"Эльбрус" - процессор российского производства. Технические характеристики и история создания. Что известно о российских микропроцессорах «Эльбрус»

Все привыкли к тому, что на рынке микропроцессоров балом правят три крупных американских производителя: Intel, AMD и IBM. Это действительно так! Однако это не означает, что микропроцессоры больше никто не производит. Как правило, в большинстве развитых стран есть собственные «государственные» производители интегральных схем. Не стоит думать, что они пытаются каким-то образом составить конкуренцию «большой тройке» - вовсе нет. Причина локальной разработки и производства процессоров кроется несколько в другом, а именно в необходимости выпуска собственных решений для оборонной отрасли, где использование иностранной электронной базы запрещается из соображений национальной безопасности.

Само собой, ситуация характерна и для России. Главным отечественным решением являются процессоры на базе архитектуры «Эльбрус», разработкой которых занимается компания МЦСТ. В конце апреля был анонсирован скорый выход четырехъядерной модели «Эльбрус-4С», о которой и пойдет речь в сегодняшнем материале.

Однако для начала мы вернемся в прошлое и взглянем, как зарождалась архитектура «Эльбрус».

Процессор «Эльбрус» производства МЦСТ

История

Трудиться над архитектурой «Эльбрус» начали более 40 лет назад, а именно в 1973 году. Работы велись в стенах «Института точной механики и вычислительной техники имени Лебедева» (ИТМиВТ) под руководством академика Всеволода Сергеевича Бурцева - известного ученого в области систем управления и конструирования универсальных ЭВМ. Конечно же, «заказ» на подобного рода компьютерную технику поступил от военных.

Всеволод Бурцев - человек, стоящий у истоков архитектуры «Эльбрус»

Выпуск первого поколения компьютеров с архитектурой «Эльбрус» состоялся в 1980 году. Их особенностью являлась масштабируемая архитектура: они поддерживали параллельную работу до 10 процессоров одновременно. Объем оперативной памяти составлял 64 Мбайт (или 2 20 машинных слов), а быстродействие такого компьютера достигало отметки в 12 миллионов операций в секунду.

Компьютер «Эльбрус»

Однако главной инновацией «Эльбруса» была его суперскалярная архитектура - в компьютерах она применялась впервые. Как выяснилось позднее, на то время компания IBM уже имела некоторые разработки в этой области, однако довести суперскалярную архитектуру до массовых решений по разным причинам они так и не смогли. Поэтому американские производители начали использовать суперскалярную архитектуру лишь в 1990-х годах. Первыми массовыми устройствами с такой архитектурой стали процессоры Intel Pentium.

Процессор Pentium стал первой разработкой Intel, использующей суперскалярную архитектуру

Спустя пять лет после выхода первого поколения процессоров завершилась разработка компьютера «Эльбрус-2». Архитектурно он несильно отличались от «Эльбрус-1», однако в них применялась другая элементная база, что позволило поднять производительность новых процессоров более чем в 10 раз - до 125 млн операций в секунду. Также был увеличен объем оперативной памяти компьютера: с 64 Мбайт до 144 Мбайт, а пропускная способность каналов ввода/вывода составила 120 Мбайт/с.

«Эльбрус-2», как и его предшественник, был предназначен для использования в оборонной отрасли. В итоге компьютер эксплуатировался в Центре управления космическими полетами, а также в ядерных исследовательских центрах в Арзамасе-16 и Челябинске-70. Помимо этого, существовала и другая версия «Эльбрус-2», оптимизированная под более простые задачи. Она носила название «Эльбрус 1-КБ» и пришла на смену устаревающей системе БЭСМ-6, которая к тому времени использовалась уже на протяжении двух десятков лет. Разработчики сохранили программную совместимость между «Эльбрус 1-КБ» и БЭСМ-6, поэтому переход на новые компьютеры оказался вполне безболезненным.

Компьютер «Эльбрус-2»

После успешного выпуска «Эльбрус-2» полным ходом шла разработка нового компьютера, который ожидаемо получил название «Эльбрус-3». В третьем поколение устройств планировалось огромное количество архитектурных изменений. Разработчики из ИТМиВТ именовали новую архитектуру «постсуперскалярной». Данный принцип лежал в основе архитектуры будущих процессоров Intel Itanium. Поэтому, как бы это странно ни звучало, но отечественные инженеры вновь в плане внедрения инноваций опережали своих западных коллег.

Однако дальше проектирования дело не дошло. В 1994 году был создан тестовый образец процессора «Эльбрус-3», но серийное производство так и не было налажено по достаточно глупой причине: устройство оказалось совсем не востребованным. Спустя 6 лет уже инженеры компании МЦСТ пытались воплотить в жизнь идеи «Эльбрус-3» в новом процессоре «Эльбрус-2000» (также известного как Е2К), который теоретически мог стать конкурентом анонсированному процессору Intel Itanium. Однако массовое производство «Эльбруса-2000» требовали значительных финансовых вливаний, а найти инвестора разработчикам так и не удалось.

Создание МЦСТ и ее разработки

Стоит сделать небольшое отступление и сказать пару слов о МЦСТ, которая со времен «Эльбрус-3» и занимается разработкой подобных решений. Компания была основана 2 марта 1992 года как Товарищество с ограниченной ответственностью (ТОО) «Московский центр SPARC-технологий» (МЦSТ). Наличие аббревиатуры SPARC в названии связано с тем, что на тот момент компания МЦСТ рассматривала в качестве основного партнера американскую корпорацию Sun Microsystems, которая продвигала свои вычислительные машины с архитектурой SPARC. И наличие этой аббревиатуры в названии предоставляло ей существенные льготы при сотрудничестве. Например, МЦСТ получила доступ к передовым технологиям проектирования микропроцессорной техники, операционным системам, системам программирования и другим технологиям. На период развития компании это было очень существенной поддержкой. И если поначалу компания работала в тесном сотрудничестве с такими гигантами, как Sun Microsystems, Avanti, Compass, Synopsys, то вскоре инженеры МЦСТ, набравшись опыта, полностью переключились на разработку устройств по государственным заказам.

Система со SPARC-процессором МЦСТ R500

Вплоть до 2007 года МЦСТ выпускала лишь микропроцессоры с архитектурой SPARC и вычислительные системы на их базе. Собственная архитектура «Эльбрус» отошла на второй план. В период с 1997 по 2007 годы были выпущены четыре SPARC-микропроцессора: МЦСТ-R100, МЦСТ-R150, МЦСТ-R500 и МЦСТ-R500S. Также увидел свет и вычислительный комплекс «Эльбрус-90микро». Несмотря на свое название, к данной архитектуре система не имела никакого отношения.

Лишь в 2005 году возобновилась работа над архитектурой «Эльбрус», основанной на микроархитектуре VLIW (Very Long Instruction Word). А уже в 2007 году был представлен одноименный процессор. Его основные характеристики мы собрали в таблицу, которую вы можете увидеть снизу.

Технологический процесс 0,13 мкм
Рабочая тактовая частота 300 МГц
Пиковая производительность 64 разряда, GIPS/GFLOPS - 6,67/2,4 32 разряда, GIPS/GFLOPS - 9,5/4,8 16-8 GIPS - 12,2–22,6
64 Кбайт
64 Кбайт
Кэш-память 2-го уровня 256 Кбайт
9,6 Гбайт/с
4,8 Гбайт/с
Размеры кристалла 15,0х12,6
Количество транзисторов 75,8 млн
Рассеиваемая мощность 6 Вт

Конечно, для 2007 года характеристики чипа были более чем скромные - он ни в коем случае не составлял конкуренции современным процессорам, например, поколению Intel Conroe, представленному в 2006 году. «Эльбрус» уступал им по всем параметрам. Процессор выпускался по устаревшим 130-нм технологическим нормам, тогда как Intel и AMD уже освоили 65-нм техпроцесс. Как ни странно, но производство процессора было доверено тайваньской компании TSMC. Странно потому, что «камень» предназначался для использования в «оборонке», а производство на сторонних мощностях, таким образом, напрямую влияло на безопасность системы из-за возможных «закладок».

Процессор «Эльбрус»

Что касается скорости работы «Эльбруса», то его пиковая производительность в 64-разрядном режиме составляла 2,4 ГФЛОПС. Для сравнения: пиковая производительность бюджетного двухъядерного процессора Intel Core 2 Duo E4300 с актуальной на то время архитектурой Conroe и тактовой частотой 1,8 ГГц составляла 14,4 ГФЛОПС, то есть в 6 раз больше! Поэтому вы можете представить, насколько медленным был «Эльбрус» для 2007 года. Тем не менее, для оборонной отрасли производительности процессора было вполне достаточно, поэтому на его основе была создана вычислительная система «Эльбрус-3М1».

Вычислительный комплекс «Эльбрус-3М1»

Комплекс «Эльбрус-3М1» поставлялся с защищенной операционной системой МСВС-Э (Мобильная система Вооруженных Сил), в основе которой лежит Linux версии 2.6.14. Кроме этого компьютер оснащался пакетом тестовых и диагностических программ, а также был обратно совместим со старыми вычислительными комплексами «Эльбрус-1» и «Эльбрус-2». По уровню производительности «Эльбрус-3М1» был сопоставим с системой на базе Pentium III с тактовой частотой 500 МГц. Было проведено сравнительное тестирование в режиме совместимости с платформой x86, и «Эльбрус-3М1» превзошел в скорости процессор Intel. Помимо этого, проводилось тестирование и в «родной» платформе для системы МЦСТ. В таком режиме производительность «Эльбрус-3М1» находилась на уровне с конфигурацией на базе процессора Intel Pentium 4 с частотой 2000 МГц. Для оборонной отрасли такого уровня производительности было более чем достаточно.

Следующим этапом развития архитектуры стала система на кристалле «Эльбрус-S», выпущенная в 2010 году. Для удобства сравнения мы свели все основные характеристики процессора в следующую таблицу.

Технологический процесс 0,09 мкм
Рабочая тактовая частота 500 МГц
Пиковая производительность 64 разряда, GFLOPS - 4 32 разряда, GFLOPS - 8
Кэш-память команд 1-го уровня 64 Кбайт
Кэш-память данных 1-го уровня 64 Кбайт
Кэш-память 2-го уровня 2 Мбайт
Пропускная способность шин связи с кэш памятью 16 Гбайт/с
Пропускная способность шин связи с оперативной памятью 8 Гбайт/с
Площадь кристалла 142 мм2
Количество транзисторов 218 млн
Рассеиваемая мощность 13 Вт - типовая, 20 Вт - максимальная

Характеристики нового процессора были улучшены в сравнении с «Эльбрусом». Прежде всего стоит отметить, что производство «Эльбрус-S» было переведено на 90-нм технологические «рельсы». Пускай в 2010 году Intel и AMD уже производили процессоры по тонкому 32-нм техпроцессу, но для отечественного устройства этот переход стал значительным шагом вперед. Тактовая частота «Эльбрус-S» составляла 500 МГц, что на 200 МГц выше, чем у «Эльбруса». Выросла и пиковая производительность: до 4 и 8 ГФЛОПС в 64-разрядном и 32-разрядном режимах соответственно. Увеличился и объем кэш-памяти второго уровня - до 2 Мбайт. Да и сам чип стал сложнее: количество транзисторов в сравнении с предшественником выросло почти в три раза.

Процессор «Эльбрус-S»

В придачу к «Эльбрус-S» МЦСТ представила контроллер периферийных устройств (КПИ) - он же «южный мост». Хаб обеспечил поддержку как «гражданских» интерфейсов, так и промышленных. Благодаря КПИ стало возможным созданием специального четырехпроцессорного рабочего модуля МВ3S/C, который используется в военной технике.

Технологический процесс, нм 130
Тактовая частота, МГц 250
Последовательная шина связи с процессором, пропускная способность, Гбайт/с 2
Контроллер PCI-Express версии 1.0a 8 линий
Контроллер PCI версии 2.3 32/64 бита, частота 33/66 МГц
Контроллер Ethernet 1 Гбит/с 1 порт
Контроллер SATA 2.0 4 порта
Контроллер IDE PATA-100, 2 порта по 2 устройства
Контроллер USB 2.0 2 порта
Контроллер звукового интерфейса AC-97 2-канальное стерео
Контроллер последовательного интерфейса RS-232/485 2 порта
Контроллер параллельного интерфейса IEEE-1284 с поддержкой DMA 1 порт
Контроллер программируемых универсальных входов-выходов GPIO 16 сигналов
Интерфейс I2C 4 канала
Число транзисторов, млн 30
Потребляемая мощность, Вт 6

Спустя год было налажено производство следующего поколения процессоров под названием «Эльбрус-2С+». В своих пресс-релизах компания МЦСТ указывала шестиядерную архитектуру. Однако это совсем не так! «Эльбрус-2С+», по сути, является двухъядерной моделью. Он обладает двумя модулями архитектуры «Эльбрус», но также имеет и четыре ядра цифровых сигнальных процессоров (DSP) фирмы «Элвис». Помимо этого, кристалл претерпел множество изменений. Так, объем кэш-памяти второго уровня каждого из ядер составляет 1 Мбайт. Была добавлена поддержка памяти DDR2 с эффективной частотой 800 МГц, а также дополнительный канал ввода/вывода, посредством которого можно подключить еще один КПИ.

Двухъядерный процессор «Эльбрус-2С+»

Для процессора была реализована версия компилятора языка C, которая позволяет генерировать код для ядер DSP и обеспечивать эффективное взаимодействие основной программы, исполняющейся на ядрах CPU, а также процедур, исполняющихся на DSP. Забегая чуть вперед, скажем, что программировать под ядра DSP было сравнительно трудно, поэтому в следующем поколении процессоров инженеры МЦСТ от них отказались вовсе. В результате внесенных изменений производительность процессоров значительно возросла и уже составляла 28 ГФЛОПС в 32-разрядном режиме. Если сравнивать быстродействие «Эльбрус-2С+» с процессорами Intel, то отечественная разработка окажется чуть выше по скорости, чем решения Intel Core 2 Duo.

Технологический процесс 0,09 мкм
Рабочая тактовая частота 500 МГц
Число ядер архитектуры Эльбрус Число ядер DSP (Elcore-09) 2 4
Пиковая производительность (ядра CPU + ядра DSP) 64 разряда, GFLOPS –­ 8+0 32 разряда, GFLOPS – 16+12
Кэш-память команд 1-го уровня 64 Кбайт
Кэш-память данных 1-го уровня 64 Кбайт
Кэш-память 2-го уровня 1 Мбайт
Встроенная память DSP (на ядро DSP) 128 Кбайт
Пропускная способность шин связи с кэш памятью 16 Гбайт/с
Пропускная способность шин связи с оперативной памятью 12,8 Гбайт/с
Площадь кристалла 289 мм2
Количество транзисторов 368 млн
Рассеиваемая мощность 25 Вт

Производительность процессора можно примерно оценить по следующим диаграммам.

Результаты тестирования в пакете SPEC2000 FP

Результаты тестирования в пакете SPEC2000 Int

Помимо «Эльбрус-2С+», в тестировании участвовали процессоры Intel Pentium-M ULV (1 ГГц, кэш-память 1 Мбайт, 2х DDR-266) и Intel Atom D510 (1,66 ГГц, кэш-память 1 Мбайт, DDR2-800), а также еще один процессор компании МЦСТ - R1000. В качестве тестового программного обеспечения был выбран пакет SPEC2000. Как видно из диаграмм, в режиме FP производительность «Эльбрус-2С+» находится на заметно более высоком уровне, нежели у конкурентов. В режиме Int ситуация выравнивается, и зачастую производительность всех процессоров находится на одном уровне, хотя местами отечественные решения откровенно «проседают».

Процессоры «Эльбрус-2С+» предполагалось использовать в системах цифровой интеллектуальной обработки сигнала, таких как радары и анализаторы изображений. Однако в то же время новые чипы были более приспособлены для гражданских задач. Например, компания Kraftway даже выпустила тестовую партию моноблочных компьютеров на базе кристаллов «Эльбрус-2С+», однако дальше этого дело не пошло.

И вот в апреле 2014 года компания МЦСТ представила свою следующую разработку - четырехъядерные процессоры «Эльбрус-4С».

Архитектура процессоров «Эльбрус-4С»

Прежде чем мы начнем подробное изучение архитектуры новых процессоров «Эльбрус-4С», необходимо уделить немного внимания современной архитектуре в целом. Как вам известно, все интегральные решения можно разделить на две большие группы: CISC (Complex Instruction Set Computer) и RISC (Reduced Instruction Set Computer). Уже из названий становится понятно, что CISC-процессоры работают со сложными инструкциями, а RISC - с упрощенными. Сложность инструкций для первой категории заключается в том, что их длина не ограничена. Вдобавок к этому они могут содержать сразу несколько арифметических действий. До начала 1980-х абсолютно все процессоры имели CISC-архитектуру, однако тогдашние исследования компании IBM показали, что сложные инструкции далеко не всегда обрабатываются быстрее, чем последовательность элементарных операций, соответствующая такой сложной инструкции. Так появилась архитектура RISC, предусматривающая использование упрощенных команд.

Примером CISC-архитектуры могут считаться все x86-совместимые процессоры, однако это не совсем так. Работа таких решений базируется на ядре типа RISC. Каждый x86-процессор имеет специальный блок декодирования инструкций, который преобразует CISC-команды в RISC-инструкции.

При этом процессоры x86 являются суперскалярными. Это означает, что за один такт процессор может обрабатывать сразу несколько инструкций. В далеком прошлом процессоры не обладали суперскалярностью и исполняли за такт лишь одну операцию. Тогда это не создавало проблем. Но со временем от CPU требовалась всё более высокая производительность, да и технологические возможности позволяли создавать более сложные системы. Поэтому суперскалярность стала неотъемлемой частью процессорных архитектур. Главной проблемой суперскалярности считается то, что нельзя так просто исполнять несколько операций параллельно, поскольку между ними могут существовать зависимости. Для наглядности тут можно провести параллель с программированием: нельзя запустить на исполнение сразу две функции, если одна из них использует результирующее значение другой. Поэтому в суперскалярных процессорах есть специальная аппаратура, которая анализирует зависимости между операциями и принимает решение об очередности их исполнения.

Принцип работы архитектуры «Эльбрус»

Что касается процессоров «Эльбрус», то они базируются на архитектуре VLIW. По большому счету VLIW является развитием RISC-архитектуры и суперскалярности. Особенностью VLIW является то, что в каждой команде может содержаться до 23 элементарных операций, которые должны исполняться параллельно. При этом задача распараллеливания возлагается на компилятор, в отличие от традиционных суперскалярных архитектур, где за распараллеливание отвечают аппаратные блоки процессора. Эффективность такого метода действительно выше. Компилятор способен анализировать исходный код гораздо тщательнее, чем аппаратура RISC/CISC-процессора, и находить больше независимых операций. Поэтому в архитектуре «Эльбрус» больше параллельно работающих исполнительных устройств, чем в традиционных решениях. На многих алгоритмах она демонстрирует более высокую скорость. Кроме этого, не будем забывать, что в случае использования компилятора для распараллеливания операций отпадает надобность в специальных аппаратных блоках процессора, а это делает устройство кристалла более простым и надежным.

Принцип работы процессора «Эльбрус»

Среди других особенностей архитектуры «Эльбрус» инженеры МЦСТ выделяют следующие:

  • 6 каналов арифметико-логических устройств (АЛУ), работающих параллельно;
  • регистровый файл из 256 84-разрядных регистров;
  • аппаратная поддержка циклов, в том числе с конвейеризацией. Повышает эффективность использования ресурсов процессора;
  • программируемое асинхронное устройство предварительной подкачки данных с отдельными каналами считывания. Позволяет скрыть задержки от доступа к памяти и полнее использовать АЛУ;
  • поддержка спекулятивных вычислений и однобитовых предикатов. Позволяет уменьшить число переходов и параллельно исполнять несколько ветвей программы;
  • широкая команда, способная при максимальном заполнении задать в одном такте до 23 операций (более 33 операций при упаковке операндов в векторные команды).

Конечно, не забыли разработчики и о режиме x86-совместимости. Для этого в архитектуре была реализована система динамической трансляции двоичных кодов x86 в коды процессора «Эльбрус». Если говорить простым языком, то система трансляции создает виртуальную машину, в которой работает гостевая операционная система для этой разрядности. По словам разработчиков, на платформе «Эльбрус» в режиме эмуляции платформы x86 удалось запустить более 20 операционных систем (в том числе несколько версий Windows) и сотни приложений.

Разработчики МЦСТ в целях повышения безопасности пошли иным путем. Процессоры «Эльбрус-4С» поддерживают так называемое защищенное исполнение программ. Его суть заключается в том, чтобы гарантировать работу приложения только с инициализированными данными, проверять все обращения в память на принадлежность к допустимому диапазону адресов, обеспечивать межмодульную защиту (например, защищать вызывающее ПО от ошибки в библиотеке). Эти проверки осуществляются аппаратно.

Тут же стоит отметить и другую интересную функцию безопасности новых процессоров. В кристаллах «Эльбрус-4С» стек связующей информации (цепочка адресов возврата при процедурных вызовах) отделен от стека пользовательских данных и недоступен для таких вирусных атак, как подмена адреса возврата. При этом разработчики подчеркивают, что на сегодняшний день вирусов для платформы «Эльбрус» попросту не существует.

Технические характеристики «Эльбрус-4С»

В сравнении со своим предшественником процессор «Эльбрус-4С» сделал значительный шаг вперед. Помимо увеличения количества ядер до четырех, он получил множество других улучшений.

Технологический процесс 65 нм
Рабочая тактовая частота 800 МГц
Число ядер архитектуры Эльбрус 4
Пиковая производительность 64 разряда, GFLOPS –­ 25 32 разряда, GFLOPS – 50
Кэш-память команд 1-го уровня 128 Кбайт
Кэш-память данных 1-го уровня 64 Кбайт
Кэш-память 2-го уровня 8 Мбайт
Организация оперативной памяти До 3 каналов DDR3-1600 ECC
Пропускная способность каналов оперативной памяти 38,4 Гбайт/с
Каналы межпроцессорного обмена 3, дуплексные
Пропускная способность каждого канала межпроцессорного обмена 12 Гбайт/с
Площадь кристалла 380 мм2
Количество транзисторов 986 млн
Рассеиваемая мощность До 60 Вт

Прежде всего нужно отметить, что производство процессора было переведено на 65-нм техпроцесс. Тактовая частота CPU возросла до 800 МГц. Удвоился объем кэш-памяти команд первого уровня, теперь он составляет 128 Кбайт. А объем кэш-памяти второго уровня составляет 8 Мбайт (против 1 Мбайт у «Эльбрус-2С+»). Также значительно выросла пропускная способность каналов оперативной памяти. Эти изменения позволили добиться внушительной прибавки производительности новых процессоров. Так, в 64-разрядном режиме пиковая производительность составляет 25 ГФЛОПС, что более чем в три раза выше, чем показатель «Эльбрус-2С+». В 32-разрядном режиме производительность достигла отметки 50 ГФЛОПС. Вместе с тем возросла и сложность кристалла. «Эльбрус-4С» содержит 986 млн транзисторов, а его полезная площадь составляет 380 мм 2 .

Ближайшее будущее процессоров «Эльбрус»

Компания МЦСТ ни в коем случае не планирует снижать темпы разработки и выпуска новых решений. На 2015 год уже запланирован анонс восьмиядерного 28-нм процессора «Эльбрус-8С». Кристалл оснастят 4 Мбайт кэш-памяти второго уровня и 16 Мбайт кэш-памяти третьего уровня, а его тактовая частота составит 1300 МГц. При этом пиковая производительность достигнет отметки 250 ГФЛОПС. Планируется, что «Эльбрус-8С» будет работать в связке с контроллером периферийных устройств второго поколения (КПИ-2), который будет отличаться увеличенной до 16 Гбайт/с пропускной способностью.

Однако 8-ядерный чип является не единственным находящимся в разработке процессором МЦСТ. Компания также «допиливает» экономичный «одноголовый» чип «Эльбрус-1С+», предназначенный для использования в ноутбуках, терминалах и промышленной автоматике. Его отличительной особенностью является наличие встроенного видеоядра с поддержкой аппаратного ускорения 3D-видео. Процессор будет выпускаться в соответствии с 40-нм технологическими нормами. Производительность ядра составит около 24 ГФЛОПС, а встроенного видео - около 28 ГФЛОПС. «Эльбрус-1С+» также будет совместим с новым «южным мостом» КПИ-2, а его энергопотребление составит не более 10 Вт. Выпуск этого процессора также запланирован на 2015 год.

Заключение

Подробное изучение архитектуры процессора «Эльбрус-4С» оставило после себя двоякое впечатление. С одной стороны, не будем лукавить, по многим параметрам она является устаревшей и значительно отстает от продукции AMD и Intel. С другой стороны, отечественная электроника уже давно находится в периоде застоя, поэтому было бы глупо ожидать, что в такой ситуации процессоры МЦСТ смогут составить хоть какую-то конкуренцию западным разработкам. И здесь главное понимать, что предпринимаются реальные попытки возродить отечественную индустрию электроники. В такой ситуации выпуск «Эльбрус-4С» - очень большой шаг вперед. Тем более, что в архитектуре реализовано несколько очень интересных технологий, а со своими задачами в оборонной отрасли он справляется более чем уверенно.

У компании МЦСТ большие планы на будущее. Это и выпуск процессоров «Эльбрус-8С», и «Эльбрус-1С+». Так что следующий год во многом покажет, насколько конкурентоспособной окажется российская отрасль микроэлектроники.

  • Обработка изображений ,
  • Программирование
  • В этой статье мы покажем, как работают технологии распознавания образов на Эльбрус-4С и на новом Эльбрус-8С: рассмотрим несколько задач машинного зрения, немного расскажем об алгоритмах их решения, приведем результаты бенчмаркинга и наконец покажем видео.



    Эльбрус-8С - новый 8-ядерный процессор МЦСТ с VLIW-архитектурой. Мы тестировали инженерный образец с частотой 1.3 ГГц. Возможно, в серийном выпуске она еще возрастет.



    Приведем сравнение характеристик Эльбрус-4С и Эльбрус-8С.


    Эльбрус-4С Эльбрус-8С
    Тактовая частота, МГц 800 1300
    Число ядер 4 8
    Число операций за такт (на ядро) до 23 до 25
    L1 кэш, на ядро 64 Кб 64 Кб
    L2 кэш, на ядро 2 Мб 512 Кб
    L3 кэш, общая - 16 Мб
    Организация оперативной памяти До 3 каналов DDR3-1600 ECC До 4 каналов DDR3-1600 ECC
    Технологический процесс 65 нм 28 нм
    Количество транзисторов 986 млн. 2730 млн.
    Ширина SIMD инструкции 64 бита 64 бита
    Поддержка многопроцессорных систем до 4 процессоров до 4 процессоров
    Год начала производства 2014 2016
    Операционная система ОС “Эльбрус” 3.0-rc27 ОС “Эльбрус” 3.0-rc26
    Версия компилятора lcc 1.21.18 1.21.14

    В Эльбрус-8С более чем в полтора раза повысились тактовая частота, вдвое увеличилось число ядер, а также произошло усовершенствование самой архитектуры.


    Так, например, Эльбрус-8С может исполнять до 25 инструкций за 1 такт без учета SIMD (против 23 у Эльбрус-4С).


    Важно : нами не проводилось никакой специальной оптимизации под Эльбрус-8С. Была задействована библиотека EML, однако объем оптимизаций под Эльбрус в наших проектах сейчас явно меньше, чем под другие архитектуры: там он постепенно наращивался в течение нескольких лет, а платформой Эльбрус мы занимаемся не так давно и не столь активно. Основные времязатратные функции, конечно же, были оптимизированы, но вот до остальных пока не дошли руки.

    Распознавание паспорта РФ

    Разумеется, начать освоение новой для нас платформы мы решили с запуска нашего продукта Smart IDReader 1.6 , предоставляющего возможности по распознавания паспортов, водительский прав, банковских карт и других документов. Необходимо отметить, что стандартная версия этого приложения может эффективно задействовать не более 4 потоков при распознавании одного документа. Для мобильных устройств этого более чем достаточно, а вот при бенчмаркинге десктоп-процессоров это может приводить к занижению оценок производительности многоядерных систем.


    Предоставленная нам версия ОС Эльбрус и компилятора lcc не потребовали никаких специальных изменений в исходном коде и мы без каких-либо трудностей собрали наш проект. Отметим, что в новой версии появилась полная поддержка С++11 (она также появилась и в свежих версиях lcc для Эльбрус-4С), что не может не радовать.


    Для начала мы решили проверить, как работает распознавание паспорта РФ, о котором мы уже писали , на Эльбрус-8С. Мы провели тестирование в двух режимах: поиск и распознавание паспорта на отдельном кадре (anywhere-режим) и на видеоролике, снятом с веб-камеры (webcam-режим). В anywhere режиме распознавание разворота паспорта выполняется на одном кадре, причем паспорт может находиться в любой части кадра и быть произвольным образом ориентированным. В режиме webcam выполняется распознавание только страницы паспорта с фото, причем обрабатывается серия кадров. При этом предполагается, что строки паспорта горизонтальны и паспорт слабо смещается между кадрами. Полученная с разных кадров информация интегрируется для повышения качества распознавания.


    Для тестирования мы взяли по 1000 изображений для каждого из режимов и замеряли среднее время работы распознавания (т.е. время без учета загрузки картинки) при запуске в 1 поток и запуске с распараллеливанием. Полученное время работы приведено ниже в таблице.



    Результаты для однопоточного режима вполне соответствуют ожидаемым: помимо ускорения за счет повышения частоты (а кратность частот 4С и 8С равна 1300 / 800 = 1.625), заметно небольшое ускорение за счет усовершенствования архитектуры.


    В случае запуска на максимальном числе потоков ускорение для обоих режимов составило 1.7. Казалось бы, число ядер в Эльбрус-8С вдвое больше, чем в 4С. Так где же ускорение за счет дополнительных 4 ядер? Дело в том, что наш алгоритм распознавания активно задействует только 4 потока и слабо масштабируется дальше, поэтому прирост производительности совсем незначительный.


    Далее мы решили добиться полной загрузки всех ядер обоих процессоров и запустили несколько процессов распознавания паспорта. Каждый вызов распознавания был распараллелен так же, как и в предыдущем эксперименте, однако здесь время обработки паспорта включало загрузку изображения из файла. Замеры времени выполнялись на все той же тысяче паспортов. Результаты при полной загрузке Эльбрусов приведены ниже:



    Для anywhere-режима полученное ускорение приблизилось к ожидаемому ускорению в ~3.6 раза, не дотянув до него из-за того, что мы учитывали время загрузки картинки из файла. В случае с webcam-режимом влияние времени загрузки еще больше и поэтому ускорение получилось более скромным - 2.5 раза.

    Детекция автомобилей

    Детекция объектов заданного типа - одна из классических задач технического зрения. Это может быть детекция лиц, людей, оставленных предметов или любого другого типа объектов, обладающих явными отличительными признаками.


    Для нашего примера мы решили взять задачу детекции автомобилей, движущихся в попутном направлении. Подобный детектор может использоваться в системах автоматического управления транспортными средствами, в системах распознавания автомобильных номеров и т.д. Не долго думая, мы отсняли видео для обучения и тестирования с помощью авторегистратора неподалеку от нашего офиса. В качестве детектора мы использовали каскадный классификатор Виолы-Джонса . Дополнительно мы применили экспоненциальное сглаживание положений найденных автомобилей для тех из них, которые мы наблюдаем несколько кадров подряд. Стоит отметить, что детектирование выполняется только в прямоугольнике ROI (region of interest), который занимает не весь кадр, поскольку малоосмысленно пытаться детектировать внутренности нашего автомобиля, а также машины, не полностью попадающие в кадр.


    Таким образом, наш алгоритм состоял из следующих шагов:

    1. Вырезание прямоугольника ROI по центру кадра.
    2. Преобразование цветного изображения ROI в серое.
    3. Предпосчет признаков Виолы-Джонса.
      На этом этапе изображение подвергается масштабированию, строятся карты вспомогательных признаков (например, направленных границ), а также вычисляются кумулятивные суммы по всем признакам для быстрого подсчета хааровских вэйвлетов.
    4. Запуск классификатора Виолы-Джонса на множестве окон.
      Здесь с некоторым шагом перебираются прямоугольные окна, на которых запускается классификатор. Если классификатор выдал положительный ответ, то произошла детекция объекта, т.е. изображение внутри окна соответствует автомобилю. В этом случае выполняется уточнение области изображения, в которой находится объект: в окрестности первичной детекции выделяются окна того же размера, но с меньшим шагом и также подаются на вход классификатора. Все найденные объекты сохраняются для дальнейшей обработки. Данная процедура повторяется для нескольких масштабов входного изображения.
      Этот этап собственно и составляет основную вычислительную сложность задачи и распараллеливание было произведено именно для него. Мы использовали библиотеку tbb для автоматического выбора эффективного числа потоков.
    5. Обработка массива детекций, полученного после применения детектора. Поскольку ряд полученных детекций могут быть очень близкими и отвечать одному и тому же объекту, мы объединяем детекции, имеющие достаточно большую площадь пересечения. В результате получаем массив прямоугольников, которые указывают положение обнаруженных автомобилей.
    6. Сопоставление детекций на предыдущем и текущем кадрах. Мы считаем, что был задетектирован один и тот же объект, если площадь пересечения прямоугольников составляет больше половины от площади текущего прямоугольника. Выполняем сглаживание положения объекта по формулам:
      x i = x i + (1-α)x i -1
      y i = y i + (1-α)y i -1
      w i = w i + (1-α)w i -1
      h i = h i + (1-α)h i -1
      где (x , y )--- координаты верхнего левого угла прямоугольника, w и h - его ширина и высота соответственно, а α - постоянный коэффициент, подобранный экспериментально.


    Здесь и далее для оценки fps (frame per second) использовалось среднее время работы по 10 запускам программы. При этом учитывалось только время обработки изображений, поскольку сейчас мы работали с записанным роликом, и изображения просто загружались из файла, а в реальной системе они могут, например, поступать с камеры. Оказалось, что детекция работает с весьма приличной скоростью, выдавая 15.5 fps на Эльбрус-4С и 35.6 fps на Эльбрус-8С. На Эльбрус-8С загрузка процессора оказывается далеко не полной, хотя в пике задействованы все ядра. Очевидно, это связано с тем, что не все вычисления в этой задаче были распараллелены. Например, перед применения детектора Виолы-Джонса мы выполняем достаточно тяжеловесные вспомогательные преобразования каждого кадра, а эта часть системы работает последовательно.


    Теперь пришло время демонстрации. Интерфейс приложения и отрисовка выполнены с помощью стандартных средств Qt5. Никакой дополнительной оптимизации не проводилось.


    Эльбрус-4С



    Эльбрус-8С


    Визуальная локализация

    В этом приложении мы решили продемонстрировать визуальную локализацию на основе особых точек. Использовав панорамы Google Street View с GPS-привязкой, мы научили нашу систему узнавать местонахождение камеры без использования данных о её GPS-координатах или другой внешней информации. Такая система может использоваться для беспилотников и роботов в качестве резервной системы навигации, для уточнения текущего местоположения или для работы в системах без GPS.


    Сначала мы обработали базу панорам с GPS-координатами. Мы взяли 660 изображений, покрывающих приблизительно 0.4 км^2 московских улиц:




    Затем мы создали описание изображений с помощью особых точек. Для каждого изображения мы:

    1. Нашли особые точки для 3 масштабов кадра (сам кадр, уменьшенный в 4/3 раза кадр и уменьшенный вдвое кадр) алгоритмом YAPE (Yet Another Point Detector) и посчитали для них RFD-дескрипторы .
    2. Сохранили его координаты, набор особых точек, их дескрипторы. Поскольку затем мы будем сравнивать дескрипторы особых точек текущего кадра со значениями дескрипторов из нашей базы, удобно хранить дескрипторы в дереве, используя расстояние Хэмминга в качестве метрики. Общий размер сохраненных данных оказался чуть больше 15 Мб.

    На этом приготовления закончены, теперь перейдем к тому, что происходит непосредственно во время работы программы:

    1. Преобразование цветного изображения в серое.
    2. Выполнение автоконтраста.
    3. Поиск особых точек для трех масштабов кадра (также с коэффициентами 1, 0.75 и 0.5) с помощью алгоритма YAPE и подсчет для них RFD-дескрипторов. Эти алгоритмы частично распараллелены, однако довольно большая часть вычислений осталась последовательной. Кроме того, они пока не оптимизировались под платформу Эльбрус.
    4. Для полученного набора дескрипторов выполняется поиск похожих дескрипторов среди сохраненных в дереве, и происходит определение несколько наиболее похожих кадров. Для различных дескрипторов поиск в дереве распараллелен с помощью tbb. При этом для первых 5 кадров видео мы выбираем 10 ближайших кадров, а затем берем только 5 кадров.
    5. Выбранные кадры проходят дополнительную фильтрацию, чтобы убрать “выбросы”, ведь траектория транспортного средства обычно непрерывна.

    Входные данные: последовательность цветных кадров размера 800х600 пикселей.


    Такая система выдает 3.0 fps на Эльбрус-4С и 7.2 fps на Эльбрус-8С.


    Покажем, как же оно работает:


    Эльбрус-4С



    Эльбрус-8С


    Заключение

    Для удобства основные характеристики Эльбрусов и полученные результаты по нашим программам собраны в таблице:



    Результаты для распознавания паспорта получились довольно скромные, поскольку наше приложение в своем текущем виде не может эффективно задействовать более 4 потоков. Похожая ситуация с детекцией автомобилей и визуальной локацией: алгоритмы имеют нераспараллеленные участки, поэтому не приходится ожидать линейного масштабирования при росте числа ядер. Однако там, где нет ограничений на загрузку приложениями всех ядер процессора, мы наблюдаем рост в 3.2 раза, это близко к теоретическому пределу в 3.6 раз. В среднем разница производительности между поколениями процессоров МЦСТ на нашем наборе задач составляет порядка 2-3 раз, и это очень радует. Только за счёт увеличения частоты и совершенствования архитектуры мы наблюдаем выигрыш более чем в 1.7 раза. МЦСТ быстро нагоняет Intel с ее стратегией в добавлении 5% в год.


    В процессе тестов под полной нагрузкой мы не испытывали проблем с зависаниями и падениями, что говорит о зрелости процессорной архитектуры. Подход VLIW, развиваемый в Эльбрусах-8С, позволяет добиваться работы в реальном времени различных алгоритмов компьютерного зрения, а библиотека EML содержит весьма солидный набор математических функций, которые позволяют экономить время тем, кто не собирается оптимизировать код сам. В заключение мы провели еще один эксперимент, запустив сразу 3 демонстрации (локализацию, поиск машин и поиск лиц) на одном процессоре Эльбрус-8С и получив среднюю загрузку процессора около 80%. Тут уж без комментариев.



    Хотим сказать большое спасибо компании и сотрудникам МЦСТ и ИНЭУМ Брука за возможность попробовать Эльбрус-8С и поздравить их - восьмерка более чем достойный процессор и пожелать им успехов!

  • ocr-технологии
  • Добавить метки

    Восьмиядерный процессор «Эльбрус-8С», выпускаемый по технологическому процессу 28 нм, был представлен на четвёртой конференции «ИТ на службе оборонно-промышленного комплекса». Крупнейшее специализированное мероприятие, объединяющее разработчиков и ИТ-специалистов ВПК, началось вчера в г. Иннополис (Республика Татарстан) и продлится до 29 мая.

    О завершающем этапе работ по созданию отечественного микропроцессора на новом для России техпроцессе объявил Александр Якунин – генеральный директор «Объединенной приборостроительной корпорации», входящей в «Ростех».

    «Прорывной результат достигнут в рамках проекта «Байкал», который мы ведем совместно с компанией «Т-Платформы», – пояснил Александр Якунин. – Только что выпущен первый инженерный образец процессора «Байкал-Т» с революционным для России техпроцессом 28 нм.

    Следующей российской разработкой будет новое поколение процессоров «Эльбрус» на таком же техпроцессе. Его создание вышло на завершающую стадию, очередной инженерный выпуск сейчас проходит тестирование».

    Разработку «Эльбрус-8С» ведёт Институт электронных управляющих машин (ИНЭУМ) имени И. С. Брука при участии компании МЦСТ. Его характеристики выглядят так:

    • площадь кристалла 350 кв. мм;
    • восемь идентичных процессорных ядер без гипертрединга;
    • кэш второго уровня 512 KB на ядро;
    • кэш третьего уровня – общий, 16 МБ;
    • собственная архитектура «Эльбрус», разработанная в ЗАО «МЦСТ»;
    • система команд с векторными ускорителями и инструкциями для ускорения математических расчётов, шифрования и обработки сигналов. Они не выделяются в отдельные расширения, а предусмотрены изначально;
    • система оптимизирующей двоичной трансляции кода обеспечивает совместимость с архитектурами x86 / x86-64 при лицензионной независимости от Intel и достижении производительности на уровне 80% от нативной;
    • возможность прямого исполнения команд без двоичной трансляции в двадцати дистрибутивах ОС и свыше тысячи популярных приложений (список быстро пополняется);
    • встроенные механизмы защиты от запуска вредоносного кода: структурированная память с доступом к объектам через дескрипторы и контекстной защитой по языковым областям видимости; определение нарушения границ объекта (переполнения буфера), использования неинициализированных данных и опасных отклонений от стандартов программирования.
    • поддержка четырёх слотов памяти стандарта PC3‑12800 (DIMM DDR3-1600);
    • исполнение 30 операций за такт;
    • тактовая частота 1.3 ГГц – планируемый частотный потолок, при котором возможна стопроцентная загрузка всех восьми ядер неограниченно долгое время в стандартных условиях. Для работы в неблагоприятных (и особенно – полевых) условиях эксплуатации для защиты от перегрева будет реализована схема автоматического снижения частоты (аналог throttling) и (временное) программное отключение отдельных ядер средствами операционной системы;
    • пиковая производительность 250 Гфлопс на вычислениях с плавающей запятой одинарной точности (FP32) при полной загрузке всех блоков FPU;
    • рассеиваемая мощность на уровне 60 – 90 Вт (расчётные показатели);
    • процессор распаивается прямо на плате, что позволяет снизить затраты на корпусировку чипов и их отбраковку.

    Работать «Эльбрус-8С» будет в паре с контроллером периферийных интерфейсов отечественной разработки – КПИ-2.

    В этой микросхеме, пока выпускаемой по технологическому процессу 65 нм, реализована поддержка 20 линий шины PCI-Express 2.0 (8+8+4), трёх гигабитных сетевых контроллеров Ethernet, восьми портов SATA v.3.0 и восьми портов USB 2.0. Скорость обмена данными с процессором у КПИ-2 составляет 16 Гбайт/с.

    Помимо поддержки основных интерфейсов она содержит встроенный контроллер SPMC, обеспечивающий энергосберегающие функции, а также контроллер прерываний.

    Аппаратная часть взаимодействует с операционной системой через собственный микрокод BIOS. Возможна работа с дистрибутивами Linux, FreeBSD, QNX, Windows XP, но для ответственных сфер применения рекомендуется ОС «Эльбрус» на базе ядра Linux 2.6.33. Коллективом МЦСТ проделана огромная работа по созданию ОС реального времени с собственными механизмами обработки прерываний, синхронизации, управления памятью и поддержки тегированных вычислений. Всё это направлено на раскрытие потенциала архитектуры отечественного процессора и защиты от распространённых эксплоитов.

    Оптимизация кода программ с учётом архитектуры «Эльбрус» достигается за счёт применения специализированных средств разработки: оптимизирующих компиляторов с языков C и C++, Фортран и Java, отладчики, средства и библиотеки для распараллеливания вычислений. Среди последних возможно использование интерфейса передачи сообщений между процессами (MPI) и открытого стандарта OpenMP.


    Развитие процессоров “Эльбрус”.

    Уже создаются служебные программы и вспомогательные компоненты, оптимизированные для выполнения на процессорах «Эльбрус». Это утилиты, сервисы, библиотеки общего назначения, поддержка баз данных, графическая подсистема (на базе Xorg, GTK+ и Qt), средства для работы с сетью и периферийными устройствами.

    Первоочередная задача – выполнить импортозамещение на ключевых объектах ВПК и стратегически важных объектах российской инфраструктуры. «Компьютерра» уже о технической возможности создать троянскую закладку аппаратного уровня в процессорах Intel архитектуры Ivy Bridge, которую исключительно сложно обнаружить. Эта работа исследователей проводилась на базе университета штата Массачусетс и позиционировалась как доказательство концепции – подобные закладки можно создавать и в других процессорах.

    «Применение техники с зарубежными ключевыми компонентами создает большие угрозы в критически важных для страны сферах управления и производства, – отмечает Александр Якунин. – Прежде всего, с точки зрения защиты данных и скрытых возможностей влияния на работу оборудования извне»

    Государственные испытания процессора «Эльбрус-8С» назначены на конец этого года. В случае их успешного прохождения серийный выпуск начнётся уже в 2016 году. Пока речь идёт скорее о мелкосерийном производстве на уровне порядка 50 тысяч процессоров в год, но это уже огромный шаг для российской микроэлектроники.

    «В конце этого – начале следующего года «Т-Платформы» должны завершить работу над новым процессором «Байкал-М», а в 2018 году мы планируем представить «Эльбрус-16С» на той же технологии 28 Нм, с частотой 1,5 ГГц и производительностью уже свыше 512 ГФлопс», – озвучивает ближайшие планы Александр Якунин. Уже известно, что следующий процессор «Эльбрус» будет исполнять 50 операций за такт. Его расчётная производительность будет выше, чем у «Эльбрус-8С» в 2,5 раза.

    В статье использованы материалы ОАО “Объединенная приборостроительная корпорация”.

  • Процессоры
  • Вокруг Эльбруса ходит много мифов. Вы можете встретить их в комментариях к любому посту или статье про Эльбрус. Основные категории мифов можно свести к трем вопросам:

    1. Является ли Эльбрус отечественным? Отечественный значит безопасный?
    2. Какова производительность? Насколько «современен» компьютер на базе Эльбрус.
    3. Сколько он стоит?

    Каждый вопрос имеет два противоположных ответа. От «китайское купленное» до «все наше». От «мой телефон быстрее» до «еще немножко и обгоним Интел».

    Хотелось бы прояснить откуда растут уши всех этих мифов. Причина по большому счету одна: компания МЦСТ - их закрытость, молчаливость и, в худших традициях российской действительности, склонность к завышению и легкому привиранию. При подготовке этой статьи я столкнулся с тем, что вся информация на новостных и железных ресурсах крутится вокруг скупых пресс-релизов МЦСТ. Новую информацию «сверху» найти очень сложно. Надо рыть, читать между строк и копать еще глубже. Само МЦСТ на электронные письма и заказы не отвечает. Найти на сайте контакты - попробуйте!

    Бравурные речи «пятилетку в три дня», как и рассказы про «догоним и перегоним» идут оттуда же. Достаточно перечитать пресс-релизы за 2013-2015 год. Сейчас у нас должно быть серийное производство новейших компьютеров на базе Эльбрус-16С. Вы его видите? И я нет!

    Про хитрости с технологическими процессами производства можно прочитать в этой статье на Хабре.

    Чтобы уйти от абстракции и развенчивать мифы чем-то конкретным, возьмем АРМ (Автоматизированное Рабочее Место) Эльбрус-401. Этот компьютер выпускается мелкосерийно. Даже, кажется, доступен для заказа на сайте. Формально.
    Характеристики взяты с официального сайта.

    Параметр Значение
    Микропроцессор Эльбрус-4С (1891ВМ8Я)
    Количество процессоров 1
    Рабочая тактовая частота процессора, Мгц 800
    Пиковая производительность, Гфлопс 50
    Оперативная память, Гбайт 24 (до 96), поддержка коррекции ошибок (ЕСС)
    Видеоподсистема Интегрированная видеокарта на основе СБИС Silicon Motion SM718
    Поддерживает 2D ускорение, масштабирование видео
    16 МБ видеопамяти, подключение к шине PCI
    Выход VGA, DVI Разрешение до 1920 x 1080
    3D видеокарта AMD Radeon серии 6000
    Подключение к шине PCI Express
    Дисковая подсистема Жесткий диск SATA 2.0 1000 ГБ, 3.5" (до 2 дисков)
    Разъем для карты CompactFlash на плате
    mSATA диск на плате ёмкостью 120 ГБ
    Встроенный привод DVD-RW привод. Поддержка двухслойных дисков
    Сетевые интерфейсы Поддержка работы при скоростях передачи данных в 10/100/1000 Мбит/с
    Звук Интегрированная звуковая карта AC-97 (стерео)
    Порты ввода/вывода USB 2.0: 4 разъема на задней панели, 2 разъема на передней панели. 2 внутренних порта на материнской плате
    1 разъем Gigabit Ethernet (10/100/1000 Mb/s)
    1 выход DVI+VGA (совмещенный). Возможно подключение двух мониторов через переходник (в комплекте)
    1 порт RS-232 внешний, 1 порт RS-232 внутренний
    разъёмы для подключения аудио (вход/выход, стерео)

    Происхождение

    Итак, насколько отечественный и безопасный получился компьютер?

    Наиболее отечественным получился процессор. Его архитектура и результирующие блоки - полностью отечественная разработка. Рассчитывался и эмулировался он на FPGA Stratix V. Скорее всего, на ПО Quartus.

    Сейчас одна микросхема EP2S180 стоит около 8К$. Так что стоимость только микросхем FPGA в прототипе превышает 50К$.
    Для прототипирования процессора Эльбрус-4C+ потребовалась уже 21 микросхема Altera Stratix IV EP4SE820 и с суммарным объемом в 100 млн. вентилей (хотя сам МЦСТ приводит цифру в 750 млн) и стоимостью около 200К$. При этом рабочая частота прототипа 9 Мгц.

    Первый нюанс: какие Гигафлопсы приведены? Теоретические, по тесту LINPACK? Информации нет.

    Второй. Есть маленькая хитрость: если посмотреть на архитектуру, то мы увидим, что в ядре есть DSP процессор. В характеристиках прошлой версии процессора четко указывалось, что суммарная производительность состоит из Гигафлопсов основного ядра плюс ядро DSP. Например можно по сравнивать Описания на сайте МЦСТ Монокуб на базе процессора Эльбрус-2С+ и Сам процессор .

    Но в реальных повседневных приложениях от DSP процессора мало толку. Они будут хороши при обработке сигналов и шифровании.

    Здесь мы опять утыкаемся в проблему закрытости. Если у кого и есть в наличии АРМ, то тесты он не проводит, либо результаты не выкладывает.

    Но вернемся к главному вопросу, производительность в реальных приложениях и повседневной работе. Единственные тесты, которые мне удалось отыскать на эту тему, есть у Cnews. Тесты и их результаты целиком можно посмотреть по ссылке .

    Кому лень ходить, суть такова. Берется Intel Core i7-2600 (3,4 ГГц) и Эльбрус-4С. Меня заинтересовали следующие.

    Получается, что единственные «реальные» тесты с 7z архивом показывают, что АРМ серьезно проигрывает. Не как должно быть по Гигафлопсам, всего в два раза, а в 5,5 раз на сжатии и почти в 4 раза на распаковке (я считал по MIPS, потому что памяти различны). Кстати, смешат выводы и попытки «натянуть сову на глобус». Такое ощущение, что ресурсу дали Эльбрус с условием написания положительного отзыва.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: