIOS, сколько градусов показывает система. В среднем процессор должен нагреваться не более чем до 40 градусов. Для моделей AMD или Semptron допускается температура до 60–90 градусов.

Перегрев компьютера, приводящий к зависанию системы, мешает работе или игровому процессу (учитывая, что во время игры и центральный, и графический процессоры получают высокую нагрузку). И для того чтобы избежать такой ситуации следует, в первую очередь, вовремя наносить термопасту. Во-вторых, выполнять профилактику, обеспечивая правильный уход за внутренностями устройства – удаляя время от времени пыль и очищая вентиляционные отверстия. А для пользователей ПК, которые выполняют такую работу впервые, стоит ознакомиться с видео роликом, показывающим как правильно наносить пасту.

В этой статье я постараюсь дать максимально возможное количество нужной теории. Если вы хотите раз и навсегда для себя понять, что такое термопаста, из чего она состоит, какой цели служит и как правильно наносить термопасту на процессор и видеокарту – вам обязательно нужно ознакомиться с этим материалом.

Для чего все это знать? Знание теории позволит вам понимать принципы работы с термоинтерфейсами. А значит, вы будете хорошо понимать, что происходит с вашими компонентами при нагревании, использовании разных термопаст, систем охлаждения и т.д. Знание – сила!

Также важно в этом разбираться потому, что при перегреве, компьютер начинает работать с перебоями и появляются неприятные тормоза в работе. Отчасти их можно удалить с помощью , но никакая программа не заменит термопасту на процессоре за вас.

Эта статья не претендует на статус научной. В ней я хочу передать основные понятия простыми словами. Поэтому прошу физиков, электротехников и других специалистов не падать в обморок от использованных оборотов и понятий. Если вы увидите ошибку принципиальной важности, прошу написать это в комментариях. Заранее спасибо:).

Понятие теплопроводности материалов

Теплопроводность – это способность материалов или газов передавать тепло от горячего к холодному. Это количественная характеристика, которая схожа с понятием проводимости в электротехнике. Единица измерения – Вт/(м*К) – коэффициент теплопроводности.

Для того, чтобы нагляднее понять, о чем идет речь, обратите внимание на диаграмму:

Как вы можете заметить у меди коэффициент теплопроводности в 2 раза выше, чем у алюминия . Это значит, что за одинаковое время через медь пройдет в 2 раза больше тепла, чем через алюминий.

Как это применить в жизни? Понимая, что медная система охлаждения почти в 2 раза превосходит алюминиевую, мы понимаем, почему она такая дорогая. И понимаем, что именно медную нужно применять тогда, когда мы используем «горячие» или разогнанные процессоры.

Также обратите внимание, что у воздуха коэффициент теплопроводности в среднем 0,022 Вт/(м*К). Что это значит?

Через воздух тепло практически не передается .

Он является своего рода изолятором. Многие частные дома, как вы знаете, используют это свойство воздуха для теплоизоляции. Выкладывается внутренняя стена, затем идет воздушная прослойка, потом возводится внешняя. Тем самым воздух, которых находится между двух стен, изолирует дом от холода или наоборот, летнего зноя.

Что такое термопаста

Термопаста – это многокомпонентный теплопроводящий состав, который наносится между нагреваемым элементом и отводящим тепло радиатором или системой охлаждения.

Термопасты, или теплопроводные составы, делятся на 3 основные группы:

  1. Теплопроводящие пастообразные составы;
  2. Теплопроводящие пастообразные составы, включающие в себя клей (клей-пасты);
  3. Жидкий металл.

Цель использования термопасты

Термопаста используется для того, чтобы заменить собой воздух между соприкасаемыми поверхностями, тем самым увеличивая теплопроводность. Зачем? Давайте вспомним, каким коэффициентом теплопроводности обладает воздух? Правильно, предельно низким. Или почти никаким. А теперь посмотрим на следующую диаграмму, которая показывает теплопроводность современных термопаст и жидкого металла.

Как видим, коэффициент теплопроводности даже самой дешевой и распространенной термопасты КПТ-8, почти в 31 раз выше, чем у воздуха . Теперь, я думаю, вы понимаете, что это значит.

Понимание этого подводит нас к следующему вопросу – как правильно наносить термопасту?

Обратите внимание на схему ниже, и поразмышляйте, почему термопасту нужно наносить именно таким, тонким слоем, на процессор и систему охлаждения.

Надеюсь, что вы уже сами пришли к правильному выводу. Итак, давайте подробно, с научной 🙂 точки зрения подойдем к этому вопросу и подключим логику.

Последнее время термораспределитель на процессоре или графическом процессоре видеокарты изготавливается из меди.

Пятак, или подложка системы охлаждения, которая непосредственно контактирует с поверхностью процессора, изготавливается из алюминия. Более дорогие модели изготовлены из меди.

Для примера представим, что вся система охлаждения у нас богатая, выполнена из меди. Коэффициент теплопроводности меди 400 Вт/(м*К). Получается, что если эти две поверхности, процессора и системы охлаждения, будут идеально прилегать друг к другу, мы получим эффективный отвод тепла.

Но, к сожалению, добиться того, чтобы поверхности идеально соприкасались друг с другом, практически невозможно. А туда, где они неплотно соединяются, попадает воздух. Какой коэффициент теплопроводности воздуха? 0,022 Вт/(м*К). Это в 18 181 раз ниже , чем у меди. Получается, что в местах попадания воздуха тепло практически не передается .

И вот тут нам на помощь приходит термопаста. Как вы помните, у нее теплопроводность выше, чем у воздуха в 31 раз, а дорогих термопаст, таких как Arctic MX-4 – в 386 раз выше. Поэтому, когда вы наносите тонкий слой термопасты, он заполняет неровности, вытесняя воздух . При этом медные поверхности имеют максимальную площадь контакта, а значит, более высокую теплопроводность.

С другой стороны, можно попасть в ловушку. Если нанести слишком мало термопасты, то она не сможет заполнить неровности поверхностей и будет плохой теплообмен. Поэтому, рекомендуется выровнять заранее поверхность подложки системы охлаждения и теплораспределителя на процессоре или видеокарте.

Более подробно про нанесение термопасты на процессор читайте в .

Как часто нужно менять термопасту

В состав термопасты входит микродисперсные порошки металлов, микрокристаллов, нитридов или оксидов цинка и алюминия. Чтобы сделать из этого пасту, используются синтетические или минеральные масла. Они со временем испаряются, и термопаста становиться менее вязкой и теряет свои свойства.

Поэтому рекомендуется ее регулярно менять. Например, термопасту КПТ-8 или КПТ-19 (она отличается более высокими температурными характеристиками) рекомендуется менять один раз в год. Учитывая ее низкую стоимость, делать это можно и чаще.

Какую термопасту выбрать

Это зависит в больше степени от вашего бюджета. Топовой термопастой считается Arctic MX-4. Она имеет высокий коэффициент теплопроводности – 8,5 Вт/(м*К), и большой срок эксплуатации.

Наиболее распространенной и довольно качественной является КПТ-8 или КПТ-19. Невысокая стоимость позволяет менять ее регулярно. Ее характеристик хватает для большинства современных компьютеров и ноутбуков.

Термопаста представляет собой густое и вязкое вещество с высоким коэффициентом теплопроводности. Предназначена для улучшения теплоконтакта между поверхностью активных электронных компонентов и радиатором. Наиболее часто термопаста используется в компьютерной технике, так как обеспечивает эффективный отвод тепла от центрального и графического процессора. С ростом производительности чипов увеличивается и их тепловыделение, поэтому сегодня ни один компьютер или ноутбук не обходится без термопасты. В случае ее отсутствия, чип при высокой нагрузке может сгореть буквально за несколько минут. Поэтому паста является неотъемлемым атрибутом любого оверклокера.

Свойства и состав термопаст

Важнейшей характеристикой любого термоинтерфейса является теплопроводность, которая влияет на эффективность отвода тепла от активных узлов компьютера. К таким узлам относится центральный процессор и чип графической карты (в редких случаях также чип северного моста). Теплопроводность термопасты зависит в основном от ее состава, который включает в себя микро- и нанодисперсные порошки и смеси металлов, их оксидов, нитридов, микрокристаллов, а также кремнийорганических соединений. Связываются они с помощью минеральных или синтетических масел. Иногда добавляются легкоиспаряющиеся примеси, благодаря которым паста легко наносится, а после их испарения приобретает более плотную структуру. В качестве металлических примесей в основном используют:

Медь (380 Вт/(м*К));

Серебро (до 430 Вт/(м*К));

Золото (320 Вт/(м*К));

Вольфрам (153 Вт/(м*К)).

Оксиды чаще всего берут цинковые и алюминиевые. Реже всего используются чистые металлы, например, индий (в виду своей высокой электропроводности). Связывающая добавка значительно влияет на густоту и вязкость термопасты. Этот критерий можно назвать вторым по важности, так как от нее зависит качество нанесения самой пасты, а также ее эффективность. Она не должна быть слишком текучей или густой. Оптимальной вязкостью термопасты считается 150 – 450 Па*с.

Для применения в компьютерной технике, она должна соответствовать следующим требованиям:

Иметь как можно меньшее тепловое сопротивление (минимальное препятствие распространению тепла);

Сохранение свойств в пределах заявленных рабочих температур;

Сохранение свойств в течением времени;

Химическая нейтральность (исключает химические повреждения материнской платы);

Термопаста должна обладать высокими электроизоляционными свойствами (исключает короткое замыкание в случае попадания на компоненты компьютера).

Если говорить о качества отвода тепла, то на него значительно влияет правильность нанесения термопасты. Как известно, чип процессора и его радиатор имеют микронеровности (см. фото), заполненные воздухом и ухудшающие отдачу тепла примерно на 20% из-за очень низкой теплопроводности воздуха. Термопасте же заполняет эти микронеровности, обеспечивая надежный теплоконтакт между поверхностью процессора и радиатора. Это объясняет почему вязкость также играет важную роль. При недостаточной вязкости паста может просто вытечь наружу, а на самом чипе ее окажется недостаточно. А при слишком большой вязкости –термопаста может не заполнить все микронеровности, тем самым сделав отвод тепла еще хуже. Исходя из вышесказанного, важно подчеркнуть, что использовать термопасты на основе серебра или чистого метала необходимо осторожно, так как они проводят электрический ток, что может привести к выходу из строя компьютера в случае попадания на электронные компоненты. При небольшой вязкости эта опасность увеличивается.

Виды термопаст

В первую очередь, пасты можно поделить на бюджетные и дорогие. Разница состоит в теплопроводности и, соответственно, применяемых материалах. Недорогие термопасты, в основном используются в домашних персональных компьютерах малой и средней мощности. Среди обычных пользователей они наиболее распространены. А одной упаковки хватает на длительный срок. Фирменные термопасты зарубежных производителей отличаются большей теплопроводностью и, соответственно, более высокой стоимостью за счет использования металлов и их оксидов с большим коэффициентом теплопроводности. Используют их в системах охлаждения кристаллов мощных компьютеров, серверов, кластеров, а также мостов. Продаются такие термопасты в небольшом количестве, обычно для 2-3 нанесений, при этом их вязкость позволяет с легкостью их наносить и смывать.

Бюджетные термопасты имеют в своем составе оксид цинка, силиконовую либо же кремнийорганической основу. Заявленная теплопроводность у них от 0,8 до 2 Вт/(м*К), что сравнительно немного. Яркими отечественными представителями данной категории являются термопасты марки КПТ-8, НС-125, АлСил-3/5. Из зарубежных аналогов стоит отметить Arctic Cooling MX-2, Noctua NT, Zalman и Akasa AK-455. Их преимущество - большая теплопроводность (до 4 Вт/(м*К)) при относительной небольшой стоимости.

КПТ-8 изготавливают согласно ГОСТ 19783-74. Теплопроводность 0,8 Вт/(м*К). Имеет практически белый цвет довольно густой консистенцией. В качестве основы используется аэросил, а наполнителя – оксид цинка, с размером крупиц до 50 микрон. Наносится она с некоторыми трудностями, однако чистится и смывается достаточно легко. Широко распространена среди рядовых пользователей.

АлСил-3 появилась на рынке относительно недавно. Заявленная теплопроводность почти в 2 раза выше чем у КПТ-8. Наполнителем служит нитрид алюминия, что в свою очередь вызывает небольшие трудности с нанесением, так как паста очень вязкая, а также тяжело отмывается с рук. Выпускается по ТУ в обычном 3 граммовом шприце, запаянном в полиэтиленовую упаковку.

НС-125 также появилась совсем недавно и зарекомендовала себя неплохим вариантом КПТ-8. Имеет аналогичную теплопроводность, однако меньшую вязкость, что позволяет наносить ее гораздо легче, в основном за счет силиконовой основы.

Arctic Cooling MX-2 изготавливается в Швейцарии, является бюджетным вариантом термопаст, однако имеет очень хорошую теплопроводность (около 5,6 Вт/(м*К)). Имеет густую и вязкую консистенцию серого цвета, что немного затрудняет нанесение и смывку. Продается в шпицах по 4гр., а хватает примерно на 4-6 нанесений.

Флагманские термопасты в верхнем ценовом диапазоне имеют высокие теплопроводящие свойства, так как в качестве наполнителя используются металлы и их оксиды с высокой удельной теплопроводностью. К ним относятся медь, вольфрам, серебро, индий и др. Их теплопроводность варьируется в пределах от 6 – 7 Вт/(м*К) и выше. Особое внимание стоит обратить на термопасты в которых содержится серебро. Такие пасты очень высокую эффективность за счет теплопроводности серебра, однако при их использовании нужно соблюдать осторожность, так как серебро попав на металлические компоненты материнской платы может вызвать короткое замыкание. Такой тип паст один из самых дорогих. Также стоит выделить термопасту на основе жидкого металла, в основном индия, они считаются самыми эффективными и дорогими в мире (Coollaboratory Liquid Pro). Теплопроводность такой пасты составляет около 80 Вт/(м*К) и применяют ее в основном для охлаждения чипов серверных и кластерных высокопроизводительных систем, а также оверклокеры для экстремального разгона с использованием жидкого азота. Типичными представителями данного семейства термопаст можно назвать Gelid GC-Extreme, Arctic Cooling MX 3 и MX-4, Arctic Silver MX, Indigo Xtreme и Nanoxia Nano TF-1000.

Как наносится термопаста?

Как говорилось выше, термопаста предназначена для заполнения микронеровностей радиатора и чипа, тем самым обеспечивая надежный теплоконтакт и эффективный отвод тепла. Однако бытует мнение, что термопасты нужно наносить побольше, что является существенной ошибкой. Как известно, теплопроводность меди (основного материала из которого изготавливают радиатор) порядка 380 Вт/(м*К), а самая лучшая термопаста имеет всего 80. Соответственно, теплоотдача может только ухудшится. Наносится термопаста только тонким слоем на поверхность кристалла. Перед этим его нужно обязательно очистить от остатков старой пасты, жира и грязи. Сделать это можно намочив ТОЛЬКО этиловым или изопропиловым спиртом небольшой кусочек ваты или тряпочки без ворса. Такую же процедуру необходимо выполнить с поверхностью радиатора. Далее способ нанесения зависит от консистенции термопасты. Если консистенция текучая или практически жидкая (чистый метал), то небольшую каплю термопасты наносят в центр кристалла, а затем прижимают радиатором и вращают или двигают его по кристаллу, чтобы воздух полностью вышел из-под зоны контакта. После этого радиатор фиксируется с помощью крепежных винтов и компьютер собирается. В случае, если термопаста имеет большую вязкость, то небольшое ее количество нужно нанести на чип процессора или видеокарты и аккуратно размазать ее тонким слоев по всех поверхности кристалла. Для этого хорошо подойдет либо ненужная Сим-карта, либо пластиковая карточка (можно конечно и пальцем, но не желательно). После этого повторяются действия с «притиркой» радиатора, о которых говорилось выше.

После всех манипуляций компьютер нужно собрать, после чего он готов к работе. Однако рекомендуется перед активным пользованием проверить качество нанесения термопасты. Для этого нужно под разной нагрузкой пронаблюдать изменения температуры кристаллов центрального процессора и видеокарты. Чтобы считывать информацию с датчиков температур в режиме реального времени, можно воспользоваться бесплатным программным обеспечением. Например, информацию о ЦП предоставляют такие программы как CPU-Z или CoreTemp. Для видеокарт можно использовать гаджет «GPU Observer», который в реальном времени показывает загрузку и температуру ГП (для правильной работы должен быть установлен драйвер видеокарты). При простое и нулевой загрузке температура ЦП обычно колеблется в пределах 39 – 50 градусов. Графического процессора – аналогично. Затем нужно загрузить систему на 100% и проследить за температурой кристаллов. Сделать это можно, например, с помощью стресс тестов (LinX или 3Dmark). В режиме максимальной нагрузки температура ЦП не должна превышать значений 80-85 градусов. Температура в 90 градусов и выше является критической. Работа современных видеокарт допускает температуру до 90 градусов при максимальной нагрузке, однако это тоже слишком много. В этом случае необходимо проверить наличие пыли, которая ограничивает циркуляцию воздуха внутри, в противном случае – заново нанести термопасту.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: