Алгоритмы хеширования данных. Криптографические хеш-функции

В рамках данной статьи, я расскажу вам что такое Хэш , зачем он нужен, где и как применяется, а так же наиболее известные примеры.

Многие задачи в области информационных технологий весьма критичны к объемам данных. Например, если нужно сравнить между собой два файла размером по 1 Кб и два файла по 10 Гб, то это совершенно разное время. Поэтому алгоритмы, позволяющие оперировать более короткими и емкими значениями, считаются весьма востребованными.

Одной из таких технологий является Хэширование, которое нашло свое применение при решении массы задач. Но, думаю вам, как обычному пользователю, все еще непонятно, что же это за зверь такой и для чего он нужен. Поэтому далее я постараюсь объяснить все наиболее простыми словами.

Примечание : Материал рассчитан на обычных пользователей и не содержит многих технических аспектов, однако для базового ознакомления его более, чем достаточно.

Что такое Хэш или Хэширование?

Начну с терминов.

Хэш-функция, Функция свертки - это специального вида функция, которая позволяет преобразовывать произвольной длины тексты к коду фиксированной длины (обычно, короткая цифро-буквенная запись).

Хэширование - это сам процесс преобразования исходных текстов.

Хэш, Хеш-код, Значение Хэш, Хэш-сумма - это выходное значение Хэш-функции, то есть полученный блок фиксированный длины.

Как видите, у терминов несколько образное описание, из которого сложно понять для чего это все нужно. Поэтому сразу приведу небольшой пример (об остальных применениях расскажу чуть позже). Допустим, у вас есть 2 файла размером 10 Гб. Как можно быстро узнать какой из них нужный? Можно использовать имя файла, но его легко переименовать. Можно смотреть даты, но после копирования файлов даты могут быть одинаковыми или в иной последовательности. Размер, как сами понимаете, мало чем может помочь (особенно, если размеры совпадают или вы не смотрели точные значения байтов).

Вот тут-то и нужен этот самый Хэш, который представляет собой короткий блок, формирующийся из исходного текста файла. У этих двух файлов по 10 Гб будет два разных, но коротких Хэш-кода (что-то вроде "ACCAC43535" и "BBB3232A42"). Используя их, можно будет быстро узнать нужный файл, даже после копирования и смены имен.

Примечание : В связи с тем, что Хэш в компьютером мире и в интернете весьма известное понятие, то нередко все то, что имеет отношение к Хэшу, сокращают до этого самого слова. Например, фраза "у меня используется Хэш MD5" в переводе означает, что на сайте или где-то еще используется алгоритм хэширования стандарта MD5.

Свойства Хеш-функций

Теперь, расскажу о свойствах Хэш-функций, чтобы вам было легче понять где применяется и для чего нужно Хэширование. Но, сначала еще одно определение.

Коллизия - это ситуация, когда для двух разных текстов получается одна и та же Хэш-сумма. Как сами понимаете, раз блок фиксированной длины, то он имеет ограниченное число возможных значений, а следовательно возможны повторы.

А теперь к самим свойствам Хэш-функций:

1. На вход может подаваться текст любого размера, а на выходе получается блок данных фиксированной длины. Это следует из определения.

2. Хэш-сумма одних и тех же текстов должна быть одинаковой. В противном случае, такие функции просто бесполезны - это аналогично случайному числу.

3. Хорошая функция свертки должна иметь хорошее распределение. Согласитесь, что если размер выходного Хэша, к примеру, 16 байт, то если функция возвращает всего 3 разных значения для любых текстов, то толку от такой функции и этих 16 байт никакого (16 байт это 2^128 вариантов, что примерно равно 3,4 * 10^38 степени).

4. Как хорошо функция реагирует на малейшие изменения в исходном тексте. Простой пример. Поменяли 1 букву в файле размером 10 Гб, значение функции должно стать другим. Если же это не так, то применять такую функцию весьма проблематично.

5. Вероятность возникновения коллизии. Весьма сложный параметр, рассчитываемый при определенных условиях. Но, суть его в том, что какой смысл от Хэш-функции, если полученная Хэш-сумма будет часто совпадать.

6. Скорость вычисления Хэша. Какой толк от функции свертки, если она будет долго вычисляться? Никакой, ведь тогда проще данные файлов сравнивать или использовать иной подход.

7. Сложность восстановления исходных данных из значения Хэша. Эта характеристика больше специфическая, нежели общая, так как не везде требуется подобное. Однако, для наиболее известных алгоритмов эта характеристика оценивается. Например, исходный файл вы вряд ли сможете получить из этой функции. Однако, если имеет место проблема коллизий (к примеру, нужно найти любой текст, который соответствует такому Хэшу), то такая характеристика может быть важной. Например, пароли, но о них чуть позже.

8. Открыт или закрыт исходный код такой функции. Если код не является открытым, то сложность восстановления данных, а именно криптостойкость, остается под вопросом. Отчасти, это проблема как с шифрованием .

Вот теперь можно переходить к вопросу "а для чего это все?".

Зачем нужен Хэш?

Основные цели у Хэш-функций всего три (вернее их предназначения).

1. Проверка целостности данных. В данном случае все просто, такая функция должна вычисляться быстро и позволять так же быстро проверить, что, к примеру, скачанный из интернета файл не был поврежден во время передачи.

2. Рост скорости поиска данных. Фиксированный размер блока позволяет получить немало преимуществ в решении задач поиска. В данном случае, речь идет о том, что, чисто технически, использование Хэш-функций может положительно сказываться на производительности. Для таких функций весьма важное значение представляют вероятность возникновения коллизий и хорошее распределение.

3. Для криптографических нужд. Данный вид функций свертки применяется в тех областях безопасности, где важно чтобы результаты сложно было подменить или где необходимо максимально усложнить задачу получения полезной информации из Хэша.

Где и как применяется Хэш?

Как вы, вероятно, уже догадались Хэш применяется при решении очень многих задач. Вот несколько из них:

1. Пароли обычно хранятся не в открытом виде, а в виде Хэш-сумм, что позволяет обеспечить более высокую степень безопасности. Ведь даже если злоумышленник получит доступ к такой БД, ему еще придется немало времени потратить, чтобы подобрать к этим Хэш-кодам соответствующие тексты. Вот тут и важна характеристика "сложность восстановления исходных данных из значений Хэша".

Примечание : Советую ознакомиться со статьей пара советов для повышения уровня безопасности паролей .

2. В программировании, включая базы данных. Конечно же, чаще всего речь идет о структурах данных, позволяющих осуществлять быстрый поиск. Чисто технический аспект.

3. При передачи данных по сети (включая Интернет). Многие протоколы, такие как TCP/IP, включают в себя специальные проверочные поля, содержащие Хэш-сумму исходного сообщения, чтобы если где-то произошел сбой, то это не повлияло на передачу данных.

4. Для различных алгоритмов, связанных с безопасностью. Например, Хэш применяется в электронных цифровых подписях.

5. Для проверки целостности файлов. Если обращали внимание, то нередко в интернете можно встретить у файлов (к примеру, архивы) дополнительные описания с Хэш-кодом. Эта мера применяется не только для того, чтобы вы случайно не запустили файл, который повредился при скачивании из Интернета, но и бывают просто сбои на хостингах . В таких случаях, можно быстро проверить Хэш и если требуется, то перезалить файл.

6. Иногда, Хэш-функции применяются для создания уникальных идентификаторов (как часть). Например, при сохранении картинок или просто файлов, обычно используют Хэш в именах совместно с датой и временем. Это позволяет не перезаписывать файлы с одинаковыми именами.

На самом деле, чем дальше, тем чаще Хэш-функции применяются в информационных технологиях. В основном из-за того, что объемы данных и мощности самых простых компьютеров сильно возрасли. В первом случае, речь больше о поиске, а во втором речь больше о вопросах безопасности.

Известные Хэш-функции

Самыми известными считаются следующие три Хэш-функции.

Аннотация: В этой лекции сформулировано понятие хеш-функции, а также приведен краткий обзор алгоритмов формирования хеш-функций. Кроме того, рассмотрена возможность использования блочных алгоритмов шифрования для формирования хеш-функции.

Цель лекции: познакомиться с понятием "хеш-функция", а также с принципами работы таких функций.

Понятие хеш-функции

Хеш-функцией (hash function) называется математическая или иная функция, которая для строки произвольной длины вычисляет некоторое целое значение или некоторую другую строку фиксированной длины. Математически это можно записать так:

где М – исходное сообщение, называемое иногда прообразом , а h – результат, называемый значением хеш-функции (а также хеш-кодом или дайджестом сообщения (от англ. message digest )).

Смысл хеш-функции состоит в определении характерного признака прообраза – значения хеш-функции. Это значение обычно имеет определенный фиксированный размер, например, 64 или 128 бит. Хеш-код может быть в дальнейшем проанализирован для решения какой-либо задачи. Так, например, хеширование может применяться для сравнения данных: если у двух массивов данных хеш-коды разные, массивы гарантированно различаются; если одинаковые - массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет из-за того, что количество значений хеш-функций всегда меньше, чем вариантов входных данных. Следовательно, существует множество входных сообщений, дающих одинаковые хеш-коды (такие ситуации называются коллизиями ). Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Хеш-функции широко применяются в современной криптографии.

Простейшая хеш-функция может быть составлена с использованием операции "сумма по модулю 2" следующим образом: получаем входную строку, складываем все байты по модулю 2 и байт-результат возвращаем в качестве значения хеш-фукнции. Длина значения хеш-функции составит в этом случае 8 бит независимо от размера входного сообщения.

Например, пусть исходное сообщение, переведенное в цифровой вид, было следующим (в шестнадцатеричном формате):

Переведем сообщение в двоичный вид, запишем байты друг под другом и сложим биты в каждом столбике по модулю 2:

0011 1110 0101 0100 1010 0000 0001 1111 1101 0100 ---------- 0110 0101

Результат (0110 0101 (2) или 65 (16) ) и будет значением хеш-функции.

Однако такую хеш-функцию нельзя использовать для криптографических целей, например для формирования электронной подписи, так как достаточно легко изменить содержание подписанного сообщения, не меняя значения контрольной суммы.

Поэтому рассмотренная хеш-функция не годится для криптографических применений. В криптографии хеш-функция считается хорошей, если трудно создать два прообраза с одинаковым значением хеш-функции, а также, если у выхода функции нет явной зависимости от входа.

Сформулируем основные требования, предъявляемые к криптографическим хеш-функциям:

  • хеш-функция должна быть применима к сообщению любого размера;
  • вычисление значения функции должно выполняться достаточно быстро;
  • при известном значении хеш-функции должно быть трудно (практически невозможно) найти подходящий прообраз М ;
  • при известном сообщении М должно быть трудно найти другое сообщение М’ с таким же значением хеш-функции, как у исходного сообщения;
  • должно быть трудно найти какую-либо пару случайных различных сообщений с одинаковым значением хеш-функции.

Создать хеш-функцию, которая удовлетворяет всем перечисленным требованиям – задача непростая. Необходимо также помнить, что на вход функции поступают данные произвольного размера, а хеш-результат не должен получаться одинаковым для данных разного размера.

В настоящее время на практике в качестве хеш-функций применяются функции, обрабатывающие входное сообщение блок за блоком и вычисляющие хеш-значение h i для каждого блока M i входного сообщения по зависимостям вида

h i =H(M i ,h i-1),

где h i-1 – результат, полученный при вычислении хеш-функции для предыдущего блока входных данных.

В результате выход хеш-функции h n является функцией от всех n блоков входного сообщения.

Использование блочных алгоритмов шифрования для формирования хеш-функции

В качестве хеш-функции можно использовать блочный . Если используемый блочный алгоритм криптографически стоек, то и хеш-функция на его основе будет надежной.

Простейшим способом использования блочного алгоритма для получения хеш-кода является шифрование сообщения в режиме CBC . В этом случае сообщение представляется в виде последовательности блоков, длина которых равна длине блока алгоритма шифрования. При необходимости последний блок дополняется справа нулями, чтобы получился блок нужной длины. Хеш-значением будет последний зашифрованный блок текста. При условии использования надежного блочного алгоритма шифрования полученное хеш-значение будет обладать следующими свойствами:

  • практически невозможно без знания ключа шифрования вычисление хеш-значения для заданного открытого массива информации;
  • практически невозможен без знания ключа шифрования подбор открытых данных под заданное значение хеш-функции.

Сформированное таким образом хеш-значение обычно называют имитовставкой или аутентификатором и используется для проверки целостности сообщения. Таким образом, имитовставка – это контрольная комбинация, зависящая от открытых данных и секретной ключевой информации. Целью использования имитовставки является обнаружение всех случайных или преднамеренных изменений в массиве информации. Значение, полученное хеш-функцией при обработке входного сообщения, присоединяется к сообщению в тот момент, когда известно, что сообщение корректно. Получатель проверяет целостность сообщения путем вычисления имитовставки полученного сообщения и сравнения его с полученным хеш-кодом, который должен быть передан безопасным способом. Одним из таких безопасных способов может быть шифрование имитовставки закрытым ключом отправителя, т.е. создание подписи. Возможно также шифрование полученного хеш-кода алгоритмом симметричного шифрования, если отправитель и получатель имеют общий ключ симметричного шифрования.

Указанный процесс получения и использования имитовставки описан в отечественном стандарте ГОСТ 28147-89. Стандарт предлагает использовать младшие 32 бита блока, полученного на выходе операции шифрования всего сообщения в режиме сцепления блоков шифра для контроля целостности передаваемого сообщения. Таким же образом для формирования имитовставки можно использовать любой блочный алгоритм симметричного шифрования .

Другим возможным способом применения блочного шифра для выработки хеш-кода является следующий. Исходное сообщение обрабатывается последовательно блоками. Последний блок при необходимости дополняется нулями, иногда в последний блок приписывают длину сообщения в виде двоичного числа. На каждом этапе шифруем хеш-значение, полученное на предыдущем этапе, взяв в качестве ключа текущий блок сообщения. Последнее полученное зашифрованное значение будет окончательным хеш-результатом.

На самом деле возможны еще несколько схем использования блочного шифра для формирования хеш-функции. Пусть М i – блок исходного сообщения, h i – значение хеш-функции на i-том этапе, f – блочный алгоритм шифрования, используемый в режиме простой замены, – операция сложения по модулю 2. Тогда возможны, например, следующие схемы формирования хеш-функции:

Во всех этих схемах длина формируемого хеш-значения равна длине блока при шифровании. Все эти, а также некоторые другие схемы использования блочного алгоритма шифрования для вычисления хеш-значений могут применяться на практике.

Основным недостатком хеш-функций, спроектированных на основе блочных алгоритмов, является относительно низкая скорость работы. Необходимую криптостойкость можно обеспечить и за меньшее количество операций над входными данными. Существуют более быстрые алгоритмы хеширования, спроектированных самостоятельно, с нуля, исходя из требований криптостойкости (наиболее распространенные из них – MD5, SHA-1, SHA-2 и ГОСТ Р 34.11-94).

Хеширование - это специальный метод адресации данных (некоторый алгоритм расстановки) по их уникальным ключам ( key ) для быстрого поиска нужной информации..

Базовые понятия

Хеш-таблица

Хеш-таблица представляет собой обычный массив со специальной адресацией, задаваемой некоторой функцией (Хеш-функция).

Хеш-функция

Функция, которая преобразует ключ элемента данных в некоторый индекс в таблице (хеш-таблица ), называетсяфункцией хеширования илихеш-функцией :

i = h (key );

где key - преобразуемый ключ,i - получаемый индекс таблицы, т.е. ключ отображается во множестве, например, целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

Хеширование таким образом – это способ, который подразумевает использование значения ключа для определения его позиции в специальной таблице..

Однако функция расстановки может для нескольких уникальных значений ключа давать одинаковое значение позицииi в хеш-таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес) называетсяколлизией (конфликтом) при хешировании.. Поэтому схема хеширования должна включатьалгоритм разрешения конфликтов , определяющий порядок действий, если позицияi =h (key ) оказывается уже занятой записью с другим ключом.

Имеется множество схем хеширования, различающихся и используемой хешфункцией h (key ) и алгоритмами разрешения конфликтов.

Наиболее распространенный метод задания хеш-функции: Метод деления.

Исходными данными являются: - некоторый целый ключ key и размер таблицыm . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид такой функции на языке программирования С/С++:

int h (int key , int m ) {

Для m = 10 хеш-функция возвращает младшую цифру ключа.

Для m= 100 хеш-функция возвращает две младших цифры ключа.

В рассмотренных примерах хеш-функция i =h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально - поместить в таблицу) запись с ключомkey . Далее необходимо воспользоваться какой – либо схемой (алгоритмом) хеширования.

Схемы хеширования

В большинстве задач два и более ключей хешируются одинаково, но они не могут занимать в хеш-таблице одну и ту же ячейку. Существуют два возможных варианта: либо найти для нового ключа другую позицию, либо создать для каждого индекса хеш-таблицы отдельный список, в который помещаются все ключи, отображающиеся в этот индекс.

Эти варианты и представляют собой две классические схемы хеширования:

    хеширование методом открытой адресацией с линейным опробыванием - linear probe open addressing .

    хеширование методом цепочек (со списками), или так называемое, многомерное хеширование - chaining with separate lists ;

Метод открытой адресацией с линейным опробыванием . Изначально все ячейки хеш-таблицы, которая является обычным одномерным массивом, помечены как не занятые. Поэтому при добавлении нового ключа проверяется, занята ли данная ячейка. Если ячейка занята, то алгоритм осуществляет осмотр по кругу до тех пор, пока не найдется свободное место («открытый адрес»).

Т.е. элементы с однородными ключами размещают вблизи полученного индекса.

В дальнейшем, осуществляя поиск, сначала находят по ключу позицию i в таблице, и, если ключ не совпадает, то последующий поиск осуществляется в соответствии с алгоритмом разрешения конфликтов, начиная с позицииi . .

Метод цепочек является доминирующей стратегией. В этом случаеi , полученной из выбранной хеш-функциейh (key )=i , трактуется как индекс в хеш-таблице списков, т.е. сначала ключkey очередной записи отображается на позициюi = h (key ) таблицы. Если позиция свободна, то в нее размещается элемент с ключомkey , если же она занята, то отрабатывается алгоритм разрешения конфликтов, в результате которого такие ключи помещаются в список, начинающийся вi -той ячейке хеш-таблицы. Например

В итоге имеем таблицу массива связных списков или деревьев.

Процесс заполнения (считывания) хеш-таблицы прост, но доступ к элементам требует выполнения следующих операций:

Вычисление индекса i ;

Поиск в соответствующей цепочке.

Для улучшения поиска при добавлении нового элемента можно использовать алгоритма вставки не в конец списка, а - с упорядочиванием, т.е. добавлять элемент в нужное место.

Пример реализации метода прямой адресации с линейным опробыванием . Исходными данными являются 7 записей (для простоты информационная часть состоит только из целочисленных данных), объявленного структурного типа:

int key; // Ключ

int info; // Информация

{59,1}, {70,3}, {96,5}, {81,7}, {13,8}, {41,2}, {79,9}; размер хеш-таблицы m=10.

Хеш-функцияi =h (data ) =data .key %10; т.е. остаток от деления на 10 -i .

На основании исходных данных последовательно заполняем хеш-таблицу.

Хеширование первых пяти ключей дает различные индексы (хеш-адреса):

Первая коллизия возникает между ключами 81 и 41 - место с индексом 1 занято. Поэтому просматриваем хеш-таблицу с целью поиска ближайшего свободного места, в данном случае - это i = 2.

Следующий ключ 79 также порождает коллизию: позиция 9 уже занята. Эффективность алгоритма резко падает, т.к. для поиска свободного места понадобилось 6 проб (сравнений), свободным оказался индекс i = 4.

Общее число проб такого метода от1 до n-1 пробы на элемент, гдеn- размер хеш-таблицы..

Реализация метода цепочек для предыдущего примера. Объявляем структурный тип для элемента списка (однонаправленного):

int key; // Ключ

int info; // Информация

zap*Next; // Указатель на следующий элемент в списке

На основании исходных данных последовательно заполняем хеш-таблицу, добавляя новый элемент в конец списка, если место уже занято.

Хеширование первых пяти ключей, как и в предыдущем случае, дает различные индексы (хеш-адреса): 9, 0, 6, 1, и 3.

При возникновении коллизии, новый элемент добавляется в конец списка. Поэтому элемент с ключом 41, помещается после элемента с ключом 81, а элемент с ключом 79 - после элемента с ключом 59.

Индивидуальные задания

1. Бинарные деревья. Используя программу датчик случайных чисел получить 10 значений от 1 до 99 и построить бинарное дерево.

Сделать обход:

1.а Обход слева направо: Left-Root-Right: сначала посещаем левое поддерево, затем - корень и, наконец, правое поддерево.

(Или наоборот, справа налево: Right -Root- Left)

1.б Обход сверху вниз: Root-Left-Right: посещаем корень до поддеревьев.

1.в Обход снизу вверх: Left-Right-Root: посещаем корень после поддеревьев

Хеширование (иногда хэширование, англ. hashing) - преобразование входного массива данных произвольной длины в выходную строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки , входной массив – прообразом , а результаты преобразования - хешем, хеш-кодом, хеш-образом, цифровым отпечатком или дайджестом сообщения (англ. message digest).

Хеш-функция – легко вычислимая функция, преобразующая исходное сообщения произвольной длины (прообраз) в сообщение фиксированное длины (хеш-образ), для которой не существует эффективного алгоритма поиска коллизий.

Коллизией для функции h называется пара значений x, y, x ≠ y , такая, что h(x) = h(y) . Т.о. хеш-функция должна обладать следующими свойствами:

Для данного значения h(x) невозможно найти значение аргумента x . Такие хеш-функции называют стойкими в смысле обращения или стойкими в сильном смысле ;

Для данного аргумента x невозможно найти другой аргумент y такой, что h(x) = h(y) . Такие хеш-функции называют стойкими в смысле вычисления коллизий или стойкими в слабом смысле .

В случае, когда значение хеш-функции зависит не только от прообраза, но и закрытого ключа, то это значение называют кодом проверки подлинности сообщений (Message Authentication Code, MAC), кодом проверки подлинности данных (Data Authentication Code, DAC) или имитовставкой .

На практике хеш-функции используют в следующих целях:

Для ускорения поиска данных в БД;

Ускорения поиска данных. Например, при записи текстовых полей в базе данных может рассчитываться их хеш-код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, т.е. искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить размещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только раздел с нужной буквой.

Процедура вычисления (стандартная схема алгоритма) хеш-функции представлена на следующем рисунке.

Рис.10.1. Процедура вычисления значения хеш-функции

1) К исходному сообщению Т добавляется вспомогательная информация (например, длина прообраза, вспомогательные символы и т.д.) так, чтобы длина прообраза Х стала кратной величине L бл , определенной спецификацией (стандартом) хеш-функции.

2) Для инициализации процедуры хеширования используется синхропосылка y 0 .

3) Прообраз X разбивается на n блоков x i (i = 1 .. n) фиксированной длины L бл , над которыми выполняется однотипная процедура хеширования f(y i-1 , x i) , зависящая от результата хеширования предыдущего блока y i-1 .

4) Хеш-образом h(T) исходного сообщения Т будет результат процедуры хеширования y n , полученный после обработки последнего блока x n .

10.2. MD5

MD5 (англ. Message Digest 5) – 128-битный алгоритм хеширования, разработанный профессором Рональдом Л. Ривестом из Массачусетского технологического института (Massachusetts Institute of Technology, MIT) в 1991 г. Является улучшенной в плане безопасности версией MD4 .

Ниже приведен алгоритм вычисления хеша.

1. Выравнивание потока.

В конец исходного сообщения, длиной L , дописывают единичный бит, затем необходимое число нулевых бит так, чтобы новый размер L" был сравним с 448 по модулю 512 (L’ mod 512 = 448). Добавление нулевых бит выполняется, даже если новая длина, включая единичный бит, уже сравнима с 448.

2. Добавление длины сообщения.

К модифицированному сообщению дописывают 64-битное представление длины данных (количество бит в сообщении). Т.е. длина сообщения T становится кратной 512 (T mod 512 = 0). Если длина исходного сообщения превосходит 2 64 - 1, то дописывают только младшие 64 бита. Кроме этого, для указанного 64-битного представления длины вначале записываются младшие 32 бита, а затем старшие 32 бита.

3. Инициализация буфера.

Для вычислений инициализируются 4 переменных размером по 32 бита и задаются начальные значения (шестнадцатеричное представление):

A = 67 45 23 01;
B = EF CD AB 89;
C = 98 BA DC FE;
D = 10 32 54 76.

В этих переменных будут храниться результаты промежуточных вычислений. Начальное состояние ABCD называется инициализирующим вектором.

4. Вычисление хеша в цикле.

Исходное сообщение разбивается на блоки T , длиной 512 бит. Для каждого блока в цикле выполняется процедура, приведенная на рис.10.2. Результат обработки всех блоков исходного сообщения в виде объединения 32-битных значений переменных ABCD и будет являться хешем.

Рис.10.2. Шаг основного цикла вычисления хеша

В каждом раунде над переменными ABCD и блоком исходного текста Т в цикле (16 итераций) выполняются однотипные преобразования по следующей схеме.

Рис.10.3. Одна итерация цикла раунда

Условные обозначения.

1) RF - раундовая функция, определяемая по следующей таблице.

Таблица 10.1. Раундовые функции RF

2) t j - j-ая 32-битовая часть блока исходного сообщения Т с обратным порядком следования байт;

3) k i - целая часть константы, определяемой по формуле

k i = 2 32 * | sin(i + 16 * (r - 1)) |, (10.1)

где i – номер итерации цикла (i = 1..16);
r – номер раунда (r = 1..4).

Аргумент функции sin измеряется в радианах.

4) ⊞ – сложение по модулю 2 32 .

5) <<< s i – циклический сдвиг влево на s i разрядов.

Используемая 32-битовая часть блока исходного сообщения t j и величина циклического сдвига влево s i зависят от номера итерации и приведены в следующей таблице.

Таблица 10.2. Величины, используемые на шаге цикла раунда

№ итерации 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Раунд 1 t j t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 t 13 t 14 t 15 t 16
s i 7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
Раунд 2 t j t 2 t 7 t 12 t 1 t 6 t 11 t 16 t 5 t 10 t 15 t 4 t 9 t 14 t 3 t 8 t 13
s i 5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
Раунд 3 t j t 6 t 9 t 12 t 15 t 2 t 5 t 8 t 11 t 14 t 1 t 4 t 7 t 10 t 13 t 16 t 3
s i 4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
Раунд 4 t j t 1 t 8 t 15 t 6 t 13 t 4 t 11 t 2 t 9 t 16 t 7 t 14 t 5 t 12 t 3 t 10
s i 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21

После 4 раундов новое (модифицированное) значение каждой из переменных ABCD складывается (⊞ ) с исходным (значением переменной до 1-го раунда).

5. Перестановка байт в переменных ABCD . После обработки всех блоков исходного сообщения для каждой переменной выполняется обратная перестановка байт.

Поиск коллизий.

В 2004 г. китайские исследователи Ван Сяоюнь (Wang Xiaoyun), Фен Дэнгуо (Feng Dengguo), Лай Сюэцзя (Lai Xuejia) и Юй Хунбо (Yu Hongbo) объявили об обнаруженной ими уязвимости в алгоритме, позволяющей за небольшое время (1 час на кластере IBM p690) находить коллизии.

10.3. Применение шифрования для получения хеш-образа

Для выработки устойчивого к коллизиям хеш-образа могут применяться специальные режимы, предусмотренные в блочных шифрах (например, сцепление блоков шифра у ), или в самой хеш-функции, как составная часть, может использоваться один из режимов блочного шифра (например, составной часть хеш-функции по ГОСТ 34.11-94 1 является режим простой замены алгоритма криптографического преобразования по 2).

Напомним что в случае, когда значение хеш-функции зависит не только от прообраза, но и закрытого ключа, то хеш-образ называют кодом проверки подлинности сообщений (Message Authentication Code, MAC), кодом проверки подлинности данных (Data Authentication Code, DAC) или имитовставкой .

В качестве примера приведем режим (сцепление блоков шифра - Cipher Block Chaining).

Рис.10.4. Схема алгоритма DES в режиме сцепления блоков шифра

Последний зашифрованный блок C n и есть хеш-образ сообщения T = {T 1 , T 2 , …, T n } .

1 ГОСТ 34.11-94 «Информационная технология. Криптографическая защита информации. Функция хэширования».

2 ГОСТ 28147-89 «Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования».

Вопросы для самопроверки

1. Дайте определение понятиям: « », « », « ».

Для решения задачи поиска необходимого элемента среди данных большого объема был предложен алгоритм хеширования (hashing – перемешивание), при котором создаются ключи, определяющие данные массива и на их основании данные записываются в таблицу, названную хеш-таблицей . Ключи для записи определяются при помощи функции i = h (key ) , называемой хеш-функцией . Алгоритм хеширования определяет положение искомого элемента в хеш-таблице по значению его ключа, полученного хеш-функцией.

Понятие хеширования– это разбиение общего (базового) набора уникальных ключей элементов данных на непересекающиеся наборы с определенным свойством.

Возьмем, например, словарь или энциклопедию. В этом случае буквы алфавита могут быть приняты за ключи поиска, т.е. основным элементом алгоритма хеширования является ключ (key ). В большинстве приложений ключ обеспечивает косвенную ссылку на данные.

Фактически хеширование – это специальный метод адресации данных для быстрого поиска нужной информации по ключам .

Если базовый набор содержит N элементов, то его можно разбить на 2 N различных подмножеств.

Хеш-таблица и хеш-функции

Функция, отображающая ключи элементов данных во множество целых чисел (индексы в таблице – хеш-таблица ), называется функцией хеширования , или хеш-функцией :

i = h (key );

где key – преобразуемый ключ, i – получаемый индекс таблицы, т.е. ключ отображается во множество целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

Однако хеш-функция для нескольких значений ключа может давать одинаковое значение позиции i в таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес), называется коллизией при хешировании.

Хорошей хеш-функцией считается такая функция, которая минимизирует коллизии и распределяет данные равномерно по всей таблице, а совершенной хеш-функцией – функция, которая не порождает коллизий:

Разрешить коллизии при хешировании можно двумя методами:

– методом открытой адресации с линейным опробыванием;

– методом цепочек.

Хеш-таблица

Хеш-таблица представляет собой обычный массив с необычной адресацией, задаваемой хеш-функцией.

Хеш-структуру считают обобщением массива, который обеспечивает быстрый прямой доступ к данным по индексу.

Имеется множество схем хеширования, различающихся как выбором удачной функции h (key ), так и алгоритма разрешения конфликтов. Эффективность решения реальной практической задачи будет существенно зависеть от выбираемой стратегии.

Примеры хеш-функций

Выбираемая хеш-функция должна легко вычисляться и создавать как можно меньше коллизий, т.е. должна равномерно распределять ключи на имеющиеся индексы в таблице. Конечно, нельзя определить, будет ли некоторая конкретная хеш-функция распределять ключи правильно, если эти ключи заранее не известны. Однако, хотя до выбора хеш-функции редко известны сами ключи, некоторые свойства этих ключей, которые влияют на их распределение, обычно известны. Рассмотрим наиболее распространенные методы задания хеш-функции.

Метод деления . Исходными данными являются – некоторый целый ключ key и размер таблицы m . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид функции:

int h(int key, int m) {

return key % m; // Значения

Для m = 10 хеш-функция возвращает младшую цифру ключа.

Для m = 100 хеш-функция возвращает две младшие цифры ключа.

Аддитивный метод , в котором ключом является символьная строка. В хеш-функции строка преобразуется в целое суммированием всех символов и возвращается остаток от деления на m (обычно размер таблицы m = 256).

int h(char *key, int m) {

Коллизии возникают в строках, состоящих из одинакового набора символов, например, abc и cab .

Данный метод можно несколько модифицировать, получая результат, суммируя только первый и последний символы строки-ключа.

int h(char *key, int m) {

int len = strlen(key), s = 0;

if(len < 2) // Если длина ключа равна 0 или 1,

s = key; // возвратить key

s = key + key;

В этом случае коллизии будут возникать только в строках, например, abc и amc .

Метод середины квадрата , в котором ключ возводится в квадрат (умножается сам на себя) и в качестве индекса используются несколько средних цифр полученного значения.

Например, ключом является целое 32-битное число, а хеш-функция возвращает средние 10 бит его квадрата:

int h(int key) {

key >>= 11; // Отбрасываем 11 младших бит

return key % 1024; // Возвращаем 10 младших бит

Метод исключающего ИЛИ для ключей-строк (обычно размер таблицы m =256). Этот метод аналогичен аддитивному, но в нем различаются схожие слова. Метод заключается в том, что к элементам строки последовательно применяется операция «исключающее ИЛИ».

В мультипликативном методе дополнительно используется случайное действительное число r из интервала . Если это произведение умножить на размер таблицы m , то целая часть полученного произведения даст значение в диапазоне от 0 до m –1.

int h(int key, int m) {

double r = key * rnd();

r = r – (int)r; // Выделили дробную часть

В общем случае при больших значениях m индексы, формируемые хеш-функцией, имеют большой разброс. Более того, математическая теория утверждает, что распределение получается более равномерным, если m является простым числом.

В рассмотренных примерах хеш-функция i = h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально – поместить в таблицу) запись с ключом key . Поэтому схема хеширования должна включать алгоритм решения конфликтов , определяющий порядок действий, если позиция i = h (key ) оказывается уже занятой записью с другим ключом.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: