Контрастность изображения. Советы пользователю. телевизоры. Изменение яркости экрана

Как известно, АМ - вид модуляции, при которой амплитуда несущего сигнала изменяется по закону модулирующего (информационного) сигнала. Существует немало источников с теоретическим и практическим описанием АМ. Описание даётся, прежде всего, для того, чтобы показать частотный состав АМ сигнала. В качестве модулирующего сигнала обычно рассматривают однотональный сигнал. Данный сигнал задаётся простой функцией синуса. У меня всегда спрашивали, да и я задавался вопросом, как описать АМ на случай, если в качестве модулирующего сигнала будет произвольный сигнал. Именно произвольный сигнал, частотный спектр которого состоит из множества компонент, представляет интерес, так как АМ применяется в радиовещании для передачи звука.

Попробуем описать АМ для вышесказанного случая, принимая во внимание, что модулирующий сигнал можно представить, как непрерывную сумму простых однотональных сигналов разных частот с различными амплитудами и фазами. Не вдаваясь в тонкости математического анализа, данный сигнал можно записать как непрерывную сумму (интеграл) Фурье:

Где – верхний предел частоты сигнала (полоса модулирующего сигнала), - переменная интегрирования, отвечающая за частоту, причём . Функции и - амплитуда и фаза компоненты сигнала на частоте .

Подынтегральное выражение данной формулы представляет собой т.н. тригонометрическую свёртку в амплитудно-фазовый вид слагаемого ряда Фурье, в который можно разложить сигнал. Интеграл в (1) можно назвать интегралом Фурье, так как, фактически, это непрерывная сумма, т.е. непрерывный ряд Фурье, в который раскладывается исходный сигнал. Разложение сигнала в подобный ряд даёт представление о частотном составе этого сигнала. Таким образом, исходный модулирующий сигнал представлен в виде непрерывной суммы синусоид (в данном случае для удобства - ) различных частот от до , каждая из них имеет свою амплитуду фазовый сдвиг . Функция представляет собой частотный спектр исходного сигнала .

Стоит отметить, что сигнал рассматривается на ограниченном промежутке времени . Вообще говоря, если речь идёт о звуковом сигнале, то, как правило, частотный спектр имеет практический смысл рассматривать для очень коротких фрагментов сигнала. Очевидно, чем больше по времени продолжительность сигнала, тем больше низкочастотных (приближающихся к нулю) компонент будут фигурировать в спектральном составе, что нельзя сопоставить со звуковыми частотами в слышимом диапазоне.

Кроме модулирующего сигнала имеется тональный сигнал, представляющий собой несущее колебание с частотой , амплитудой и нулевой начальной фазой:

Причём . Действительно, в радиовещании частота несущей во много раз больше полосы передаваемого сигнала.

Теперь перейдём непосредственно к процессу амплитудной модуляции.

Известно, что АМ сигнал есть результат перемножения сигнала несущей и модулирующего сигнала, предварительно смещённого и «проиндексированного» индексом модуляции , т.е.

Во избежание так называемой перемодуляции .

Подставим исходные данные (1) и (2) в выражение (3), раскроем скобки, внесём под интеграл независящие от переменной интегрирования некоторые множители:

Применим известную школьную тригонометрическую формулу преобразования произведения для подынтегральных функций:

Данная формула носит ключевой характер при АМ и подчёркивает эти самые «две боковые» в спектральном составе АМ сигнала.

Продолжив равенство, разобьём интеграл получившейся суммы на сумму двух интегралов, раскроем скобки и вынесем за скобку нужные множители в аргументах функций:

Три получившихся слагаемых соответственно представляют собой, как видно из равенства, сигнал несущей, сигналы «нижней» и «верхней» боковой. Прежде чем дать конкретное пояснение, продолжим равенство, применив метод замены переменной в следующей конфигурации:

Воспользуемся этой самой заменой:

Поменяв в первом интеграле пределы интегрирования местами (в результате чего изменится знак перед интегралом на противоположный), можно два интеграла объединить в один. Более того, туда же можно внести и первое слагаемое, описывающее сигнал несущей. При этом, естественно, подынтегральные функции амплитуды и фазы необходимо обобщить. Это всё делается условно и для более детальной наглядности, не вдаваясь в тонкости математического анализа. Таким образом, получится:

Таким образом, были введены новые кусочнозаданные функции (4) и (5), описывающие изменение амплитуды и фазы в зависимости от частоты. Глядя на компоненты функции (4), можно заметить, что третья компонента получена путём параллельного переноса функции на , а первая - ещё и с предварительным зеркальным разворотом. Множители-константы перед функциями, уменьшающие амплитуду, я не беру во внимание. То есть, в спектре АМ сигнала имеются три компоненты: несущая, верхняя боковая и нижняя боковая, что и было отражено в (4).

В заключение стоит отметить, что АМ можно описать, применяя более сложный подход, основанный на комплексных сигналах и комплексных числах. Обычный сигнал, о котором шла речь в этой статье, не имеет мнимой компоненты. Принимая во внимание представление с помощью векторных диаграмм на комплексной плоскости, сигнал без мнимой компоненты складывается из двух комплексных сигналов с обоими компонентами. Это очевидно, если представлять однотональный сигнал в виде суммы двух векторов, которые вращаются в противоположные стороны симметрично относительно оси x (Re). Скорость вращения данных векторов эквивалентна частоте сигнала, а направление - знаку частоты (положительная или отрицательная). Из этого следует, что частотный спектр сигнала без мнимой компоненты имеет не только положительную, но и отрицательную составляющую. И, конечно же, он симметричен относительно нуля. Именно при таком представлении можно утвердить, что в процессе амплитудной модуляции спектр модулирующего сигнала переносится по шкале частот вправо от нуля на частоту несущей (и влево тоже). При этом «нижняя боковая» не возникает, она в исходном модулирующем сигнале уже существует, правда располагается в отрицательной области частот. Звучит на первый взгляд странно, так как в природе, казалось бы, не существует отрицательных частот. Но математика преподносит немало сюрпризов.

Теги: Добавить метки

На панели любого современного радиоприемника есть переключатель AM-FM. Как правило, обычный потребитель не задумывается о том, что означают эти буквы, ему достаточно запомнить, что на FM есть его любимая УКВ-радиостанция, транслирующая сигнал в стереозвучании и с прекрасным качеством, а на АМ можно поймать «Маяк». Если же вникнуть в технические подробности хотя бы на уровне пользовательской инструкции, то выяснится, что АМ - это амплитудная модуляция, а FM - частотная. Чем же они отличаются?

Для того чтобы из громкоговорителя радиоприемника зазвучала музыка, должен претерпеть определенные изменения. В первую очередь его следует сделать пригодным для радиотрансляции. Амплитудная модуляция стала первым способом, которым инженеры-связисты научились передавать речевые и музыкальные программы в эфире. Американец Фессенден в 1906 году с помощью механического генератора получил колебания в 50 килогерц, ставшие первой в истории несущей частотой. Далее он решил техническую проблему самым простым способом, установив микрофон на выходе обмотки. При воздействии на угольный порошок внутри мембранной коробки менялось его сопротивление, и величина сигнала, поступающего от генератора на передающую антенну, уменьшалась или увеличивалась в зависимости от них. Так была изобретена амплитудная модуляция, то есть изменение размаха несущего сигнала таким образом, чтобы форма огибающей линии соответствовала форме передаваемого сигнала. В двадцатые годы механические генераторы были вытеснены электронно-ламповыми. Это значительно уменьшило габариты и вес передатчиков.

Отличается от амплитудной тем, что размах несущей волны остается неизменным, меняется ее частота. По мере развития электронной базы и схемотехники появились другие способы, с помощью которых информационный сигнал «садился» на частоту радиодиапазона. Изменение фазы и широты импульса дали название фазовой и широтно-импульсной модуляциям. Казалось, что амплитудная модуляция как способ радиотрансляции устарела. Но вышло иначе, она сохранила свои позиции, хотя и в несколько измененном виде.

Растущие требования к информационной насыщенности частот побуждали инженеров искать способы увеличить количество каналов, передаваемых на одной волне. Возможности многоканальной трансляции определяются и барьером Найквиста, однако, помимо квантования сигнала, появилась возможность увеличить информационную нагрузку на посредством изменения фазы. Квадратурно-амплитудная модуляция - это такой способ передачи, при котором на одной частоте передаются разные сигналы, сдвинутые по фазе относительно друг друга на 90 градусов. Четырехфазность образует квадратуру или комбинацию двух составляющих, описываемых тригонометрическими функциями sin и cos, отсюда и название.

Квадратурная амплитудная модуляция получила широкое распространение в цифровой связи. По своей сути она представляет собой сочетание фазной и амплитудной модуляции.

Амплиту́дная модуляция - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Амплитудная модуляция (АМ) – модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими его колебаниями более низкой частоты.

При амплитудной модуляции (АМ) амплитуда высокочастотного колебания (несущей) изменяется по закону модулирующего (первичного) сигнала.

При АМ спектр модулирующего сигнала переносится в область частот носителя, образуя верхнюю и нижнюю боковые составляющие спектра. Поскольку при таком преобразовании получаются новые частоты, процедура модуляции есть нелинейное преобразование. Но поскольку при АМ спектр модулирующего сигнала не изменяется, а лишь переносится в область высоких частом, АМ считается линейным видом модуляции.

Цель любой модуляции - неискаженная и при меньшем воздействии помех передача сигнала по данной линии связи.

Принципы преобразования спектра при АМ широко используются в технике,

например, при разработке схем радиовещательных и телевизионных приемников, систем многоканальной телефонии с частотным уплотнением линий связи и, в частности, лежат в основе устройства анализатора спектра.

Несущая частота , частота гармонических колебаний, подвергаемых модуляции сигналами с целью передачи информации. Колебания с НЧ иногда называют несущим колебанием. В самих колебаниях с НЧ не содержится информации, они лишь «несут» её. Спектр модулированных колебаний содержит, кроме НЧ боковые частоты, заключающие в себе передаваемую информацию.

Если в качестве первичного сигнала принять сигнал, имеющий формулу синусоиды, то амплитудно-модулированный сигнал будет иметь вид, изображенный на рисунке.

С качественной стороны амплитудная модуляция (AM) может быть определена как изменение амплитуды несущей пропорционально амплитуде модулирующего сигнала.

Гармоническое колебание высокой частоты w модулировано по амплитуде гармоническим колебанием низкой частоты W (t = 1/W - его период), t - время, A - амплитуда высокочастотного колебания, T - его период.



Амплитудная модуляция синусоидальным сигналом, w - несущая частота, W - частота модулирующих колебаний, Амакс и Амин - максимальное и минимальное значения амплитуды.

Для модулирующего сигнала большой амплитуды соответствующая амплитуда модулируемой несущей должна быть большой и для малых значений амплитуды Эта схема модуляции может быть осуществлена умножением двух сигналов.

Глубина амплитудной модуляции - максимальное относительное отклонение амплитуды от среднего

Спектральная плотность модулированного сигнала представляет два спектра модулирующей функции, построенных относительно частот w = w 0 и w = -w 0 (сдвинутых на частоты несущей).

Пример . Спектр однотональной модуляции


Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами.

При обычной амплитудной модуляции информация содержится в каждой из двух боковых полос

Несущий сигнал - сигнал, один или несколько параметров которого подлежат изменению в процессе модуляции. Степень изменения параметра определяется мгновенным значением информационного (модулирующего) сигнала.

В качестве несущего может быть использован любой стационарный сигнал. Чаще всего в качестве несущего сигнала используется высокочастотное (относительно информационного сигнала) гармоническое колебание, что обусловлено простотой демодуляции и узким спектром. Однако, в некоторых случаях целесообразно использовать другие виды несущего сигнала, например, прямоугольный.

Несущий сигнал часто называют просто несущая (от несущая частота), либо несущее (колебание). Все эти термины означают практически одно и то же. В английской терминологии несущий сигнал обозначается словом carrier.

Отношение U /U 0 называют коэффициентом модуляции mАМ. Его часто выражают в процентах. Если U 0 >=Umax, то коэффициент mАМ будет изменяться от 0 до 1.

Коэффицие́нт амплиту́дной модуля́ции (коэффициент АМ, устар. глубина модуляции) - основная характеристика амплитудной модуляции - отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений, выраженное в процентах

АМ колебания представляют собой результат сложения трех высокочастотных колебаний; колебания с частотой f 0 и с амплитудой U 0 и двух колебаний с частотами f 0 + F и f 0 - F и амплитудой 0,5 mАМ*U 0 .

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот f 0 и F, но также их сумму и разность: f н + F и f н - F. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Частоты f н + F и f н - F называются верхней и нижней боковой частотой соответственно.

Верхняя боковая полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой.

Нижняя боковая полоса это зеркальное отображение верхней боковой по отношению к частоте несущей Fc.

Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier).


Амплитудная модуляция сложного сигнала

Любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае (с синусоидальным сигналом) этот спектр содержит лишь три составляющие - несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала.

Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания - 10 кгц, для телевидения - 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты и модулирующий сигнал подают на специальное устройство - модулятор.

Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе.

Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. Несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

За счет амплитудной модуляции сложного сигнала происходит увеличение скорости передачи данных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: