LPT порт: распиновка. Министерство образования и науки российской федерации федеральное государственное бюджетное образовательное учреждение Описание lpt

Дмитрий Иванов, 21 Сентября 2009 Статья доработана и обновлена 23 Января 2012

За время существования этого сайта мне довольно часто задают один и тот же вопрос, который можно описать примерно следующим образом:



В итоге решил описать этот вопрос подробнее и написать статью. Да, действительно, сейчас стационарных PC с LPT портом нужно поискать (т.е. далеко не каждая "мать" сейчас идет в комплекте с LPT портом). Про ноутбуки вообще говорить не приходится. Современные модели LPT порт вообще не применяют. Только очень дорогие и специализированные машины, типа DELL, могут "похвастаться" наличием этого порта.

Также, сейчас в продаже можно свободно приобрести вот такие устройства, называемые LPT-USB переходниками.

Инстркуция гласит что этот прибор полностью совместим с различными принтерами, сканерами и т.д. Подключаем переходник к USB порту, устанавливаем драйвера. Смотрим диспетчер устройств. Скорее всего в ветке "Порты LPT/COM" ни чего не появилось (хотя бывают исключения). Скорее всего повится либо новая ветка со странным устройством с именем, например, LPT1USB либо в разделе USB устройств появится странная запись о "USB устройстве поддержки LPT принтеров" . Пробуем запустить какой-нибудь пример из статей выше. И ни тут то было - ни чего не работает. Пробуем адрес порта LPT1 - ни чего не работает. Пробуем адресс порта LPT2. К сожалению, такая модернизация адреса в запросах тоже ни к чему не приводит - светодиоды как не загорались так и не загораются.

Чтобы разобраться в чем тут дело давайте вернемся на время к обычному "родному железному" LPT порту - LPT1, который из материнской платы "торчит". Зайдем в диспетчер устройств, заглянем в свойства нашего порта. Там мы увидим вот такую картину. Отлично видно, что система прописала базовый адрес ввода-вывода 0x378 и запрос на прерывание номер 7. Все правильно.

Теперь погрузимся на уровень программирования. В примерах статей выше мы минуя систему защиты ввода-вывода легальными и нелегальными способами напрямую общались с реально существующим регистром ввода-вывода, которому присвоен адрес 0x378. Тут все понятно. Незабудем также о том, что Windows рекомендует работать с LPT портом используя вызовы API функций - OpenFile(), WriteFile(), ReadFile() . Приложения, которые используют LPT порт для обмена информацией по парралельному интерфейсу с внешними устройствами (принтер, например) так и делает. У него нет задачи установить на каком-либо бите регистра Data лигическую еденицу. Ему (приложению) нужно просто отправить пакет данных, а кто там будет какие линиии при этом "дергать" и считывать его не сильно интересует. Эти операции проводит системный драйвер LPT порта. Он подгружается в память при загрузке ОС. Когда мы вызываем функцию OpenFile("LPT1", ....) мы по сути дела обращаемся к драйверу порта, который имеет символическое имя LPT1. Драйвер делает кучу всякой работы - запрещает доступ к порту другим процессам, настраивает параметры протокола передачи данных, собственно реализует эту передачу, но в конечном итоге все это сводится к прямому управлению отдельными битами LPT порта на уровне ядра ОС.

А теперь попробуем поработать с нашим переходником USB-LPT. Начнем как не покажется странным, с API вызовов. Запускаем OpenFile("LPT1USB", ...) (смотря как этот переходник диспетчере устройств назовется, если вообще назовется). Что при этом происходит? Дело в том, что теперь мы будем работать не с драйвером LPT порта ОС а с драйвером этого переходника! Вот в чем фокус то! Он принимает пакет данных от нашего пользовательского приложения и в нужном формате через систмный драйвер USB отсылает этот пакет на USB контроллер, "ноги" которого торчат из внешней LPT розетки на проводе (ну это так, "грубое объяснение"). Видете, здесь нет ни какого намека на обращение к регистрам по адресам 0x378(0x278), т.к. их просто нет!

Поэтому, когда Вы патаетесь запускать примеры данного раздела и обращаться напрямую по адресам 0x378 (если этот "псевдо порт" назвался LPT1USB или что-то в этом духе), 0x278 (LPT2_...) и т.д. ни чего не происходит. Их просто нет! А вот программа котороая работает через API вызовы ни чего не заметит - вся низкоуровневая работа делается драйвером, а каким драйвером и куда пойдут пакеты данных (в реальный порт ввода-вывода или в USB хост-контроллер) - приложению неважно! Попробуйте открыть свойства "псевдопорта" в диспетчере устройств. Нет вкладки с ресурсами? Есть, но там каие-то неадекватные значения или вкладка деактивировнна? В том то и дело.



Почему 99%? Потомоу что есть самодельниые USB-LPT переходники, которые определяются Windows как полноценный порт LPT1 и ему присваивается вполне обыденный адрес 0x378. Обращения на прямую к пинам порта проходят успешно! Однако это очень нестандартная конструкция (в первую очередь драйвер, который занимается перехватом обращений по базовому адресау порта LPT1). Все это не очень надежно (обновление ОС - и конструкция теряет работоспосбность) и для использования рекомендовано быть может только с натяжкой.



Как ни покажется странным - решение ЕСТЬ. Вы всегда сможете добавить настоящий LPT порт в свой настольный компьютер или ноутбук. Во-первых, забудте сразу о переходниках с интерфейсом USB. Для решения этой задачи необходимо приробрести PCI-LPT переходник для настольного PC (необходимо наличие свободного PCI слота) или PCMCIA-LPT переходник для ноутбука (см. фото ниже).


В случае использования этих устройств ни каких проблем нет. Определяются они как настоящие "родные" LPT порты. Соответствующая запись будет добавлена в диспетчер устройств во вклдаку "LPT/COM порты" . Прямое обращение к пинам порта будет работать.

Порт параллельного интерфейса был введен в PCдля подключения принтера -LPT-порт (Line PrinTer -построчный принтер).

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в пространстве ввода/вывода. Регистры порта адресуются от­носительно базового адреса порта, стандартными значениями которого являют­ся 386h, 378hи 278h. Порт имеетвнешнюю 8-битнуюшину дан­ных, 5-битнуюшину сигналовсостояния и 4-битнуюшину управляющих сиг­налов.

BIOSподдерживает до четырех LPT-портов (LPT1-LPT4) своим сервисом -прерыванием INT 17h,обеспечивающим через них связь с принтерами по интерфейсу Centronics.Этим сервисом BIOSосуществляет вывод символа, инициа­лизацию интерфейса и принтера, а также опрос состояния принтера.

Интерфейс Centronics

Понятие Centronicsотносится как к набору сигналов и протоколу взаимодейст­вия, так и к 36-контактному разъему, устанавливаемому на принтерах. Назна­чение сигналов приведено в табл. 1.

Таблица 1.

Сигналы интерфейса Centronics

Назначение

Строб данных. Данные фиксируются по низкому уровню сигнала

Линии данных. Data 0(контакт 2) -младший бит

Acknowledge -импульс подтверждения приема байта (запрос на прием сле­дующего). Может использоваться для формирования запроса прерывания

Занято. Прием данных возможен только при низком уровне сигнала

Высокий уровень сигнализирует о конце бумаги

Сигнализирует о включении принтера

Автоматический перевод строки.

Ошибка: конец бумаги, состояние OFF-Lineили внутренняя ошибка принтера

Инициализация

Выбор принтера (низким уровнем). При высоком уровне принтер не воспринимает остальные сигналы интерфейса

Общий провод интерфейса

Направление

(вход/выход) применительно к принтеру.

Интерфейс Centronicsподдерживается большинством принтеров с параллель­ным интерфейсом, его отечественным аналогом является интерфейсИРПР-М.

Традиционный lpt-порт

Традиционный порт SPP (Standard Parallel Port)является одно­направленным портом, на базе которого программно реализуется протокол обмена Centronics.Порт обеспечивает возможность вырабатывания запроса ап­паратного прерывания по импульсу на входе АСК#. Сигналы порта выводятся наразъем DB-25S (розетка), установленный непосредственно на плате адаптера (или системной плате) или соединяемый с ней плоским шлейфом. Название и назначение сигналов разъема порта (табл. 2)соответствуют интерфейсу Centronics.

Таблица 2.

Разъем стандартного LPT-порта

Контакт DB-25S

Провод шлейфа

Назначение

18, 20, 22, 24, 26

* I/Oзадает направление передачи (вход/выход) сигнала порта; 0/Iобозначает выходные линии, состояние которых считывается при чтении из соответствующих портов вывода.

**Символом «\» отмечены инвертированные сигналы (1в регистре соответствует низкому уров­ню линии).

***Вход Ack#соединен резистором (10кОм) с питанием +5В.

Стандартный порт имеет три 8-битных регистра, расположенных по сосед­ним адресам в пространстве ввода/вывода, начиная с базового адреса порта(BASE).

Data Register (DR) -регистр данных, адрес= BASE.Данные, записанные в этот порт,выводятся на выходные линии интерфейса. Данные, считанные из этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях.

Status Register (SR) -регистр состояния, представляющий собой5-битный порт ввода сигналов состояния принтера (биты SR.4-SR.7),адрес= BASE+1.БитSR.7инвертируется -низкому уровню сигнала соответствует единичное значе­нию бита в регистре, и наоборот.

Назначение бит регистра состояния (в скобках даны номера контактов разъема):

SR.7-Busy -инверсные отображения состояния линии Busy (11);

SR.6 -АСК (Acknowledge) -отображения состояния линии Ack# (10).

SR.5 -РЕ (Paper End) -отображения состояния линии Paper End (12).

SR.4-Select -отображения состояния линии Select (13).Единичное зна­чение соответствуетcигналу о включении принтера.

SR.3-Error -отображения состояния линии Error (15).

SR.2 - PIRQ -флаг прерывания по сигналу Ack#(только для порта PS/2). Бит обнуляется, если сигнал Ack#вызвал аппаратное прерывание. Единич­ное значение устанавливается по аппаратному сбросу и после чтения ре­гистра состояния.

SR -зарезервированы.

Control Register (CR) -регистр управления, адрес=ВА5Е+2. Как и регистр дан­ных, этот4-битный порт вывода допускает запись и чтение (биты 0-3),но его выходной буфер обычно имеет типоткрытый коллектор. Это позволяет более корректно использовать линии данного регистра как входные при программи­ровании их в высокий уровень. Биты О, 1, 3инвертируются -единичному зна­чению в регистре соответствует низкий уровень сигнала, и наоборот.

Назначение бит регистра управления:

CR -зарезервированы.

CR.5 - Direction -бит управления направлением передачи (только для портов PS/2).Запись единицы переводит порт данных в режим ввода.

CR.4 -ACKINTEN (Ack Interrupt Enable) -единичное значение разрешает пре­рывание по спаду сигнала на линии Ackff -сигнал запроса следующего байта.

CR.3 - Select In -единичное значение бита соответствует низкому уровню на выходе Selecting (17) -сигналу, разрешающему работу принтера по интерфейсу Centronics.

CR.2 - Init -нулевое значение бита соответствует низкому уровню на выходе Imt# (16) -сигнал аппаратного сброса принтера.

CR.1 - Auto LF -единичное значение бита соответствует низкому уров­ню на выходе Auto LF# (14) -сигналу на автоматический перевод строки(LF - Line Feed)по приему байта возврата каретки (CR - Carriage Return).

CR.O -Strobe -единичное значение бита соответствует низкому уровню на выходе Strobeff (1) -сигналу стробирования выходных данных.

Запрос аппаратного прерывания (обычно IRQ7или IRQ5)вырабатывается по отрицательному перепаду сигнала на выводе 10разъема интерфейса (АСК#) при установке CR.4=1. Прерывание вырабатывается, когда принтер подтвер­ждает прием предыдущего байта.

Процедура вывода байта по интерфейсу Centronicsчерез стандартный порт включает следующие шаги (в скобках приведено требуемое количество шинных операций процессора):

Вывод байта в регистр данных (1цикл IOWR#).

Ввод из регистра состояния и проверка готовности устройства (бит SR.7 - сигнал BUSY).

По получении готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается (2цикла lOWRff).

Стандартный порт сильно асимметричен -при наличии 12линий (и бит), нормально работающих на вывод, на ввод работает только 5линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособенрежим полубайтного обмена - Nibble Mode.В этом режи­ме, называемым также и Hewlett Packard Bitronics,одновременно передаются 4бита данных, пятая линия используется для квитирования.

Одним из самых старых портов компьютера является LPT-порт или параллельный порт. И хотя LPT-порт сейчас можно увидеть далеко не на всякой материнской плате, тем не менее, читателям, возможно, интересно было бы узнать, что он из себя представляет.

Прежде всего, разберемся с названием порта. Возможно, далеко не все знают, что обозначает аббревиатура LPT. На самом деле, LPT – это сокращение от словосочетания Line Print Terminal (построчный принтерный терминал). Таким образом, становится понятным, что LPT-порт предназначался, прежде всего, для подключения принтеров. Именно поэтому порт LPT имеет и еще одно название – порт принтера. Хотя теоретически могут подключаться к LPT и другие устройства.

LPT-порт имеет давнюю историю. Он был разработан фирмой Centronics (поэтому данный порт часто называют также портом Centronics), производившей матричные принтеры еще до начала эпохи персоналок, в начале 1970-х. А в начале 1980-х LPT-порт стал использоваться фирмой IBM в своих компьютерах и на какое-то время стал стандартным портом для подключения высокоскоростных (на то время) устройств.

Внешний вид параллельного порта на задней панели компьютера

Интерфейс LPT существовал в нескольких редакциях. В оригинальной версии LPT-порт был однонаправленным, то есть мог передавать данные лишь в одном направлении – к периферийному устройству. Разумеется, такая ситуация не устраивала пользователей, поскольку существовали принтеры, которые требовали передачи данных в обоих направлениях. Поэтому впоследствии интерфейс LPT несколько раз был усовершенствован, пока не был разработан его международный стандарт IEEE 1284. В соответствии с этим стандартом интерфейс параллельного порта поддерживал несколько режимов работы и был также совместим со старыми стандартами. Кроме того, интерфейс в своей конечной редакции поддерживал относительно высокие скорости передачи данных – до 5 Мб/с.

Принцип работы параллельного порта

Порт LPT называется параллельным потому, что в подключаемом к нему кабеле данные передаются параллельно, то есть, одновременно по нескольким проводникам. Этим свойством параллельный порт отличается от другого порта компьютера –последовательного порта COM.

Проводников, передающих сами данные, в кабеле Centronics насчитывается 8. Кроме того, в кабеле присутствует несколько линий, по которым передаются управляющие сигналы.

Хотя параллельный порт большей частью используется для подключения принтеров, тем не менее, существовали и другие его применения. Во-первых, при помощи порта LPT можно напрямую соединить два компьютера – посредством специального кабеля Interlink. До широкого распространения сетевых карт Ethernet подобное соединение, хоть и не обеспечивавшее пользователю большую скорость передачи данных, зачастую было, тем не менее, единственным способом связать два компьютера. Существуют также электронные ключи, предназначенные для подключения к порту LPT.

Кабель для передачи данных между компьютерами - Interlink

Как и в случае многих других устройств на материнской плате, режимы работы параллельного порта часто можно настроить через BIOS Setup. Как правило, для этого используются такие опции BIOS, как Parallel Port, Parallel Port IRQ, Parallel Port DMA и т.п.

Разъем параллельного порта на материнской плате и кабель Centronics

Разъем порта LPT обычно располагается непосредственно материнской плате, хотя до середины 1990-x гг. он обычно присутствовал на вставляемой в слот расширения так называемой мультикарте, на которой были также расположены другие порты компьютера. Выход порта представляет собой 25-контактный разъем типа «розетка», который называется разъемом DB25.

ISA мультикарта с LPT(DB25 - «мама») и игровым портом на борту.

Для подключения к принтеру используется специальный кабель ­­– кабель Centronics. Один конец (вилка) кабеля Centronics подключается к порту, другой (также вилка) – к специальному разъему принтера. Последний разъем имеет 36 контактов. Следовательно, особенностью кабеля Centronics является то, что он имеет разные разъемы с обеих сторон.

Внешний вид кабеля Centronics.

Хотя часто разъем кабеля для материнской платы называется разъемом Centronics, тем не менее, строго говоря, разъемом Centronics называется лишь 36-контактный разъем для подключения к принтеру, а не к материнской плате. Разъем кабеля для подключения к порту называется разъемом Amphenolstacker, от названия разработавшей его американской фирмы Amphenol, производящей разъемы.

Особенности работы параллельного порта

Благодаря тому, что LPT-порт поддерживает параллельную передачу данных, в первых ПК этот порт считался одним из самых скоростных портов компьютера. Передача данных по нескольким линиям во многом сближает интерфейс LPT по архитектуре с компьютерными шинами. Тем не менее, это обстоятельство накладывает и ограничение на длину кабеля, которая из-за возникающих в кабеле помех не может превышать 5 м.

Максимальное напряжение, использующееся в сигнальных линиях порта, составляет +5 В. Для простой передачи данных требуется всего лишь десять сигнальных линий – это 8 линий собственно данных, линия строб-сигнала, то есть, сигнала о готовности порта к передаче данных, и линия занятости. Остальные линии используются для совместимости со стандартом Centronics.

LPT-порт типа «мама» с нумерацией контактов.

Назначение выводов разъема параллельного порта DB25:

  • 1 – Data strobe (Строб-сигнал)
  • 2-9 – Данные, биты 0-7
  • 10 – Acknowledge (Подтверждение от принтера)
  • 11 – Busy (Занят)
  • 12 – Paper Out (Кончилась бумага)
  • 13 – Select (Принтер активен)
  • 14 – Auto Feed (Автоматическая подача)
  • 15 – Error (Ошибка)
  • 16 – Init (Инициализация принтера)
  • 17 – Select Input (Выбор устройства)
  • 18-25 – Земля

Заключение

LPT-порт представляет собой интерфейс персонального компьютера, который в настоящее время считается устаревшим и не имеет значительной поддержки со стороны производителей компьютерного оборудования и программного обеспечения. Однако параллельный порт до сих успешно используется во многих устаревших моделях компьютеров и принтеров.

Итак, настало время написать простую программу, иллюстрирующую приемы чтения и записи данных в LPT порт. Пока напишем ее в консольном варианте, дабы на этапе понимания и разбора этой программы не пришлось "копаться" в дебрях кода под Windows (не переживайте, следующая статья будет посвящена как раз приложению c визуальным интерфейсом).


Прежде чем двигаться дальше и писать программу, необходимо разобраться с LPT портом, посмотреть из чего он состоит и как нам воспользоваться им в своих целях. Если говорить на бытовом уровне, то можно сказать, что LPT порт это набор контактов, на которых мы можем установить напряжение 0 или +5 В (логическая 0 и 1) из программы или это может сделать внешнее устройство снаружи.



Давайте разберемся, какими контактами мы можем оперировать, а какими нет. В этом нам поможет рисунок ниже (его рисовал не я, автор мне неизвестен. Но он уж больно хорош, я и сам им постоянно пользуюсь).

Из рисунка видно, что выводы порта можно разделить на четыре группы: это "земляные" выводы. Они обозначены черным цветом (контакты 18-25). Все они соеденены между собой, поэтому для своих разработок в качестве земли можно использовать любой из них.

Красным цветом обозначены выводы так называемого регистра Data (контакты 2-9). Под регистром будем понимать (на бытовом уровне) объдинение группы контактов LPT порта. В регистре Data их 8 штук. Это самый толковый регистр - он позволяет нам как из программы, так и из внешнего устройства установить на его контактах лигическую 0 или 1, т.е. он двунаправленный. Именно его мы и использовали в нашей первой программе Port.exe - подключали светодиод ко 2-му выводу порта (как теперь видно, этот вывод принадлежит регистру Data, является его нулевым битом) и 25 выводу (земля), и спомощью программы управляли подачей напряжения на вывод 2 относительно земли. Чтобы обращаться к этому регистру, надо знать его адрес: 0x378 - в 16-ричной системе или 888 в десятичной.


На рисунке написано &H378 - это тоже самое что и 0x378, просто первое обозначение присуще языку Pasсal и ему подобным, мы же пишем на Си.


Опять вспоминая программу Port.exe , заметим, что обращались мы к регистру с помощью следующей функции _outp(Address, 0); , где переменная Address была предварительно определена как 888. Теперь понятно, что этим мы указывали функции _outp() , что мы хотим работать именно с регистром Data.

Продолжим рассмотрение порта. Осталось еще два регистра. Следующим будет регистр Status (контакты 10-13, 15). Это однонаправленный регистр. Управлять им можно только "снаружи", через внешнее устройство (имеется в виду изменять данные на нем; читать можно из любого регистра в любую строну). Он имеет адрес 0x379 - в 16-ричной системе или 889 в десятичной. И регистр Control (контакты 1, 14, 16-17). Он имеет всего 4 контакта и может управляться только программой. Его адрес: 890 в десятичной системе.



Теперь рассмотрим, а как происходит запись и чтение данных в регистры LPT порта, т.е. как нам установить на нужных выводах 0 или 1.


Запись/чтение данных в регистр Data

Итак, рассмотрим сразу практическую задачу. Хочу чтобы на выводе LPT порта под номером 3 (бит D1 регистра Data ) была установлена логическая 1 (т.е. чтобы между ним и землей было +5 В) и на остальных выводах этого регистра (2,4-9 выводы порта) были нули. Пишем код:

Int Address = 888; int data = 2; Out32(Address, data);

Я использовал функцию Out32() библиотеки inpout32.dll , будем привыкать к ней, т.к. дальнейшие примеры будем разбирать именно на этой библиотеке. Если этот код выполнить, то получится что на выводе порта 3 есть +5 В, а на 2,4-9 "висит" ноль. Как это получилось?

Начнем разбираться: первым параметром функции Out32() мы передаем число 888. Как вы уже знаете, это адрес регистра Data LPT порта. Теперь функция знает куда ей писать данные. Далее вторым параметром мы передаем число 2, т.е. значение для записи в порт. Прошу обратить внимание, что двоика в десятичной системе счисления. Что происходит далее? Для лучшей визуализации процесса, переводим число 2 из десятичной в двоичную систему счисления. Каждый разряд двоичного числа справо на лево записывается по порядку в регистр начиная с младшего разряда D0 (вывод 2 порта) и заканчивая старшим D7 (вывод 9). Если вы переведете число 2 из десятичной в двоичную систему счисленияи дополните число по 8 разрядов (по числу разрядов в регистре) то получите 00000010 . Нулевой разряд двоичного числа - 0 (самую правый) записывается в D0, далее 1 записывается в D1. И так до конца, все 8 разрядов.

Ну что, устали немного пока прочитали? Сейчас станет понятнее. Давайте в регистр Data запишем число 245. Пишем код:

Int Address = 888; int data = 245; Out32(Address, data);

Опять переводим 245 в двоичную систему счисления и справо на лево записываем разряды числа в соответсвующие биты регистра. В итоге получим, что на выводах LPT порта под номерами 2,4,6-9 присутствует напряжение +5 В, на выводах 3,5 - ноль.

Ну что, теперь я думаю, с записью данных в регистр Data мы разобрались. Надо отметить, что диапозон десятичных чисел, которые можно записать в регистр Data лежит в пределах от 0 до 255 . Регистр он у нас 8-ми разрядный, значит максимальное число комбинации 0 и 1 на его выводах составляет 2 8 -1=256-1=255.


Чтение данных

Теперь давайте считаем ранее записанные данные в порт, а именно узнаем текущий статс регистра Data . Мы хотим узнать, на каких выводах регистра Data сейчас высокий уровень напряжения, а на каких низкий. Помните, выше мы записали в порт число 245? Давайте его сейчас получим из порта. Пишем код:

Int Address = 888; int data; data = Inp32(Address);

Inp32() - это функция для чтения данных из порта библиотеки inpout32.dll . Единственным параметром для нее является адрес того регистра, откуда мы хотим прочесть данные. На выходе она возвращает десятичное число, соответствующее текущему содержомому регистра. Выполнив этот код, переменная data будет содержать число 245. Что это значит? Чтобы разобраться, переводим число 245 из десятичной в двоичную и смело можем сказать что на выводах порта 2,4,6-9 сейчас +5 В а на выводах 3,5 0 В. (см. рисунок выше)


Запись/чтение данных в регистр Control

Теперь поуправляем регистром Control. Он однонаправленный, данные в него может записать только наша программа. Обратите внимание на несколько особенностей этого регистра. Во-первых, он содержит всего четыре рабочих вывода. Значит в него можно записать число в диапозоне от 0 до 2 4 -1=16-1=15. Во-вторых, он имеет очень непрятную особенность: некоторые из его выводов инвертированы, т.е. если вы на этот вывод пишете 1, то на ней устанавливается 0. И наоборот, читаете 1, а на самом деле там 0. Поэтому, значение записываемых данных и читаемых данных не совсем очевидны. Приведу пример записи числа в регистр Control. Пишем код:

Int Address = 890; int data = 10; Out32(Address, data);

И пример чтения:

Int Address = 890; int data; data = Inp32(Address);

Запись/чтение данных в регистр Status

Наконец, добрались до регистра Status . Он однонаправленный, данные в него может записать только внешнее устройство , т.е. мы в программе можем только читать содержимое этого регистра. Причитав данные из Status , и переведя их в двоичное число, сразу довольно трудно понять что же реально творится с напряжениями на выходах этого регистра. Во-первых, он тоже имеет инвертированные выводы, а во-вторых рабочими являются биты под номерами 4-7, а 0-3 не используются, и следовательно число записывается довольно хитро.

Возникает вопрос, а как эти данные на нем установить? Довольно просто. В качестве внешнего устройства, пока, будете выступать вы. Выполните такой код.

Int Address = 889; int data; data = Inp32(Address);

Вы получите некоторое число. Теперь возмите проводник и соедините им любой из земляных выводов порта (18-25) с каким-нибудь выводом регистра Status (10-13, 15), например с десятым. И снова выполните чтение. Вы получите другое число. Уберите проводник. Прочитав, получете исходное число. Как это работает? Исходно, на всех выводах этого регистра находится высокий уровень напряжения +5 В. Когда мы соеденили один из его выводов с землей, то на нем, соответственно, напряжение стало равным нулю, т.е. логический ноль. Можно попробовать замыкать и другие выводы регистра Status на землю, замыкать сразу несколько.

Следует заметить, что при таких опытах с регистром Status возникает не совсем понятная ситуация с другими выводами порта LPT. После первого замыкания выводов Status , начинают мигать выводы Data и Control . Это связано с тем, что порт LPT предназначен для подключения принтера, а выводы Status он использует, для того чтобы сообщить компьютеру некоторую служебную информацию. Изменения на выводах Status регестрирует системный драйвер операционной системы. Он же проводит и ответные действия, для нас наблюдаемые в виде периодического изменения состояния других выводов. Тут уж ни чего не поделаешь. Я обычно, просто в начале работы с портом далаю замыкание какой-нибудь линии регистра Status на землю и жду примерно минуту, пока драйвер не "утихомирится". После этого порт свободен, и новые операции над регистром Status не приводят к неконтролируемым процессам в порту.


© Дмитрий Иванов
2005-2006

Компьютер обрабатывает сигналы параллельными потоками, поэтому ему легче «общаться» с параллельными, а не с последовательными внешними портами. В 1984 г. в составе IBM PC впервые появился параллельный порт. Задуман он был как средство подключения матричных принтеров, отсюда и название LPT - Line PrinTer или Line Printer Terminal. В дальнейшем для принтеров стали использовать быстродействующий интерфейс USB, а LPT-порт начал постепенно вытесняться из компьютерных спецификаций. Остряки сравнивают LPT с чемоданом без ручки - и выбросить жалко, и тащить невозможно. Тем не менее, «ветеран» ещё на многое способен, если, конечно, он присутствует в конкретном компьютере.

Разъём LPT-порта имеет 25 контактов. Нормой «де-факто» считается розетка DB-25F в компьютере и вилка DB-25M в ответном кабеле (Табл. 4.2). Нумерация контактов вилок и розеток зеркальная (Рис. 4.7, а, б).

Таблица 4.2. Раскладка сигналов в 25-контактном разъёме LPT-порта

Расшифровка

Направление

Вход/выход

Вход/выход

Подтверждение

Готовность

Нет бумаги

Автоперенос

Вход/выход

Инициализация

Вход/выход

Выбор входа

Вход/выход

Рис. 4.7. Внешний вид спереди 25-контактных разъёмов LPT-порта: а) розетка DB-25F в компьютере; б) вилка DB-25M в соединительном кабеле.

Первоначально линии LPT-порта были однонаправленными SPP (Standard Parallel Port). Часть из них работала только на вход, часть - только на выход, что по набору сигналов и протоколу обмена соответствовало принтерному интерфейсу «Centronics». В 1994 г. был утверждён новый стандарт параллельного интерфейса IEEE 1284, предусматривающий двунаправленные линии и три режима работы: SPP, EPP (Enhanced Parallel Port), ECP (Extended Capabilities Port).

Уровни электрических сигналов LPT-порта совпадают с обычными «пятивольтовыми» логическими микросхемами. Раньше в компьютерах применялись буферные TTJl-микросхемы серии 74LSxx, позднее - КМОП-микросхемы и БИС, примерно эквивалентные серии 74ACxx. В последнем случае можно ориентировочно считать, что НИЗКИЙ уровень равен 0.1..0.2 В, а ВЫСОКИЙ - 4.5…4.9 В.

Стандартом регламентируется нагрузка 14 мА по каждому выходу при сохранении напряжения не менее +2.4 В ВЫСОКОГО и не более +0.4 В НИЗКОГО уровня. Однако в разных материнских платах выходные буферы LPT-порта могут иметь разную нагрузочную способность, в том числе и ниже стандарта («слабый» порт).

Требования к соединительным кабелям, подключаемым к LPT-порту:

Сигнальные провода должны быть свиты в пары с общим проводом GND;

Каждая пара должна иметь импеданс 56…68 Ом в диапазоне частот 4… 16 M Гц;

Если применяется плоский ленточный кабель, то сигнальные провода должны физически чередоваться с общим проводом GND (локальные экраны);

Уровень перекрёстных помех между сигналами не более 10%;

Кабель должен иметь экран, покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединён с «земляным» контактом разъёма;

В разъёме кабеля можно запаять на контакты 1…17 последовательные резисторы C2-23 (OMJIT-O.125) сопротивлением 100…300 Ом (Рис. 4.8). Это позволит защитить компьютер от случайных коротких замыканий в нагрузке и уменьшить высокочастотный «звон» на фронтах сигналов.

Рис. 4.8. Электрическая схема LPT-кабеля с «антизвонными» резисторами.

Схемы соединения MK с LPT-портом можно разделить на три группы:

Приём сигналов от компьютера (Рис. 4.9, а…з);

Передача сигналов в компьютер (Рис. 4.10, а…д);

Приём/передача сигналов одновременно (Рис. 4.11, a…e).

В схемах приняты некоторые упрощения. В качестве входного сигнала указывается в основном «DO», а в качестве выходного - «АСК», хотя могут быть и другие, перечисленные в Табл. 4.2. На каждом конкретном компьютере работоспособность самодельных схем необходимо проверять экспериментально, что связано с наличием «сильных» и «слабых» LPT-портов по нагрузочной способности.

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (начало):

а) резистор R1 ограничивает входной ток. Элементы R2, C1 могут отсутствовать, но они уменьшают «звон» на фронтах сигналов при длинном кабеле;

б) буферный транзистор VT1 инвертирует сигнал. Диод VD1 не обязателен, но он защищает транзистор от ошибочной подачи большого отрицательного напряжения. Если не ставить резистор R2, то схема останется работоспособной, однако при отстыковке кабеля от LPT-порта возможны ложные срабатывания транзистора VT1 от внешних помех и наводок;

в) диод VD1 отсекает помехи и повышает порог срабатывания транзистора VT1. Резистор R1 надёжно закрываеттранзистор VT1 при НИЗКОМ уровне с LPT-порта;

г) буферный логический элемент DD1 имеет выход с открытым коллектором. Фронты сигналов формируются элементами R1, C1. Можно вместо инвертора DD1 поставить повторитель К155ЛП9, сделав соответствующие изменения в программе MK и компьютера;

д) триггер Шмитта DD1 (замена - К555ТЛ2) повышает помехоустойчивость. Чем меньше сопротивление резисторов R1, R2, тем больше крутизна фронтов сигнала. При отключённом кабеле от LPT-порта резистор R1 не даёт входу микросхемы DD1 «висеть в воздухе»;

е) последовательное включение двух логических элементов DD11, /)/)/.2увеличивает (восстанавливает) крутизну фронтов сигнала. Резистор R1 устраняет выбросы, «звон»;

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (окончание):

ж) данные, поступающие от LPT-порта, предварительно помещаются в промежуточный регистр DD1. Запись производится при ВЫСОКОМ уровне на входе «С» микросхемы DD1, хранение - при НИЗКОМ. Такое решение устраняет помехи, поскольку в LPT-порт в зависимости от установленных в компьютере драйверов периодически могут выводиться случайные данные. Их устраняют программно, например, путём многократного считывания входного сигнала с линий MK;

з) буферизация LPT-порта мощными транзисторными ключами, находящимися в микросхеме DA1 фирмы Texas Instruments. Резисторы R1…R8 могут иметь в 10… 15 раз более низкие сопротивления, что позволяет подключить параллельно выходам микросхемы А4/другие узлы устройства.

Рис. 4.10. Схемы вывода сигналов из MK в LPT-порт (начало):

а) непосредственное подключение выхода MK без буферных элементов. Резисторы R1, R2 уменьшают отражение сигналов в линии. Кроме того, резистор R2 защищает выход MK от случайного короткого замыкания с цепью GND в проводах соединительного кабеля;

б) триггер Шмитта DD1 служит защитным буфером для MK при аварийной ситуации на выходе (короткое замыкание или подача большого напряжения);

в) микросхема DD1 имеет выход с открытым коллектором, что защищает её от короткого замыкания в проводах и разъёмах соединительного кабеля;

г) подача двух противофазных сигналов в компьютер. Цель - программная необходимость или организация дублирующего (контрольного) канала передачи данных;

д) опторазвязка на элементах HL1, BL1, которые применяются в компьютерных механических «мышах». Транзистор КГ/усиливает и инвертирует сигнал. Для нормальной работы устройства компьютер должен выставить ВЫСОКИЙ уровень на линии «D8».

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (начало):

а) если компьютер выставляет на линии «DO» ВЫСОКИЙ уровень, то MK в режиме выхода может генерировать сигнал «АСК» через резистор R1. Если MK переводится в режим входа, то компьютер может передавать ему данные по линии «DO» через диод VD1 при этом внутренний « pull-up» резистор MK формирует ВЫСОКИЙ уровень;

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1 при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2». Информация в MK вводится с линии «DO» через резистор R1 Высокое сопротивление резистора R1 физически развязывает входной и выходной каналы;

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (окончание):

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1, при этом компьютер должен выставить НИЗКИЙ уровень на линии «DO». Информация в МК вводится через элементы R1, R3, VT2;

г) сигнал от LPT-порта вводится в MK через повторитель на транзисторе VT1, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «DO». Информация в MK вводится через повторитель на микросхеме DD1\

ж) сигналы «D0»…«D3» вводятся в MK при НИЗКОМ уровне на линии «INIT», при этом компьютер должен настроить линии «D4»…«D7» как входы. В настройках BIOS компьютера надо установить двунаправленный режим EPP или ЕСР для LPT-порта. Информация в компьютер из МК передаётся по линиям «D4»…«D7» при ВЫСОКОМ уровне на линии «INIT». Резистор R1 переводит выходы микросхемы DD1 в Z-состояние при отключённом кабеле от LPT-порта;

e) сигнал от MK в LPT-порт вводится через повторитель DD1.2, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2» и НИЗКИЙ уровень на линии «D5». Информация в MK вводится через повторитель DD1.1 при НИЗКОМ уровне налинии «D2». Стробирование сигналов по входам «Е1», «Е2» микросхемы DD1 повышает достоверность передачи данных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: