Реляционная база данных. Реляционные базы данных для чайников

Появление компьютерной техники в нашей современности ознаменовало информационный переворот во всех сферах человеческой деятельности. Но для того, чтобы вся информация не стала ненужным мусором в глобальной сети Интернет, была изобретена система баз данных, в которой материалы сортируются, систематизируются, в результате чего их легко отыскать и представить последующей обработке. Существуют три основные разновидности - выделяют базы данных реляционные, иерархические, сетевые.

Фундаментальные модели

Возвращаясь к возникновению баз данных, стоит сказать, что этот процесс был достаточно сложным, он берет свое начало вместе с развитием программируемого оборудования обработки информации. Поэтому неудивительно, что количество их моделей на данный момент достигает более 50, но основными из них считаются иерархическая, реляционная и сетевая, которые и до сих пор широко применяются на практике. Что же они собой представляют?

Иерархическая имеет древовидную структуру и составляется из данных разных уровней, между которыми существуют связи. Сетевая модель БД представляет собой более сложный шаблон. Ее структура напоминает иерархическую, а схема расширенная и усовершенствованная. Разница между ними в том, что потомственные данные иерархической модели могут иметь связь только с одним предком, а у сетевой их может быть несколько. Структура реляционной базы данных гораздо сложнее. Поэтому ее следует разобрать более подробно.

Основное понятие реляционной базы данных

Такая модель была разработана в 1970-х годах доктором науки Эдгаром Коддом. Она представляет собой логически структурированную таблицу с полями, описывающую данные, их отношения между собой, операции, произведенные над ними, а главное - правила, которые гарантируют их целостность. Почему модель называется реляционной? В ее основе лежат отношения (от лат. relatio) между данными. Существует множество определений этого типа базы данных. Реляционные таблицы с информацией гораздо проще систематизировать и придать обработке, нежели в сетевой или иерархической модели. Как же это сделать? Достаточно знать особенности, структуру модели и свойства реляционных таблиц.

Процесс моделирования и составления основных элементов

Для того чтобы создать собственную СУБД, следует воспользоваться одним из инструментов моделирования, продумать, с какой информацией вам необходимо работать, спроектировать таблицы и реляционные одно- и множественные связи между данными, заполнить ячейки сущностей и установить первичный, внешние ключи.

Моделирование таблиц и проектирование реляционных баз данных производится посредством бесплатных инструментов, таких как Workbench, PhpMyAdmin, Case Studio, dbForge Studio. После детальной проектировки следует сохранить графически готовую реляционную модель и перевести ее в готовый SQL-код. На этом этапе можно начинать работу с сортировкой данных, их обработку и систематизацию.

Особенности, структура и термины, связанные с реляционной моделью

Каждый источник по-своему описывает ее элементы, поэтому для меньшей путаницы хотелось бы привести небольшую подсказку:

  • реляционная табличка = сущность;
  • макет = атрибуты = наименование полей = заголовок столбцов сущности;
  • экземпляр сущности = кортеж = запись = строка таблички;
  • значение атрибута = ячейка сущности= поле.

Для перехода к свойствам реляционной базы данных следует знать, из каких базовых компонентов она состоит и для чего они предназначены.

  1. Сущность. Таблица реляционной базы данных может быть одна, а может быть целый набор из таблиц, которые характеризируют описанные объекты благодаря хранящимся в них данным. У них фиксированное количество полей и переменное число записей. Таблица реляционной модели баз данных составляется из строк, атрибутов и макета.
  2. Запись - переменное число строк, отображающих данные, что характеризируют описываемый объект. Нумерация записей производится системой автоматически.
  3. Атрибуты - данные, демонстрирующие собой описание столбцов сущности.
  4. Поле. Представляет собой столбец сущности. Их количество - фиксированная величина, устанавливаемая во время создания или изменения таблицы.

Теперь, зная составляющие элементы таблицы, можно переходить к свойствам реляционной модели database:

  • Сущности реляционной БД двумерные. Благодаря этому свойству с ними легко проделывать различные логические и математические операции.
  • Порядок следования значений атрибутов и записей в реляционной таблице может быть произвольным.
  • Столбец в пределах одной реляционной таблицы должен иметь свое индивидуальное название.
  • Все данные в столбце сущности имеют фиксированную длину и одинаковый тип.
  • Любая запись в сущности считается одним элементом данных.
  • Составляющие компоненты строк единственны в своем роде. В реляционной сущности отсутствуют одинаковые строки.

Исходя из свойств понятно, что значения атрибутов должны быть одинакового типа, длины. Рассмотрим особенности значений атрибутов.

Основные характеристики полей реляционных БД

Названия полей должны быть уникальными в рамках одной сущности. Типы атрибутов или полей реляционных баз данных описывают, данные какой категории хранятся в полях сущностей. Поле реляционной базы данных должно иметь фиксированный размер, исчисляемый в символах. Параметры и формат значений атрибутов определяют манеру исправления в них данных. Еще есть такое понятие, как "маска", или "шаблон ввода". Оно предназначено для определения конфигурации ввода данных в значение атрибута. Непременно при записи неправильного в поле должно выдаваться извещение об ошибке. Также на элементы полей накладываются некоторые ограничения - условия проверки точности и безошибочности ввода данных. Существует некоторое обязательное значение атрибута, которое однозначно должно быть заполнено данными. Некоторые строки атрибутов могут быть заполнены NULL-значениями. Разрешается ввод пустых данных в атрибуты полей. Как и извещение об ошибке, есть значения, которые заполняются системой автоматически - это данные по умолчанию. Для ускорения поиска любых данных предназначено индексированное поле.

Схема двумерной реляционной таблицы базы данных

Для детального понимания модели с помощью SQL лучше всего рассмотреть схему на примере. Нам уже известно, что представляет собой реляционная БД. Запись в каждой таблице - это один элемент данных. Чтобы предотвратить избыточность данных, необходимо провести операции нормализации.

Базовые правила нормализации реляционной сущности

1. Значение названия поля для реляционной таблицы должно быть уникальным, единственным в своем роде (первая нормальная форма - 1НФ).

2. Для таблицы, которая уже приведена к 1НФ, наименование любого неидентифицирующего столбца должно быть зависимым от уникального идентификатора таблицы (2НФ).

3. Для всей таблицы, что уже находится в 2НФ, каждое неидентифицирующее поле не может зависеть от элемента другого неопознанного значения (3НФ сущности).

Базы данных: реляционные связи между таблицами

Существует 2 основных реляционных табличек:

  • «Один-многие». Возникает при соответствии одной ключевой записи таблицы №1 нескольким экземплярам второй сущности. Значок ключа на одном из концов проведенной линии говорит о том, что сущность находится на стороне «один», второй конец линии зачастую отмечают символом бесконечности.

  • Связь «много-много» образуется в случае возникновения между несколькими строками одной сущности явного логичного взаимодействия с рядом записей другой таблицы.
  • Если между двумя сущностями возникает конкатенация «один к одному», это значит, что ключевой идентификатор одной таблицы присутствует в другой сущности, тогда следует убрать одну из таблиц, она лишняя. Но иногда исключительно в целях безопасности программисты преднамеренно разделяют две сущности. Поэтому гипотетически связь «один к одному» может существовать.

Существование ключей в реляционной базе данных

Первичный и вторичный ключи определяют потенциальные отношения базы данных. Реляционные связи модели данных могут иметь только один потенциальный ключ, это и будет primary key. Что же он собой представляет? Первичный ключ - это столбец сущности или набор атрибутов, благодаря которому можно получить доступ к данным конкретной строки. Он должен быть уникальным, единственным, а его поля не могут содержать пустых значений. Если первичный ключ состоит всего из одного атрибута, тогда он называется простым, в ином случае будет составляющим.

Кроме первичного ключа, существует и внешний (foreign key). Многие не понимают, какая между ними разница. Разберем их более детально на примере. Итак, существует 2 таблицы: «Деканат» и «Студенты». Сущность «Деканат» содержит поля: «ID студента», «ФИО» и «Группа». Таблица «Студенты» имеет такие значения атрибутов, как «ФИО», «Группа» и «Средний бал». Так как ID студента не может быть одинаковым для нескольких студентов, это поле и будет первичным ключом. «ФИО» и «Группа» из таблицы «Студенты» могут быть одинаковыми для нескольких человек, они ссылаются на ID номер студента из сущности «Деканат», поэтому могут быть использованы в качестве внешнего ключа.

Пример модели реляционной базы данных

Для наглядности приведем простой пример реляционной модели базы данных, состоящей из двух сущностей. Существует таблица с названием «Деканат».

Необходимо провести связи, чтобы получилась полноценная реляционная база данных. Запись "ИН-41", как и "ИН-72", может присутствовать не единожды в табличке "Деканат", также фамилия, имя и отчество студентов в редких случаях могут совпадать, поэтому данные поля никак нельзя сделать первичным ключом. Покажем сущность «Студенты».

Как мы видим, типы полей реляционных баз данных совершенно различаются. Присутствуют как цифровые записи, так и символьные. Поэтому в настройках атрибутов следует указывать значения integer, char, vachar, date и другие. В таблице "Деканат" уникальным значением является только ID студента. Данное поле можно взять за первичный ключ. ФИО, группа и телефон из сущности "Студенты" могут быть взяты как внешний ключ, ссылающийся на ID студента. Связь установлена. Это пример модели со связью «один к одному». Гипотетически одна из таблиц лишняя, их можно легко объединить в одну сущность. Чтобы ID-номера студентов не стали всеобще известными, вполне реально существование двух таблиц.

База данных (БД) - это поименованная совокупность структурированных данных, относящихся к определенной предметной области и предназначенных для хранения, накопления и обработки с помощью ЭВМ.

Реляционная База Данных (РБД) - это набор отношений, имена которых совпадают с именами схемотношений в схеме БД.

Основные понятия реляционных баз данных:

· Тип данных – тип значений конкретного столбца.

· Домен (domain) – множество всех допустимых значений атрибута.

· Атрибут (attribute) – заголовок столбца таблицы, характеризующий поименованное свойство объекта, например, фамилия студента, дата оформления заказа, пол сотрудника и т.п.

· Кортеж – строка таблицы, представляющая собой совокупность значений логически связанных атрибутов.

· Отношение (relation) – таблица, отражающая информацию об объектах реального мира, например, о студентах, заказах, сотрудниках, жителях и т.д.

· Первичный ключ (primary key) – поле (или набор полей) таблицы, однозначно идентифицирующий каждую из ее записей.

· Альтернативный ключ – это поле (или набор полей), несовпадающее с первичным ключом и уникально идентифицирующий экземпляр записи.

· Внешний ключ – это поле (или набор полей), чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. При связи двух таблиц с первичным ключом первой таблицы связывается внешний ключ второй таблицы.

· Реляционная модель данных (РМД) - организация данных в виде двумерных таблиц.

Каждая реляционная таблица должна обладать следующими свойствами:

1. Каждая запись таблицы уникальна, т.е. совокупность значений по полям не повторяется.

2. Каждое значение, записывается на пересечении строки и столбца - является атомарным (неразделимым).

3. Значения каждого поля должны быть одного типа.

4. Каждое поле имеет уникальное имя.

5. Порядок расположения записей несущественен.

Основные элементы БД:

Поле - элементарная единица логической организации данных. Для описания поля используются следующие характеристики:

· имя, например, Фамилия, Имя, Отчество, Дата рождения;

· тип, например, строковый, символьный, числовой, датовый;

· длина, например, в байтах;

· точность для числовых данных, например, два десятичных знака для отображения дробной части числа.

Запись - совокупность значений логически связанных полей.

Индекс – средство ускорения операции поиска записей, использующееся для установки связей между таблицами. Таблица, для которой используется индекс, называют индексированной. При работе с индексами необходимо обращать внимание на организацию индексов, являющуюся основой для классификации. Простой индекс представлен одним полем или логическим выражением, обрабатывающим одно поле. Составной индекс представлен несколькими полями с возможностью использования различных функций. Индексы таблицы хранятся в индексном файле.


Целостность данных – это средство защиты данных по полям связи, позволяющее поддерживать таблицы в согласованном (непротиворечивом) состоянии (то есть не допускающее существование в подчиненной таблице записей, не имеющих соответствующих записей в родительской таблице).

Запрос – сформулированный вопрос к одной или нескольким взаимосвязанным таблицам, содержащий критерии выборки данных. Запрос осуществляется с помощью структурированного языка запросов SQL (Srtructured Query Language). В результате выборки данных из одной или нескольких таблиц может быть получено множество записей, называемое представлением.

Представление данных – сохраняемый в базе данных именованный запрос на выборку данных (из одной или нескольких таблиц).

Представление, по существу, является временной таблицей, формируемой в результате выполнения запроса. Сам запрос может быть направлен в отдельный файл, отчет, временную таблицу, таблицу на диске и т.п.

Отчет – компонент системы, основное назначение которого – описание и вывод на печать документов на основе информации из БД.

Общая характеристика работы с РБД:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.


28. АЛГОРИТМИЧЕСКИЕ ЯЗЫКИ. ТРАНСЛЯТОРЫ (ИНТЕРПРЕТАТОРЫ И КОМПИЛЯТОРЫ). АЛГОРИТМИЧЕСКИЙ ЯЗЫК БЕЙСИК. СТРУКТУРА ПРОГРАММЫ. ИДЕНТИФИКАТОРЫ. ПЕРЕМЕННЫЕ. ОПЕРАТОРЫ. ОБРАБОТКА ОДНОМЕРНЫХ И ДВУХМЕРНЫХ МАССИВОВ. ФУНКЦИИ ПОЛЬЗОВАТЕЛЯ. ПОДПРОГРАММЫ. РАБОТА С ФАЙЛАМИ ДАННЫХ.

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Алгоритмический язык (Algorithmic language) - язык программирования - искусственный (формальный) язык, предназначенный для записи алгоритмов. Язык программирования задается своим описанием и реализуется в виде специальной программы: компилятора или интерпретатора. Примерами алгоритмических языков служат – Borland Pascal, C++, Basic и т.д.

Основные понятия алгоритмического языка:

Состав языка :

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами.

Символы , элементарные конструкции, выражения и операторы составляют иерархическую структуру, поскольку элементарные конструкции образуются из последовательности символов.

Выражения - это последовательность элементарных конструкций и символов,

Оператор - последовательность выражений, элементарных конструкций и символов.

Описание языка:

Описание символов заключается в перечислении допустимых символов языка. Под описанием элементарных конструкций понимают правила их образования. Описание выражений - это правила образования любых выражений, имеющих смысл в данном языке. Описание операторов состоит из рассмотрения всех типов операторов, допустимых в языке. Описание каждого элемента языка задается его СИНТАКСИСОМ и СЕМАНТИКОЙ.

Синтаксические определения устанавливают правила построения элементов языка.

Семантика определяет смысл и правила использования тех элементов языка, для которых были даны синтаксические определения.

Символы языка - это основные неделимые знаки, в терминах которых пишутся все тексты на языке.

Элементарные конструкции - это минимальные единицы языка, имеющие самостоятельный смысл. Они образуются из основных символов языка.

Выражение в алгоритмическом языке состоит из элементарных конструкций и символов, оно задает правило вычисления некоторого значения.

Оператор задает полное описание некоторого действия, которое необходимо выполнить. Для описания сложного действия может потребоваться группа операторов.

В этом случае операторы объединяются в Составной оператор или Блок. Действия , заданные операторами, выполняются над данными. Предложения алгоритмического языка, в которых даются сведения о типах данных, называются описаниями или неисполняемыми операторами. Объединенная единым алгоритмом совокупность описаний и операторов образует программу на алгоритмическом языке. В процессе изучения алгоритмического языка необходимо отличать алгоритмический язык от того языка, с помощью которого осуществляется описание изучаемого алгоритмического языка. Обычно изучаемый язык называют просто языком, а язык, в терминах которого дается описание изучаемого языка - Метаязыком .

Трансляторы - (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Программа, написанная на каком-либо алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на ЭВМ. ЭВМ понимает только язык машинных команд. Следовательно, программа на алгоритмическом языке должна быть переведена (транслирована) на язык команд конкретной ЭВМ. Такой перевод осуществляется автоматически специальными программами-трансляторами, создаваемыми для каждого алгоритмического языка и для каждого типа компьютеров.

Существуют два основных способа трансляции - компиляция и интерпретация.

1.Компиляция: Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

При компиляции вся исходная программа сразу превращается в последовательность машинных команд. После этого полученная результирующая программа выполняется ЭВМ с имеющимися исходными данными. Достоинство такого способа состоит в том, что трансляция выполняется один раз, а (многократное) выполнение результирующей программы может осуществляться с большой скоростью. Вместе с тем результирующая программа может занять в памяти ЭВМ очень много места, так как один оператор языка при трансляции заменяется сотнями или даже тысячами команд. Кроме того, отладка и видоизменения транслированной программы весьма затруднены.

2. Интерпретация: Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

При интерпретации исходная программа хранится в памяти ЭВМ почти в неизменном виде. Программа-интерпретатор декодирует операторы исходной программы по одному и тут же обеспечивает их выполнение с имеющимися данными. Интерпретируемая программа занимает в памяти компьютера мало места, ее легко отлаживать и видоизменять. Зато выполнение программы происходит достаточно медленно, поскольку при каждом исполнении заново осуществляется поочередная интерпретация всех операторов.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

Базой данных (БД) называется организованная в соответствии с определенными правилами и поддерживаемая в памяти компьютера совокупность сведений об объектах, процессах, событиях или явлениях, относящихся к некоторой предметной области, теме или задаче. Она организована таким образом, чтобы обеспечить информационные потребности пользователей, а также удобное хранение этой совокупности данных, как в целом, так и любой ее части.

Реляционная база данных представляет собой множество взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного вида. Каждая строка таблицы содержит данные об одном объекте (например, автомобиле, компьютере, клиенте), а столбцы таблицы содержат различные характеристики этих объектов - атрибуты (например, номер двигателя, марка процессора, телефоны фирм или клиентов).

Строки таблицы называются записями. Все записи таблицы имеют одинаковую структуру - они состоят из полей (элементов данных), в которых хранятся атрибуты объекта (рис. 1). Каждое поле записи содержит одну характеристику объекта и представляет собой заданный тип данных (например, текстовая строка, число, дата). Для идентификации записей используется первичный ключ. Первичным ключом называется набор полей таблицы, комбинация значений которых однозначно определяет каждую запись в таблице.

Рис. 1. Названия объектов в таблице

Для работы с данными используются системы управления базами данных (СУБД). Основные функции СУБД:

Определение данных (описание структуры баз данных);

Обработка данных;

Управление данными.

Разработка структуры БД - важнейшая задача, решаемая при проектировании БД. Структура БД (набор, форма и связи ее таблиц) - это одно из основных проектных решений при создании приложений с использованием БД. Созданная разработчиком структура БД описывается на языке определения данных СУБД.

Любая СУБД позволяет выполнять следующие операции с данными:

Добавление записей в таблицы;

Удаление записей из таблицы;

Обновление значений некоторых полей в одной или нескольких записях в таблицах БД;

Поиск одной или нескольких записей, удовлетворяющих заданному условию.

Для выполнения этих операций применяется механизм запросов. Результатом выполнения запросов является либо отобранное по определенным критериям множество записей, либо изменения в таблицах. Запросы к базе формируются на специально созданном для этого языке, который так и называется «язык структурированных запросов» (SQL - Structured Query Language).

Под управлением данными обычно понимают защиту данных от несанкционированного доступа, поддержку многопользовательского режима работы с данными и обеспечение целостности и согласованности данных.

Модель данных - совокупность структур данных и операций по их обработке. С помощью модели данных можно наглядно представить структуру объектов и установленные меж­ду ними связи. Для терминологии моделей данных характерны понятия «эле­мент данных» и «правила связывания». Элемент данных описывает любой на­бор данных, а правила связывания определяют алгоритмы взаимосвязи элементов данных. К настоящему времени разработано множество различных моделей дан­ных, но на практике используется три основных. Выделяют иерархическую, сетевую и реляционную модели данных. Соответственно говорят об иерархичес­ких, сетевых и реляционных СУБД.

О Иерархическая модель данных. Иерархически организованные данные встре­чаются в повседневной жизни очень часто. Например, структура высшего учеб­ного заведения - это многоуровневая иерархическая структура. Иерархичес­кая (древовидная) БД состоит из упорядоченного набора элементов. В этой модели исходные элементы порождают другие элементы, причем эти элементы в свою очередь порождают следующие элементы. Каждый порожденный эле­мент имеет только один порождающий элемент.

Организационные структуры, списки материалов, оглавление в книгах, пла­ны проектов и многие другие совокупности данных могут быть представле­ны в иерархическом виде. Автоматически поддерживается целостность ссы­лок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.

Основным недостатком данной модели является необходимость использова­ния той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных (а часто невозможность этой реорганизации) привели к созданию более общей модели - сетевой.

О Сетевая модель данных. Сетевой подход к организации данных является рас­ширением иерархического подхода. Данная модель отличается от иерахической тем, что каждый порожденный элемент может иметь более одного по­рождающего элемента. ■

Поскольку сетевая БД может представлять непосредственно все виды связей, присущих данным соответствующей организации, по этим данным можно переме­щаться, исследовать и запрашивать их всевозможными способами, то есть сете­вая модель не связана всего лишь одной иерархией. Однако для того чтобы со­ставить запрос к сетевой БД, необходимо достаточно глубоко вникнуть в ее структуру (иметь под рукой схему этой БД) и выработать механизм навигации по базе данных, что является существенным недостатком этой модели БД.

О Реляционная модель данных. Основная идея реляционной модели данных за­ключается в том, чтобы представить любой набор данных в виде двумерной таблицы. В простейшем случае реляционная модель описывает единственную двумерную таблицу, но чаще всего эта модель описывает структуру и взаи­моотношения между несколькими различными таблицами.

Реляционная модель данных

Итак, целью информационной системы является обработка данных об объектах реального мира, с учетом связей между объектами. В теории БД данные часто называют атрибутами, а объекты - сущностями. Объект, атрибут и связь - фундаментальные понятия И.С.

Объект (или сущность) - это нечто существующее и различимое, то есть объектом можно назвать то «нечто», для которого существуют название и спо­соб отличать один подобный объект от другого. Например, каждая школа - это объект. Объектами являются также человек, класс в школе, фирма, сплав, хи­мическое соединение и т. д. Объектами могут быть не только материальные пред­меты, но и более абстрактные понятия, отражающие реальный мир. Например, события, регионы, произведения искусства; книги (не как полиграфическая про­дукция, а как произведения), театральные постановки, кинофильмы; правовые нормы, философские теории и проч.

Атрибут (или данное) - это некоторый показатель, который характеризует некий объект и принимает для конкретного экземпляра объекта некоторое чис­ловое, текстовое или иное значение. Информационная система оперирует на­борами объектов, спроектированными применительно к данной предметной области, используя при этом конкретные значения атрибутов (данных) тех или иных объектах. Например, возьмем в качестве набора объектов классы в школе. Число учеников в классе - это данное, которое принимает числовое значение (у одного класса 28, у другого- 32). Название класса - это данное, принимающее текстовое значение (у одного - 10А, у другого - 9Б и т. д.).

Развитие реляционных баз данных началось в конце 60-х годов, когда по­явились первые работы, в которых обсуждались; возможности использования при проектировании баз данных привычных и естественных способов представле­ния данных - так называемых табличных даталогических моделей.

Основоположником теории реляционных баз данных считается сотрудник фирмы IBM доктор Э. Кодд, опубликовавший 6 (июня 1970 г. статью A Relational Model of Data for Large-Shared Data Banks (Реляционная модель данных для больших коллективных банков данных). В этой статье впервые был использован термин «реляционная модель данных. Теория реляционных баз данных, разработанная в 70-х годах в США докто­ром Э. Коддом, имеет под собой мощную математическую основу, описывающую правила эффективной организации данных. Разработанная Э. Коддом теорети­ческая база стала основой для разработки теории проектирования баз данных.

Э. Кодд, будучи математиком по образованию, предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, раз­ность, декартово произведение). Он доказал, что любой набор данных можно представить в виде двумерных таблиц особого вида, известных в математике как «отношения».

Реляционной считается такая база данных, в которой все данные представле­ны для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами.

Таблица состоит из столбцов (полей) и строк (записей); имеет имя, уникаль­ное внутри базы данных. Таблица отражает тип объекта реального мира (сущ­ность), а каждая ее строка- конкретный объект. Каждый столбец таблицы - это совокупность значений конк­ретного атрибута объекта. Значения выбираются из множества всех возможных значений атрибута объек­та, которое называется доменом (domain) .

В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементам данных. Если при вычислении логическо­го условия относительно элемента данных в результате получено значение «исти­на», то этот элемент принадлежит домену. В простейшем случае домен определяется как допустимое потенциальное множество значений одного типа. Например, со­вокупность дат рождения всех сотрудников составляет «домен дат рождения», а имена всех сотрудников составляют «домен имен сотрудников». Домен дат рож­дения имеет тип данных, позволяющий хранить информацию о моментах време­ни, а домен имен сотрудников должен иметь символьный тип данных.

Если два значения берутся из одного и того же домена, то можно выполнять сравнение этих двух значений. Например, если два значения взяты из домена дат рождения, то можно сравнить их и определить, кто из сотрудников старше. Если же значения берутся из разных доменов, то их сравнение не допускается, так как, по всей вероятности, оно не имеет смысла. Например, из сравнения имени и даты рождения сотрудника ничего определенного не выйдет.

Каждый столбец (поле) имеет имя, которое обычно записывается в верхней части таблицы. При проектировании таблиц в рамках конкретной СУБД имеет­ся возможность выбрать для каждого поля его тип, то есть определить набор правил по его отображению, а также определить те операции, которые можно выполнять над данными, хранящимися в этом поле. Наборы типов могут разли­чаться у разных СУБД.

Имя поля должно быть уникальным в таблице, однако различные таблицы могут иметь поля с одинаковыми именами. Любая таблица должна иметь, по крайней мере, одно поле; поля расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от полей, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует «первой», «второй», «последней». Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key) . Часто вводят искусственное поле, предназначенное для нумерации за­писей в таблице. Таким полем, например, может быть его порядковый, который сможет обеспечить уникальность каж­дой записи в таблице. Ключ должен обладать следующими свойствами.

Уникальностью. В каждый момент времени никакие два различных кортежа отношения не имеют одинакового значения для комбинации входящих в ключ атрибутов. То есть в таблице не может быть двух строк, имеющих одинако­вый идентификационный номер или номер паспорта.

Минимальностью. Ни один из входящих в ключ атрибутов не может быть ис­ключен из ключа без нарушения уникальности. Это означает, что не стоит со­здавать ключ, включающий и номер паспорта, и идентификационный номер. Достаточно использовать любой из этих атрибутов, чтобы однозначно иденти­фицировать кортеж. Не стоит также включать в ключ неуникальный атрибут, то есть запрещается использование в качестве ключа комбинации идентифи­кационного номера и имени служащего. При исключении имени служащего из ключа все равно можно уникально идентифицировать каждую строку.

Каждое отношение имеет, по крайней мере, один возможный ключ, посколь­ку совокупность всех его атрибутов удовлетворяет условию уникальности - это следует из самого определения отношения.

Один из возможных ключей произвольно выбирается в качестве первичного ключа. Остальные возможные ключи, если они есть, принимаются за альтерна­тивные ключи. Например, если в качестве первичного ключа выбрать иденти­фикационный номер, то номер паспорта будет альтернативным ключом.

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key).

При описании модели реляционной базы данных для одного и того же поня­тия часто употребляют различные термины, что зависит от уровня описания (теория или практика) и системы (Access, SQL Server, dBase). В табл. 2.3 приве­дена сводная информация об используемых терминах.

Таблица 2.3. Терминология баз данных

Теория БД____________ Реляционные БД_________ SQL Server __________

Отношение (Relation) Таблица (Table) Таблица (Table)

Кортеж (Tuple) Запись (Record) Строка (Row)

Атрибут (Attribute)Поле (Field)_______________ Столбец или колонка (Column)

Реляционные базы данных

Реляционная база данных - это совокупность отношений, содержащих всю ин­формацию, которая должна храниться в базе данных. То есть база данных пред­ставляет набор таблиц, необходимых для хранения всех данных. Таблицы реля­ционной базы данных логически связаны между собой.Требования к проектированию реляционной базы данных в общем виде можно свести к нескольким правилам.

О Каждая таблица имеет уникальное в базе данных имя и состоит из однотипных строк.

О Каждая таблица состоит из фиксированного числа столбцов и значений. В одном столбце строки не может быть сохранено более одного значения. Например, если есть таблица с информацией об авторе, дате издания, тираже и т. д., то в столбце с именем автора не может храниться более одной фамилии. Если книга написана двумя и более авторами, придется использовать дополнительные таблицы.

О Ни в какой момент времени в таблице не найдется двух строк, дублирующих друг друга. Строки должны отличаться хотя бы одним значением, чтобы была возможность однозначно идентифицировать любую строку таблицы.

О Каждому столбцу присваивается уникальное в пределах таблицы имя; для него устанавливается конкретный тип данных, чтобы в этом столбце размещались однородные значения (даты, фамилии, телефоны, денежные суммы и т. д.).

О Полное информационное содержание базы данных представляется в виде яв­ных значений самих данных, и такой метод представления является единствен­ным. Например, связь между таблицами осуществляется на основе хранимых в соответствующих столбцах данных, а не на основе каких-либо указателей, искусственно определяющих связи.

О При обработке данных можно свободно обращаться к любой строке или лю­бому столбцу таблицы. Значения, хранимые в таблице, не накладывают ни­каких ограничений на очередность обращения к данным. Описание столбцов,

Реляционные базы данных позволяют хранить информацию в нескольких «плоских» (двухмерных) таблицах, связанных между собой посредством совместно используемых полей данных, называемых ключами. Реляционные базы данных предоставляют более простой доступ к оперативно составляемым отчетам (обычно через SQL) и обеспечивают повышенную надежность и целостность данных благодаря отсутствию избыточной информации

Всем известно, что представляет собой простая база данных: телефонные справочники, каталоги товаров и словари - все это базы данных. Они могут быть структурированными или организованными каким-то иным образом: как плоские файлы, как иерархические или сетевые структуры или как реляционные таблицы. Чаще всего в организациях для хранения информации используются именно реляционные базы данных.

База данных - это набор таблиц, состоящих из столбцов и строк, аналогично электронной таблице. Каждая строка содержит одну запись; каждый столбец содержит все экземпляры конкретного фрагмента данных всех строк. Например, обычный телефонный справочник состоит из столбцов, содержащих телефонные номера, имена абонентов и адреса абонентов. Каждая строка содержит номер, имя и адрес. Эта простая форма называется плоским файлом в силу его двухмерной природы, а также того, что все данные хранятся в одном файле.

В идеале каждая база данных имеет по крайней мере один столбец с уникальным идентификатором, или ключом. Рассмотрим телефонную книгу. В ней может быть несколько записей с абонентом Джон Смит, но ни один из телефонных номеров не повторяется. Телефонный номер и служит ключом.

На самом деле все не так просто. Два или несколько человек, использующих один и тот же телефонный номер, могут быть перечислены в телефонном справочнике по отдельности, в силу чего телефонный номер появляется в двух или более местах, поэтому существует несколько строк с ключами, которые не являются уникальными.

Данные создают проблемы

В самых простых базах данных каждая запись занимает одну строку, иными словами, телефонной компании необходимо заводить отдельный столбец для каждого фрагмента бухгалтерской информации. То есть одну - для второго абонента «спаренного» телефона, еще одну - для третьего и т. д., в зависимости от того, сколько дополнительных абонентов понадобится.

Это значит, что каждая запись в базе данных должна иметь все эти дополнительные колонки, даже если больше они нигде не используются. Это также означает, что база данных должна быть реорганизована всякий раз, когда компания предлагает новую услугу. Вводится обслуживание тонального набора - и меняется структура базы, поскольку добавляется новая колонка. Вводится поддержка идентификации номера звонящего абонента, ожидания звонка и т. д. - и база данных перестраивается снова и снова.

В 60-е годы только самые крупные компании могли позволить себе приобретать компьютеры для управления своими данными. Более того, базы данных, построенные на статических моделях данных и с помощью процедурных языков программирования, таких как Кобол, могут оказаться слишком дорогими в том, что касается поддержки, и не всегда надежными. Процедурные языки определяют последовательность событий, через которую компьютер должен пройти, чтобы выполнить задачу. Программирование таких последовательностей было сложным делом, особенно если требовалось менять структуру базы данных или составлять новый вид отчетов.

Мощные связи

Эдгар Кодд, сотрудник исследовательской лаборатории корпорации IBM в Сан-Хосе, по существу, создал и описал концепцию реляционных баз данных в своей основополагающей работе «Реляционная модель для крупных, совместно используемых банков данных» (A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, июнь 1970).

Кодд предложил модель, которая позволяет разработчикам разделять свои базы данных на отдельные, но взаимосвязанные таблицы, что увеличивает производительность, но при этом внешнее представление остается тем же, что и у исходной базы данных. С тех пор Кодд считается отцом-основателем отрасли реляционных баз данных.

Эта модель работает следующим образом. Телефонная компания может создать основную таблицу, используя в качестве первичного ключа номер телефона, и хранить его с другой базовой информацией о потребителях. Компания может определить отдельную таблицу со столбцами для этого первичного ключа и для дополнительных служб, таких как поддержка идентификации номера звонящего абонента и ожидание звонка. Она также может создать еще одну таблицу для контроля счетов за переговоры, где каждая запись состоит из номера телефона и данных об оплате звонков.

Конечные пользователи могут легко получить ту информацию, которую они хотят, и в том виде, в каком она им требуется, хотя эти данные хранятся в различных таблицах. Поэтому представитель службы поддержки потребителей телефонной компании может отобразить на одном и том же экране информацию о счетах абонента, а также о состоянии специальных служб или о том, когда была получена последняя оплата.

Кодд сформулировал 12 правил для реляционных баз данных, большинство которых касаются целостности и обновления данных, а также доступа к ним. Первые два достаточно понятны даже пользователям, не обладающим техническими навыками.

Правило 1, информационное правило, указывает, что вся информация в реляционной базе данных представляется как набор значений, хранящихся в таблицах.

Правило 2, правило гарантии доступа, определяет, что доступ к каждому элементу данных в реляционной базе данных можно получить с помощью имени таблицы, первичного ключа и названия столбца. Другими словами, все данные хранятся в таблицах, и, если известно название таблицы, первичный ключ и столбец, где находится требуемый элемент данных, его всегда можно извлечь.

Суть работы Кодда заключалась в том, что предлагалось с реляционными базами данных использовать декларативные, а не процедурные языки программирования. Декларативные языки, такие как язык запросов SQL (Structured Query Language), дают пользователям возможность, по существу, сообщить компьютеру: «Я хочу получить следующие биты данных из всех записей, которые удовлетворяют определенному набору критериев». Компьютер сам «поймет», какие необходимо совершить шаги, чтобы получить эту информацию из базы данных.

Для работы с огромным количеством активно используемых баз данных применяются программные системы управления реляционными базами данных, созданные такими авторитетными производителями, как Oracle, Sybase, IBM, Informix и Microsoft.

Хотя большую часть вариантов реализаций SQL можно назвать интероперабельными лишь с известным приближением, этот утвержденный в качестве международного стандарта механизм позволяет создавать сложные системы, основу которых составляют базы данных. Удобный для программирования интерфейс между Web-сайтами и реляционными базами данных дает конечным пользователям возможность добавлять новые записи и обновлять существующие, а также создавать отчеты для самых разных служб, таких как выполнение интерактивных торговых операций и доступ к интерактивным библиотечным каталогам.

Реляционная модель

Реляционная база данных использует набор таблиц, связанных друг с другом посредством определенного ключа (в данном случае это поле PhoneNumber)



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: