Малошумящий операционный усилитель справочник. Типы операционных усилителей. Прецизионные операционные усилители

Мобильные электронные системы с питанием от батарей получают все большее распространение.
Обычно в них используется однополярное питание напряжением 5 В и меньше. Схемы с однополярным
питанием позволяют уменьшить сложность источника питания и зачастую повысить экономичность
устройств.

Операционные усилители (ОУ) преимущественно используются в схемах с двухполярным питанием, поскольку входные и выходные сигналы ОУ чаще всего могут иметь как положительную так и отрицательную полярность относительно общей шины схемы. В случае, если не инвертирующий вход ОУ соединен с общей шиной, синфазное входное напряжение, вызывающее погрешность преобразования сигнала схемой на ОУ, отсутствует (рис. 1) .

Тогда выходное напряжение ОУ Vout=-Vin R2/R1 .

Если источник входного сигнала не соединен с общей шиной (рис. 2, а) , то разность потенциалов Vсф между общей шиной и выводом источника входного сигнала влияет на выходное напряжение Vout=-(Vin+Vсф)R2/R1 .

Иногда это допустимо, но чаще выходное напряжение усилителя должно обязательно определяться только входным сигналом Vin. В таком случае ОУ используется в дифференциальном включении, причем на второй вход подается смещение, в точности равное Vсф (рис. 2, б) . Напряжение Vсф существует в обеих входных цепях, и, следовательно,
является синфазным входным сигналом. Схема инвертирующего включения ОУ с однополярным питанием приведена на рис. 3.

Здесь входное напряжение привязано не к средней точке источника питания, как это обычно делается в случае двухпоярного питания ОУ, а к отрицательному полюсу источника питания. Эта схема не работает, если входное напряжение положительно, поскольку выходное напряжение должно в этом случае становиться отрицательным, а отрицательного источника питания здесь нет. Для нормальной работы с отрицательными входными сигналами в этой схеме следует использовать ОУ, допускающие соединение входов с шинами питания. Непременное требование соединения входов с общей шиной или другим опорным напряжением затрудняет построение схем на ОУ с однополярным питанием. Наиболее естественно использовать однополярное питание операционных усилителей тогда, когда источник входного сигнала однополярный, например, фотодиод (рис. 4) .

В других случаях могут использоваться различные способы смещения входных и выходных напряжений ОУ.

Смещение ОУ с однополярным питанием

На рис. 5 представлены три основные схемы подключения источника смещения при однополярном питании ОУ.

Схема на рис. 5, а представляет собой инвертирующий сумматор,

на рис. 5, б -дифференциальный усилитель,

а на рис. 5, в - неинвертирующий сумматор.

В общем случае связь между входными и выходными напряжениями в этих схемах можно представить уравнением

Vout= kVin+b . (3)

Уравнению (3) соответствует график статической переходной характеристики схемы с ОУ в виде прямой
линии (рис. 6) .

таблица 1.

В табл. 1 приведены значения постоянных k и b для уравнения (2), соответствующих схемам на рис. 5 . Если в схеме на рис. 5, б поменять местами источники V IN и V OF , то такому включению соответствует нижняя строка в графе «Рис. 5, б» табл. 1.
Схемы и значения постоянных k и b выбираются так, чтобы при любых возможных значениях входного напряжения
V IN выполнялось условие 0 < V OUT < V S . (4)
Обычно k определяется необходимым усилением схемы, поэтому разработчик может выбрать только конфигурацию схемы и постоянную b. Более подробно смещение ОУ при однополярном питании рассматривается в . Типовая схема включения ОУ для усиления сигналов переменного тока с питанием от однополярного источника приведена на рис. 7 .

Здесь напряжение смещения равно половине напряжения питания. Резисторы делителя цепи смещения могут быть выбраны достаточно высокоомными, что бы не нагружать источники питания и входного сигнала.

Введение искусственной нулевой точки

От использования цепей смещения можно отказаться, если ввести искусственную нулевую (среднюю) точку, т. е. точку схемы, потенциал которой располагается приблизительно посередине между потенциалами положительного и отрицательного полюсов однополярного источника питания. Для того, чтобы схема могла усиливать биполярные сигналы, источник входного сигнала включается между входом инвертирующего усилителя и искусственной нулевой точкой
(рис. 8) .

При этом, чтобы избежать смещения выходного напряжения, нагрузку R L включают между выходом усилителя и искусственной нулевой точкой. Это усложняет построение цепей, формирующих нулевую точку.

На рис. 9 представлены примеры схем формирования потенциала нулевой точки. Наиболее простым является резистивный делитель напряжения, средняя точка которого соединена с искусственной нулевой точкой 0 (рис. 9, а) . Однако при наличии нагрузки R L ток нагрузки I L протекает через один из резисторов этого делителя, создавая не симметрию напряжений между полюсами источника питания и точкой 0, причем степень этой не симметрии зависит от силы тока
нагрузки. Уменьшение сопротивлений делителя снижает не симметрию этих напряжений, но при этом возрастают потери энергии в делителе.
Схема со стабилитроном (рис. 9, б) обеспечивает хорошую стабилизацию потенциала искусственной нулевой точки относительно отрицательного полюса источника питания. В качестве стабилитрона в этой схеме целесообразно применение двухвыводного источника опорного напряжения (или регулируемого трехвыводного, такого как, например,
(TL431). Эта схема хорошо работает при вытекающем выходном токе ОУ, но для сохранения стабильности потенциала точки 0 при значительном втекающем выходном токе требуется резистор R с низким сопротивлением, что опять-таки
обуславливает повышенные потери. Аналогичные проблемы возникают при использовании для формирования искусственной нулевой точки стабилизатора напряжения с последовательным регулирующим элементом.
Лучшие характеристики имеет схема с операционным усилителем, подключенным по схеме не инвертирующего повторителя к средней точке резистивного делителя напряжения (рис. 9, в) . В данной схеме делитель может быть высокоомным, т. к. он нагружен только входным током покоя операционного усилителя. ОУ сравнивает потенциал на выходе схемы с потенциалом в средней точке делителя и поддерживает напряжение на своем выходе таким, чтобы разность сравниваемых потенциалов была равна нулю. Этот эффект достигается благодаря действию отрицательной обратной связи. При малых токах покоя, потребляемых этой схемой (менее 1 мА), такой активный делитель имеет выходное сопротивление не более 1 Ом.

Еще более эффективно применение специальных микросхем для формирования искусственной нулевой точки (рис. 9, г) . Фирма Texas Instruments (США) выпускает ИМС типа TLE2425. Эта ИМС изготавливается в малогабаритном трех выводном корпусе ТО-92 и обеспечивает ток через искусственную среднюю точку до 20 мА в любом направлении при токе собственного потребления не более 0,25 мА и динамическом выходном сопротивлении не более 0,22 Ом. В том случае, если нагрузка может быть не связана с общей точкой схемы или с какой-либо из шин питания, можно использовать простейший вариант формирования искусственной нулевой точки на резистивном делителе (рис. 9, а) , но с мостовой усилительной схемой (рис. 9, д) .

В этой схеме инвертирующий повторитель на ОУ2 создает на нижнем полюсе нагрузки RL потенциал, противофазный по отношению к потенциалу верхнего ее полюса.Здесь в искусственную нулевую точку втекает ток, равный V IN /R1, поэтому сопротивление резистора R1 следует взять по возможности большим, иначе возможна не симметрия нулевой точки. Дополнительные достоинства этой схемы: увеличение максимальной амплитуды напряжения
на нагрузке в два раза при том же напряжении питания и заметное повышение КПД при полном размахе выходного напряжения.

Расширение динамического диапазона

Снижение напряжения питания ОУ от обычных +15 В до однополярного 5 В значительно уменьшает амплитудный диапазон входного и выходного напряжений. Амплитудный диапазон в данном случае можно определить как разность между максимально и минимально возможными входными (выходными) напряжениями. Применение усилителей, рассчитанных на двухполярное питание, возможно и с однополярным питанием, но, во-первых, при низкой разности потенциалов между выводами питания далеко не все типы таких ОУ имеют приемлемые характеристики (например, коэффициент усиления), а во-вторых, амплитудный диапазон их выходных напряжений сравнительно мал из-за довольно больших напряжений насыщения транзисторов выходного каскада. Размах выходного напряжения обычных усилителей общего применения не доходит до верхнего и нижнего потенциалов источника питания на 1…2 В при номинальной нагрузке. При питании такого усилителя от однополярного источника напряжением 5 В, амплитудный диапазон выхода составит 1…3 В. Это означает серьезное снижение соотношения сигнал/шум и уменьшение разрешающей способности схемы.

В настоящее время для работы от низковольтных источников питания, в том числе и однополярных, разработано большое количество моделей ОУ с полным размахом выхода(«Rail-to-Rail»). Выходное напряжение таких усилителей при работе на холостом ходу может изменяться практически от потенциала отрицательного полюса источника питания до потенциала положительного полюса.

Схемотехника выходных каскадов усилителей с полным размахом выхода и обычных ОУ различна. Выходной каскад обычных ОУ строится по схеме с общим коллектором на комплиментарных транзисторах (рис. 10, а) .

При использовании такого схемного решения минимальное падение напряжения на выходном транзисторе принципиально не может быть снижено. Как следует из схемы на рис. 10, а , источник тока I должен обеспечивать ток коллектора транзистора каскада усиления напряжения VT3 и базовый ток выходного транзистора VT1. Для нормальной работы схемы источника тока необходимо падение напряжения на нем VT1 не менее 1 В. Остальная часть общего падения напряжения приходится на выходной транзистор. Можно уменьшить минимальное падение на транзисторах выходного каскада, включив в выходном каскаде транзисторы по схеме с общим эмиттером (рис. 10, б) . По этой схеме построен выходной каскад, например, ОУ AD823 фирмы Analog Devices.

На рис. 11 представлены графики зависимости напряжения насыщения V SAT выходных транзисторов этого усилителя от тока нагрузки I L для максимального (V S –V OH) и минимального (V OL) выходных напряжений. Очевидно, что при работе усилителя на холостом ходу максимальное выходное напряжение почти достигает напряжения питания, а минимальное - мало отличается от нуля. Еще лучшие характеристики на холостом ходу обеспечивают усилители, у которых выходной каскад построен на комплементарных МОП-транзисторах (рис. 10, в) .
Сопротивления полностью открытого канала верхнего и нижнего МОП-транзисторов выходного каскада ОУ типа TLC2272 фирмы Texas InstRuments составляют, соответственно, 500 и 200 Ом при питании усилителя от однополярного источника 5 В.

Если нагрузка R L включена между выходом ОУ и общей точкой схемы, так как показано на рис. 4 , то при низких выходных напряжениях выходной ток также мал, и напряжение на открытом нижнем транзисторе усилителя весьма близко к нулю (доли милливольта). Если ток нагрузки велик, и нагрузка соединена другим выводом с плюсом источника питания или искусственной нулевой точкой, напряжение на полностью открытом выходном транзисторе может достигать больших значений (более 1 В). В некоторых применениях требуется не только полный размах выхода ОУ, но и полный размах (Rail-to-Rail) допустимых значений входного синфазного напряжения V СФ (вход с полным размахом). Это нужно, например, в схеме неинвертирующего повторителя, согласующего датчик сигнала с аналого-цифровым преобразователем. Для некоторых приложений необходимо, чтобы диапазон входных сигналов был ниже потенциала общей шины на 0,2…0,3 В. Это требуется при однополярном питании инвертирующего усилителя, где на вход должно подаваться отрицательное напряжение (рис. 3) , например, в схеме фотометра (рис. 4) , где полярность напряжения на инвертирующем входе ОУ несколько ниже, чем на неинвертирующем. Усилители, имеющие вход с полным размахом, схемотехнически заметно сложнее, чем обычные. Других преимуществ, кроме возможности работы с широким диапазоном входного синфазного сигнала, они не имеют. Поэтому их следует применять только там, где действительно требуется полный размах входа.

На рис. 12 , а приведена схема дифференциального входного каскада обычного ОУ. Он состоит из двух согласованных структур. Для того, чтобы входной сигнал мог достигать потенциала общей шины используются p-n-p-транзисторы.
Такое построение позволяет подавать на вход потенциал общей шины без нарушения работы входного каскада. При
более низком синфазном входном напряжении поведение входного каскада становится непредсказуемым. Часто наблюдается инверсия входов, при которой меняется знак обратной связи, и происходит переход ОУ в триггерный режим
(так называемое «защелкивание»). Поскольку напряжение на источнике тока V ИТ в схеме на рис. 12, а должно быть не
менее 0,4 В (иначе он просто не будет работать), а напряжение база-эмиттер транзисторов V BE в активном режиме
составляет приближенно 0,6 В, то входной синфазный сигнал должен быть по крайней мере на 1 В меньше напряжения питания.

На рис. 12, б представлен дифференциальный каскад на n-канальных полевых транзисторах с управляюшим p-n-переходом (JFET-транзисторы). Поскольку пороговое напряжение исток-затвор таких транзисторов составляет –2…–3 В, то можно легко обеспечить нормальную работу входного каскада ОУ при небольших отрицательных синфазных входных напряжениях. Именно так построен входной каскад ОУ AD823 с полным размахом выхода. Этот усилитель нормально работает при –1 В < V СФ < V S –1 В.

Если обязательно требуется работа ОУ с полным размахом входного напряжения, то применяют двойной комплементарный дифференциальный каскад (рис. 12, в) . Биполярный вариант, показанный на рис. 12 , в, используется в ОУ типа TLV245x и OP196, КМОП вариант этой схемы - в TLV247х и AD853х. Из схемы ясно, что оба дифференциальных усилителя входного каскада управляются одновременно. Дифференциальный усилитель (ДУ) с p-n-p-транзисторами работает до максимального уровня входных сигналов на 1 В ниже напряжения питания. Для нормальной работы n-p-n-усилителя требуется синфазный сигнал не менее 1 В. Таким образом, в зоне 1 В V S –1 В и V СФ <1 В - только один. Это обстоятельство вызывает довольно значительное изменение входных токов и напряжения смещения нуля (до 3 нА и 70 мкВ у TLV245x) при переходе через
границы этих зон, что может вызвать искажения усиливаемого сигнала. Уменьшить эти искажения можно, включив последовательно с неинвертирующим входом резистор RC (рис. 3) , сопротивление которого определяется по формуле

Rc = R1R2/R1+R2 (5)

В табл. 2 представлены основные параметры (типичные значения) некоторых типов ОУ, предназначенных для работы с однополярным питанием.

Схемы на ОУ с однополярным питанием

Линейный стабилизатор напряжения
Схема линейного стабилизатора напряжения на ОУ с регулирующим транзистором, включенным по схеме с ОК, представлена на рис. 13, а .

Схема содержит ОУ, включенный по схеме неинвертирующего усилителя с отрицательной обратной связью понапряжению, источника опорного напряжения V REF и регулирующего n-p-n-транзистора VТ, включенного последовательно с нагрузкой. Выходное напряжение V OUT контролируется с помощью цепи отрицательной обратной связи, выполненной на резистивном делителе R 1 R 2 . ОУ играет роль усилителя ошибки. Ошибкой здесь является разность между опорным напряжением V REF , задаваемым источником опорного напряжения (ИОН) и
выходным напряжением делителя R 1 R 2

ΔV = V REF — V OUT R1/R1+R2. (6)

Питание операционного усилителя осуществляется однополярным положительным напряжением. При этом операционные усилители, рассчитанные на двухполярное питание +15 В можно использовать в схемах стабилизаторов
со входным напряжением до 30 В. Стабилизируемое выходное напряжение ограничено снизу минимальным синфазным входным напряжением ОУ, а сверху - суммой напряжения насыщения ОУ и напряжения насыщения база-эмиттер регулирующего транзистора, т. е. минимально допустимое напряжение вход-выход стабилизатора при применении
обычных ОУ будет большим (около 3 В). На рис. 13, б приведена схема стабилизатора с пониженным допустимым напряжением вход/выход (так называемый, LDO-стабилизатор). Здесь регулирующий транзистор включен
по схеме с ОЭ, поэтому могут быть проблемы с устойчивостью . Минимально допустимое напряжение вход/выход в
этой схеме ограничено только напряжением насыщения коллектор-эмиттер регулирующего транзистора VT.

Прецизионный выпрямитель

Замечательная по простоте схема двухполупериодного прецизионного выпрямителя представлена на рис. 14 .

Она вообще не содержит диодов. Однако в этой схеме могут применяться только ОУ с полным размахом входных и выходных напряжений (Rail-to-Rail). Усилители питаются обязательно от однополярного источника. Если V IN >0, то усилитель ОУ1 работает как неинвертирующий повторитель. В этом случае усилитель ОУ2 работает в дифференциальном включении и V OUT =V IN . При V IN <0 усилитель ОУ1 уходит в отрицательное насыщение, напряжение на его выходе становится равным нулю (питание однополярное!). Тогда усилитель ОУ2 переходит в режим инвертирующего повторителя, поэтому V OUT = –V IN . Как следствие, V OUT = |V IN |.

Усилитель ОУ2 всегда работает в линейном режиме, а потенциал неинвертирующего входа ОУ1 при V IN <0 становится ниже потенциала отрицательного полюса источника питания. Не все операционные усилители это допускают. Например, сдвоенный ОУ ОР291 как нельзя лучше подходит для этой схемы. Его входы защищены от дифференциального перенапряжения встречно-параллельно включенными диодами, причем в цепи баз входных транзисторов включены резисторы сопротивлением в 5 кОм. Это позволяет усилителю выдерживать при однополярном питании входное синфазное напряжение до –15 В. В этом случае резистор R1 можно не включать. Иное дело - сдвоенный усилитель ОР296. Он не имеет защитных резисторов, и при его применении в этой схеме необходимо включать резистор R1=2 кОм.
Изготовитель рекомендует для этой схемы при 5-вольтовом питании диапазон входных сигналов ±1 В. Из-за того, что усилитель ОУ1 долго выходит из насыщения, частотный диапазон схемы оказывается довольно узким - для ОУ ОР291 он составляет 0…2 кГц.

Схема измерения тока

Для измерения больших токов в линии, находящейся под относительно высоким потенциалом, может быть использована схема, представленная на рис. 15 .

Ток, протекающий через нагрузку, создает напряжение V IN на шунте R ш, который здесь является датчиком тока. Полагаем ОУ идеальным. Тогда через инвертирующий вход усилителя ток не течет, и, поскольку напряжение между дифференциальными входами усилителя равно нулю, напряжение V IN приложено к левому резистору R. Ток через резистор R и коллектор транзистора VТ

l c = V IN /R = l L R ш /R (7)

Пренебрегая током базы транзистора, найдем выходное напряжение схемы

V OUT = l C R T = l L R T R ш /R (8)

Именно по этой схеме выполнен измеритель тока фирмы Burr-Brown INA168 (границы кристалла показаны на рис. 15 штриховой линией). Он допускает синфазное напряжение на входах до 60 В и коэффициент усиления напряжения на шунте до 100. Ток, потребляемый микросхемой, составляет всего 50 мкА. Микросхема LT1787 аналогичного назначения построена симметрично, т. к. имеет в своем составе усилитель с дифференциальными входами и выходами и нагрузку в виде токового зеркала. Допустимое синфазное напряжение также 60 В. Динамический диапазон -12 бит (72 дБ). Микросхема измерителя тока МАХ471 имеет на кристалле шунтовой резистор, рассчитанный на ток до 3 А, а у МАХ4372 такого резистора нет, но зато ее погрешность преобразования не превышает 0,18%.

Цифро-аналоговый преобразователь
с выходом в виде напряжения

Комбинация ЦАП с токовым выходом, например, 12-битного AD7541А и ОУ с полным размахом показана на рис. 16 .

Здесь используется инверсное включение резистивной матрицы R-2R. ОУ включен по схеме неинвертирующего усилителя с коэффициентом усиления 2. В качестве источника опорного напряжения может быть использован TL431. Выходное напряжение схемы определяется формулой

V OUT = 2V REF /4096*DI, (9)

где DI - входной код.

Выводы

Операционные усилители, предназначенные для работы с биполярным питанием, могут работать в схемах с одним источником, однако амплитудный диапазон их входных и выходных сигналов может оказаться слишком узким. Операционные усилители, предназначенные для работы с одним источником, в свою очередь, тоже могут работать в схемах с биполярным питанием. Необходимо только, чтобы разность потенциалов положительного и отрицательного источника не превышала предельно допустимого напряжения питания для данного типа усилителя. Если требуется усиливать сигналы переменного тока, то при однополярном питании целесообразно использовать цепи смещения и разделительные конденсаторы (рис. 7) .
Если входной сигнал постоянного тока биполярный, то можно использовать цепи смещения, однако более удобно
введение в схему искусственной нулевой точки. Если предполагается работа со входными сигналами ниже потенциала общей шины при однополярном питании, следует в необходимых случаях предусмотреть меры для защиты входов усилителя.

Георгий Волович,
[email protected]

Литература
1. Mancini R. Single Supply Op Amp Design Techniques // Application RepoRt SLOA030. - Texas InstRuments
IncoRpoRated. - OctobeR 1999. - 23 p.
2. Волович Г. Устойчивость линейных интегральных стабилизаторов напряжения. - Схемотехника, 2001. № 11.

Основанная в 1959 году фирма National Semiconductor прошла огромный путь от производства первых дискретных транзисторов до сложнейших компонентов современных информационных устройств. Располагая возможностями создания приборов с уровнем интеграции от базовых стандартных блоков и однокристальных систем до высокопроизводительных многокристальных и многофункциональных комплектов и сочетая технологии аналоговой и цифровой техники, фирма реализует оптимальные решения для потребительского и коммуникационного рынков в широком диапазоне номенклатуры изделий. Заслуживают внимания, также, и базовые элементы аналоговой электроники, разработанные и выпускаемые National Semiconductor, в частности интегральные операционные усилители, которые значительно менее популярны в России, чем, например, изделия фирмы Analog Devices, хотя в большинстве случаев они ни в чем не уступают последним при существенно более низкой цене. Операционные усилители (ОУ) National Semiconductor по ряду параметров можно условно делятся на несколько семейств (групп), частично это разделение проявляется в системе маркировки микросхем, используемой фирмой. Это:

1. Усилители общего применения (General Purpose - LM).

2. Быстродействующие (High Speed - LMH) - частота единичного усиления более 50 МГц.

3. Маломощные (Low Power - LP, LPV) - ток потребления менее 1,5 мА.

4. Микромощные (Micro Power - LP, LPV) - ток потребления менее 25 мкА.

5. Низковольтные (Low Voltage - LMV) - напряжение питания менее 3 В.

6. Прецизионные (Precision) - коэффициент усиления более 100 дБ, напряжение смещения менее 1 мВ.

7. Малошумящие (Low Noise) - напряжение шумов менее 10 нВЦ Гц.

8. Мощные (High Output Power) - выходной ток более 100 мА.

9. С входным и выходным напряжением, близким к напряжению питания (IO Rail to Rail).

Данное разделение по понятным причинам не является строгим, буквенная классификация также не всегда соблюдается, ОУ может быть одновременно быстродействующим, малошумящим, с выходным напряжением, близким к напряжению питания и т.п. Кроме того, микросхемы одного типа выпускаются в различных корпусах и исполнениях - для общего применения (commercial), для промышленного применения (industrial) и для специального, читай - военного применения (military), отличающихся по ряду параметров, в частности, по диапазону рабочих температур. Следует также отметить, что наряду с освоением производства новых изделий, фирма непрерывно занимается усовершенствованием и развитием выпускаемых ранее, что хорошо видно, например, на широко известном недорогом и очень популярном семействе маломощных ОУ LM321/358/324 (одиночный/сдвоенный/счетверенный) с током потребления 0,2 - 0,4 мА на канал. Выпускается ряд их модификаций: LP324/LP2902 - счетверенные микромощные с током потребления 21 мкА, LMV321/358/324 - низковольтные, с напряжением питания от 2,7 В до 5,5 В, LPV321/358/324 , изготавливаемые по фирменной технологии BICMOS - микромощные низковольтные с током потребления 9 мкА и т.д.

Продолжая рассмотрение мало- и микромощных ОУ National Semiconductor, перейдем к описанию последних разработок фирмы.

Усилитель LM7301 , выпускаемый в миниатюрном корпусе SOT23-5, занимающем в 2 раза меньшую площадь, чем SOIC-8, рассчитанный на однополярное питание в диапазоне напряжений от 1,8 В до 32 В при потребляемом токе 0,6 мА. Он имеет "супер" Rail to Rail вход (от -0,25 В до +5,25 В при напряжении питания +5 В) и Rail to Rail выход и прекрасно подходит для использования во всевозможной портативной аппаратуре, модемах, PCMCIA картах портативных ПК и т.п.

Усилители LMV751 и семейство LMV821/2/4 (одиночный/сдвоенный/ счетверенный) предназначены для применения в портативной радиочастотной аппаратуре, переносных ПК и т.п. LMV751 - это прецизионный малошумящий ОУ (уровень шума 6,5 нВ/Ц Гц) с частотой единичного усиления 5 МГц и небольшим напряжением смещения 1 мВ. Работает при однополярном питании от 2,7 до 5,5 В и потребляет ток 0,6 мА. LMV821 при том же напряжении питания потребляет ток 0,3 мА на канал, частота единичного усиления равна 6,5 МГц, но у него больше шумы, напряжение и ток смещения. Одиночные усилители выпускаются в миниатюрных корпусах SOT23-5.

LMV771 - малошумящий недорогой прецизионный ОУ с расширенным от -40 до +125 °C диапазоном рабочих температур. Работает при однополярном питании напряжением от 2,7 до 5,5 В и потребляет ток 0,6 мА, обеспечивая коэффициент усиления 100 дБ при уровне шумов 9 нВнВ/Ц Гц. Усилитель имеет небольшое 0,85 мВ напряжение смещения, нормируется также его температурный дрейф во всем диапазоне температур 0,35 мкВ/°C. Допускает подачу на вход синфазного напряжения от 0 В. Частота единичного усиления составляет 3,5 МГц. Выпускается в миниатюрном корпусе SC70-5 размером 2x2x1 мм.

Серия усилителей LM6132-42 предназначены для использования в быстродействующих устройствах с батарейным питанием. LM6132/4 (сдвоенный/счетверенный) - ОУ с внутренней коррекцией с однополярным питанием, в котором достигнуто великолепное соотношение скорости нарастания выходного напряжения к потребляемой мощности. Достоинством микросхемы является также широкий диапазон напряжений питания от 2,7 В до 24 В, Rail to Rail вход и выход и высокий коэффициент подавления синфазных сигналов. При частоте единичного усиления 10 МГц, потребляемый ток составляет всего 360 мкА, что делает данный ОУ незаменимым в портативных устройствах, таких как инструментальные усилители, радиоприемники и передатчики, драйверы дисплеев и т.п. LM6142/4 - аналогичен LM6132/4 , но работает в более широком диапазоне питающих напряжений от 1,8 В до 24 В, обладает более высоким усилением 108 дБ и коэффициентом подавления синфазных сигналов 107 дБ, частота единичного усиления составляет 17 МГц при токе потребления 650 мкА. Выпускаются в корпусах SOIC и MDIP, а также в корпусе CDIP c диапазоном рабочих температур от -55 до 125 °C.

Представляют интерес супернизковольтные ОУ LMV931/2/4 (одиночный/сдвоенный/счетверенный), работающие при напряжениях питания от 1,5 до 5,5 В, ориентированные на применение в устройствах с питанием от одного Li-Ion элемента. Благодаря использованию миниатюрных корпусов, ОУ легко встраиваются в мобильные телефоны и компьютерные платы. Усилители имеют Rail to Rail вход и выход, небольшой потребляемый ток 100 мкА на канал и обеспечивают частоту единичного усиления 1,4 МГц. Коэффициент усиления на нулевой частоте без ОС 101 дБ. Скорректированы для устойчивой работы при любом коэффициенте усиления, а также при емкостной нагрузке до 1000 пФ. Работают в диапазоне температур от -40 до +125 °C. Одиночные ОУ выпускаются в миниатюрных корпусах SC70-5 и SOT23-5, сдвоенные - в корпусах MSOP-8 и SOIC-8, счетверенные - в корпусах TSSOP-14 и SOIC-14.

Усилители серии LMC , изготовленные по технологии КМОП, также относятся к категории мало- и микромощных. Их характерная особенность - ничтожно малые входные токи и, соответственно - работа в электрометрических устройствах, приборах для измерения токов утечки, различной научной аппаратуре и т.п. Например, для прецизионного усилителя LMC6001 типовое значение входного тока 25 фА (ф - фемто 10 -15). Примечательна методика, используемая фирмой для тестирования только что изготовленных усилителей - 3 раза подряд в первую минуту; приборы, показывающие входной ток более 25 фА, отбраковываются. Данный усилитель обладает очень низким уровнем шумов 25 нВ/Ц Гц. Имеется защита от электростатического потенциала до 2000 В. Выпускается в корпусе MDIP.

Номенклатура усилителей серии LMC достаточно широка. Маломощные усилители LMC6022/4 (сдвоенный/счетверенный) выполнены по фирменному технологическому процессу Double-Poly Silicon-Gate и могут работать при одно- и двухполярном питании размахом до 15 В. Они имеют Rail to Rail выход и низкое энергопотребление 40 мкА на канал. Более быстродействующие усилители с Rail to Rail выходом LMC6032/4 при весьма низкой цене имеют очень высокий коэффициент усиления 126 дБ. При потребляемом токе 0,4 мА частота единичного усиления составляет 1,4 МГц, а скорость нарастания выходного напряжения 1,1 В/мкс. Низковольтные ОУ LMC6035/6 с Rail to Rail выходом могут работать при однополярном питании от 2,7 В (например от 3-х NiCd аккумуляторов), что делает их весьма подходящими для портативных систем с автономным питанием. В остальном их параметры аналогичны LMC6022/4. Усилители выпускаются в различных корпусах.

Микромощные усилители LMC6041/2/4 с током потребления 14 мкА на канал имеют рекордно малый входной ток 2 фА, Rail to Rail выход и могут работать при однополярном питании от 4,5 до 15,5 В, обеспечивая при этом выходной ток до 21 мА. Эти усилители прекрасно работают в системах контроля питания, детекторах излучений, различном научном оборудовании.

Схожие энергетические параметры имеют прецизионные усилители LMC6061/2/4 , которые благодаря низкому значению напряжения смещения 100 мкВ и высокому коэффициенту усиления 140 дБ прекрасно подходят для использования в инструментальных усилителях с автономным питанием, медицинской и научной аппаратуре. Отметим, что одиночный (LMC6061) и сдвоенный (LMC6062) усилители этой серии выпускаются и в корпусах CDIP, при этом диапазон рабочих температур составляет -55 - +125 °C.

Более скоростные прецизионные ОУ LMC6081/2/4 при частоте единичного усиления 1,3 МГц и скорости нарастания выходного напряжения 1,5 В/мкс потребляют от однополярного источника питания напряжением от 4,5 до 16 B ток 0,45 мА. Они также имеют большой коэффициент усиления 130 дБ и низкое напряжение смещения 150 мкВ. Усилители выпускаются в корпусах SOIC и MDIP.

Маломощные ОУ LMC6482/4 (сдвоенный/счетверенный) - типичные в своем классе усилители с Rail to Rail входом и выходом. Работают в диапазоне напряжений питания от 3 до 15 В, потребляя ток 0,5 мА на канал и обеспечивают выходной ток до 30 мА. Предназначены для использования в различной аппаратуре с низким энергопотреблением. В настоящее время выпускаются одиночный ОУ LMC7101 в корпусе SOT-23 с параметрами, аналогичными LMC6482 , и его усовершенствованный вариант LMC8101 в корпусах microSMD и miniSOIC. Последний имеет режим блокировки (Shutdown) со временем включения 10 мкс, ток потребления в котором не превышает 1 мкА.

LMC6462/4 - микромощная версия LMC6482/4 с током потребления 0,02 мА. В настоящее время выпускается одиночный ОУ LMC7111 в корпусе SOT-23-5 с параметрами, аналогичными LMC6462.

Усилители LMC6492/4 (сдвоенный/счетверенный) с расширенным температурным диапазоном -55 до +125 °C применяются в автомобильной электронике. Их параметры в основном такие же как и у LMC6482/4 . Выпускаются в корпусе SOIC.

Усилители LMC6572/4 (сдвоенный/счетверенный), предназначены для работы в цифровых устройствах с низким напряжением питания и обеспечивают сочетание весьма высоких параметров - входной ток 20 фА и коэффициент усиления 120 дБ при энергопотреблении 40 мкА на канал и питании от источника 2,7 В. Имеют Rail to Rail выход и выпускаются в корпусах MSOP.

Завершая раздел мало- и микромощных усилителей рассмотрим cверхэкономичный с током потребления менее 1 мкА на канал сдвоенный ОУ LMC6442 . Он скорректирован для устройств с коэффициентом усиления более 2 (менее -1) и предназначен для использования в широком классе аппаратуры со сверхмалым энергопотреблением - мобильных телефонах и пейджерах, датчиках контроля, научных приборах и т.п. Работает при однополярном питании от 1,8 до 11 В. Выпускается в корпусах MSOP-8 и других.

Отдельного рассмотрения заслуживает сдвоенный операционный усилитель LM833 , специально предназначенный для использования в высококачественной аудиоаппаратуре. Он имеет чрезвычайно широкий динамический диапазон - более 140 дБ при уровне шумов 4,5 нВ/Ц Гц и крайне малые нелинейные искажения 0,002%. Усилитель скорректирован для любого коэффициента усиления и идеально подходит для всевозможной Hi-Fi - Hi-End техники. Выпускается в 8-и выводных корпусах SOIC и MDIP.

Перейдем далее к обзору быстродействующих ОУ National Semiconductor. Надо сказать, что в их разработке и производстве фирма достигла очень высоких результатов, и по многим параметрам они превосходят аналогичные изделия других производителей. Отметим, что в настоящее время существует две разновидности быстродействующих операционных усилителей - наряду с ОУ, построенными по традиционной схемотехнике с использованием обратных связей по напряжению Voltage Feedback Amplifiers (VFA), широко применяются усилители c входными каскадами - усилителями тока со взаимными связями. Данные усилители получили название "усилители с токовой обратной связью - Current Feedback Amplifiers (CFA)". Основной передаточный параметр таких усилителей - коэффициент, имеющий размерность сопротивления Transimpedance, а область применения - всевозможные импульсные усилители и видеоусилители, для которых гигантское входное сопротивление традиционных ОУ не востребовано, а на первый план выступает максимальная скорость нарастания выходного напряжения и частота единичного усиления, значения которых у CFA значительно превосходят соответствующие параметры у VFA.

Мы начнем с ОУ, использующих обычную схемотехнику VFA. Семейство LMH6645/6/7 (одиночный/сдвоенный/одиночный с блокировкой) - низковольтные маломощные быстродействующие Rail to Rail усилители с током потребления 650 мкА на канал. В режиме блокировки (LMH6647) токопотребление снижается до 50 мкА. Частота единичного усиления 55 МГц, скорость нарастания выходного напряжения 22 В/мкс, типовое значение выходного тока 20 мА. Это типичные в своем классе современные усилители, пригодные для применения во многих электронных устройствах.

Усилители LM6152/4 , продолжающие серию LM6132-42 , предназначены для использования в быстродействующих устройствах с батарейным питанием. При потребляемо м токе 1,4 мА частота единичного усиления составляет 75 МГц, а скорость нарастания выходного напряжения 30 В/мкс

Более высокие параметры имеют ОУ LMH6642-55 - относительно недорогие высокоскоростные современные Rail to Rail операционные усилители с хорошим соотношением быстродействие/потребляемая мощность. Работают при одно- и двухполярном питании размахом до 12 В.

Усилители LMH6642/3/4 (одиночный/сдвоенный/счетверенный) - это современные быстродействующие ОУ с типичными для своего класса параметрами. Потребляемый ток 2,7 мА на канал, частота единичного усиления 130 МГц, скорость нарастания выходного напряжения 130 В/мкс, типовое значение выходного тока 115 мА. Малое время установки выходного напряжения и низкие искажения, эффективная защита от короткого замыкания, Rail to Rail вход и выход и выводы для балансировки делают эти микросхемы оптимальными для использования во многих современных электронных устройствах. Выпускаются в корпусах SOIC, miniSOIC и SOT-23. Можно использовать в качестве замены LM6152/4 .

Широкополосный (190 МГц, 170 В/мкс) Rail to Rail усилитель с однополярным питанием LMH6639 способен обеспечить выходной ток 190 мА. Имеется режим блокировки (Shutdown) с временем включения 85 нс, в котором ток потребления снижается до 400 мкА. Вкупе с малым временем установки выходного напряжения 33 нс, данный усилитель прекрасно подходит для работы в устройствах с мультиплексированием, в качестве буферного усилителя, устройствах привода CD ROM и т.п.

Заслуживает внимания быстродействующий сдвоенный усилитель LMH6672 с максимальным выходным током 600 мА. Усилитель скорректирован для коэффициента усиления 2 и более, обеспечивая полосу пропускания 130 МГц и скорость нарастания выходного напряжения 160 В/мкс. Диапазон напряжений питания от 5 до 12 В, потребляемый ток 6,2 мА на канал. ОУ имеет малый уровень шумов, предусмотрена балансировка. Выпускается в корпусах SOIC, PSOP и LLP. Предназначен для использования в качестве магистрального усилителя, а также в модемах и аналогичных устройствах. Можно использовать для замены LM6181/2, LM7171 и LM7372.

Усилители LMH6654/5 (одиночный/сдвоенный) более широкополосные. Ток потребления 4,5 мА на канал, частота единичного усиления 250 МГц, скорость нарастания выходного напряжения 200 В/мкс, типовое значение выходного тока 180 мА. Они имеют низкий уровень входных шумов 4,5 нВ и 1,7 пА, малое время установки выходного напряжения 25 нс и могут быть использованы в различных устройствах. Выпускаются в корпусах SOIC-8, а также SOT23-5 (LMH6654) и MSOP-8 (LMH6655).

Усилители LMH6657/8 и LMH6682/3 - сравнительно недорогие сверхскоростные ОУ с однополярным питанием от 3 до 12 В. Выпускаются с использованием фирменной технологии VIPTM10. Удобны для применения в устройствах обработки видеосигналов и в сервоприводах CD/DVD так как имеют малое время установки и не допускают инверсии фазы выходного напряжения при превышении допустимых значений входного напряжения (LMH6682/3), что позволяет существенно упростить схемотехнику подобных устройств.

Усилители LMH6657/8 (одиночный/сдвоенный) скорректированы для работы с единичным коэффициентом усиления, обеспечивая при этом олосу пропускания 270 МГц и скорость нарастания выходного напряжения 700 В/мкс. Потребляемый ток 6,2 мА на канал, выходной ток +80/-90 мА.

Усилители LMH6682/3 (сдвоенный/строенный), обеспечивают скорость нарастания выходного напряжения 940 В/мкс при полосе пропускания 190 МГц. Следует отметить, что данные усилители обладают очень малыми коэффициентами искажений типа "дифференциальная фаза" - 0,08% и "дифференциальное усиление" - 0,01 дБ, что является весьма важным для высококлассной видеотехники. Выпускаются в различных корпусах.

Для работы в различных видеоустройствах предназначены сверхбыстродействующие усилители со скоростью нарастания выходного напряжения более 1000 В/мкс. В серии LM это LM6171/2 и LM6181/2 (единичный/сдвоенный), изготовленные с использованием фирменной технологии VIPTM11. Первый из них выполнен по схемотехнике VFA и обеспечивает при потребляемом токе всего 2,5 мА скорость нарастания выходного напряжения 3600 В/мкс при частоте единичного усиления 100 МГц. LM6181/2 выполнен по схемотехнике с токовой обратной связью CFA и обеспечивает выходное напряжение +10 В при сопротивлении нагрузки 100 Ом. Скорость нарастания выходного напряжения составляет 2000 В/мкс при частоте единичного усиления 100 МГц. Описанные усилители при том, что относятся к категории "с мощным выходом" - High Output - максимальное значение выходного тока достигает 130 мА, имеют очень малые искажения типа "дифференциальное усиление" и "дифференциальная фаза" и могут найти применение в видеоаппаратуре стандартов NTSC и PAL, высокочастотных фильтрах и т.п. Они также выпускаются в корпусах SOIC и MDIP.

Усилитель LMH6609 предназначен для использования в аналоговых преобразователях и фильтрах. При частоте единичного усиления 900 МГц и скорости нарастания выходного напряжения 1400 В/мкс, он потребляет от однополярного источника питания напряжением 10 В ток 7 мА. Усилитель полностью скорректирован, имеет очень низкий уровень шумов 3,1 нВ/Ц Гц и большой выходной ток 90 мА. Выпускается в 8-выводном корпусе SOIC и 5-и выводном SOT.

Очень низкий уровень шумов и высокие рабочие частоты имеют усилители LMH6622-28 . У LMH6624 этот параметр составляет 0,92 нВ/Ц Гц и 2,3 пА/Ц Гц, а частота единичного усиления 1500 МГц. Усилитель скорректирован для использования в устройствах с коэффициентом передачи 10 и более и предназначен для применения в технике связи и медицинской аппаратуре. Малые шумы и погрешности характерны для сдвоенного широкополосного усилителя LMH6628 , у которого относительный уровень 2-й/3-й гармоники на частоте 10 МГц составляет -65/-74 дБ соответственно, а время установки выходного напряжения с точностью 0,1% - 12 нс. Это делает данный усилитель незаменимым при разработке быстродействующих аналоговых преобразователей и устройств ввода-вывода.

Для использования в портативной видеоаппаратуре и видеокартах ПК предназначен усилитель LM7121 , выпускаемый в корпусе SOT23-5. Параметры усилителя весьма высоки: частота единичного усиления 175 МГц, скорость нарастания выходного напряжения - 1300 В/мкс. Он может работать как при однополярном +5В питании, так и двухполярном в диапазоне от +5 В до +15 В.

Рекордными параметрами обладают сверхскоростные операционные усилители LM7171 (одиночный) и LM7372 (сдвоенный). Выполненные по схемотехнике с обратной связью по напряжению, они имеют параметры, свойственные усилителям с токовой обратной связью - скорость нарастания выходного напряжения 4100 В/мкс, частота единичного усиления 200 МГц, выходной ток 100 мА (LM7171) и 3000 В/мкс, 120 МГц, 150 мА соответственно для LM7372 при потребляемом токе 6,5 мА на канал. Усилители скорректированы для коэффициента усиления по напряжению более 2. Обладая минимальными искажениями "дифференциальное усиление и фаза" 0,01% и 0,02o, эти усилители прекрасно подходят для применения в видеотехнике, аппаратуре кабельных и оптических линий связи, системах радио и телевизионного вещания. Выпускаются в различных типах корпусов.

Серия сверхскоростных ОУ LMH67xx выполнена по фирменному технологическому процессу VIPTM10 по схемотехнике с токовой обратной связью CFA и предназначена для использования в широкополосных радио и телесистемах. Обзор этих микросхем мы начнем с LMH6702 - малошумящего (напряжение шумов, приведенное ко входу 1,83 нВ) ОУ с рекордно низким уровнем гармонических (-100 дБ на частоте 5 МГц) и интермодуляционных искажений, полосой пропускания 720 МГц и скоростью нарастания выходного напряжения 3100 В/мкс. Столь высокие параметры ориентируют применение LMH6702 в системах с высоким разрешением и контрольно-измерительной аппаратуре. Выпускается в корпусах SOIC и SOT-23.

Семейство усилителей LMH6714/15/20/22 (одиночный/сдвоенный/с блокировкой/счетверенный) с полосой пропускания 400 МГц при коэффициенте усиления 2 и скорости нарастания выходного напряжения 1800 В/мкс при потребляемом токе 5,6 мА предназначены, в основном, для использования в видеосистемах. Высокоимпедансное выходное состояние усилителя LMH6720, переключаемое за 7 нс TTL уровнем, очень удобно для мультиплексирования нескольких высокоскоростных сигналов на общую линию передачи. Счетверенный усилитель LMH6722 может быть эффективно использован в многоканальных УПЧ и активных фильтрах высоких порядков. Выпускаются в различных корпусах.

Усилитель с однополярным питанием от 4,5 до 12 В LMH6723 сочетает высокую экономичность (потребляемый ток 1 мА) с широкой полосой пропускания 370 МГц, высокой скоростью нарастания выходного напряжения 600 В/мкс и большим выходным током 110 мА, что делает его незаменимым для портативных видеоустройств и всевозможных преобразователей с автономным питанием, магистральных усилителей, портативных CD-DVD плейеров и т.п. Выпускается в корпусах SOIC и SOT23.

Завершая раздел, мы рассмотрим широкополосный ОУ LMH6732 с регулируемой от 0 до 1,5 ГГц полосой пропускания. Изменяя сопротивление одного внешнего резистора, можно варьировать потребляемый ток более чем в 10 раз, а также переводить микросхему в дежурный режим с током потребления 1 мкА. Параметры микросхемы уникальны при всех значениях потребляемого тока: полоса частот 55 МГц, скорость нарастания выходного напряжения 400 В/мкс, выходной ток 9 мА при потребляемом токе 1 мА и 540 МГц, 2700 В/мкс и 115 мА соответственно при потребляемом токе 9 мА. Усилитель способен работать при одно- и двухполярном питании размахом от 9 до 12 В. Область предполагаемых применений крайне широка - видеотехника, системы с батарейным питанием, коммутационные устройства и т.п. Отметим, что для сокращения времени проектирования устройств с LMH6732 фирма National Semiconductor предлагает к нему демонстрационную плату.

Таким образом, широкая номенклатура интегральных операционных усилителей National Semiconductor и их невысокая стоимость делает их весьма привлекательными для широкого круга разработчиков РЭА России. Более подробную техническую информацию можно найти на сайте фирмы http://www.national.com .

Исполнение Корпус Диапазон температур Диапазон напряжения питания Потребляемый ток на один канал Выходной ток Тип входа и выхода Входной ток Напряжение смещения Температурный коэффициент напряжения смещения Коэффициент усиления Коэффициент подавления синфазного сигнала Коэффициент влияния нестабильности источников питания Частота единичного усиления. Скорость нарастания. Напряжение шумов
Supply Voltage I quies I out In - Out I bias U offset Drift A vo CMRR PSRR BW SR e noise
Single(одиночный) Doble(сдвоенный) Quad(счетверенный) Package В мА мА R to R нА мВ мкВ/C дБ дБ дБ МГц В/мкс нВ/Ц Гц
мин макс макс макс тип тип макс тип тип тип тип тип тип тип
LP324 SO, TSSOP, MDIP C ±1,5; +3,0 ±16,0; +32 0,021 4,0 Out 2,0 2,0 9,0 - 100 90 90 0,10 0,05 80
LP2902 SO, MDIP I ±1,5; +3,0 ±13,0; +26 0,021 4,0 Out 2,0 2,0 10 - 97 90 90 0,10 0,05 80
LMV321 LMV358 LMV324 SO, MSO, TSSOP, SC-70, SO-23 I +2,7 +5,5 0,13 60 Out 11 1,7 7,0 5,0 100 65 60 1,0 1,0 39
LPV321 LPV358 LPV324 SO, MSO, TSSOP, SC-70, SO-23 I +2,7 +5,0 0,0090 17 Out 1,7 1,2 7,0 2,0 100 70 65 0,15 0,10 -
LM7301 SO, SOT-23 I ±0,9; +1,8 ±16; +32 0,6 9,5 In and Out 90 0,03 6,0 2,0 97 90 104 4,0 1,25 36
LMV821 LMV822 LMV824 SO, MSO, TSSOP, SC-70, SO-23 Ext I +2,5 +5,5 0,30 40 Out 30 1,0 3,5 1,0 100 85 85 6,5 2,0 24
LMV931 LMV932 LMV934 SO, MSO, TSSOP, SC-70, SO-23 Ext I +1,5 +5,5 0,16 75 In and Out 15 1,0 6,0 2,0 100 78 100 1,0 0,45 45
LMV771 SC-70 Ext I ±1,5; +2,5 ±3,0; +6,0 0,60 66 Out 0,000100 0,3 1,0 0,35 100 90 90 3,5 1,4 9,0
LMV751 SOT-23 I +2,7 +5,5 0,60 15 Out 0,001500 0,05 1,0 - 120 100 107 5,0 2,3 6,5
LMC6001 MDIP I ±2,3; +4,5 ±7,7; +16 0,45 21 Out 0,000010 0,35 1,00 2,5 123 83 83 1,3 1,5 22
LMC6022 LMC6024 SO I ±2,3; +4,5 ±8,0; +16 0,04 40 Out 0,000040 1,0 9,0 2,5 120 83 83 0,35 0,11 42
LMC6032 LMC6034 SO, MDIP I ±2,3; +4,5 ±8,0; +16 0,38 40 Out 0,000040 1,0 9,0 2,3 126 83 83 1,4 1,1 22
LMC6035 LMC6036 SO, TSSOP I +2,7 +16 0,40 5,0 Out 0,000020 0,50 5,0 2,3 126 96 93 1,4 1,5 27
LMC6041 LMC6042 LMC6044 SO, MDIP I +4,5 +16 0,014 21 Out 0,000002 3,0 6,0 1,3 120 75 75 0,075 0,020 83
LMC6061 LMC6062 LMC6064 SO, CDIP I, M +4,5 +16 0,020 21 Out 0,000010 0,35 0,80 1,0 132 85 85 0,10 0,035 83
LMC6081 LMC6082 LMC6084 SO, MDIP I +4,5 +16 0,45 21 Out 0,000010 0,35 0,80 1,0 124 85 85 1,3 1,5 22
LMC6442 SO, MSO, MDIP I +1,8 +11 0,0010 0,90 Out 0,000005 3,0 7,0 0,4 103 92 95 0,010 0,0040 -
LMC6462 LMC6464 SO, MSO, CDIP I, M +3,0 +15 0,020 27 Out 0,000015 0,50 1,5 1,5 124 85 85 0,050 0,015 80
LMC7111 SOT-23,MDIP I +2,7 +11 0,025 7,0 In and Out 0,000100 3,0 7,0 2,0 112 85 85 0,050 0,027 -
LMC6482 LMC6484 SO, MSO, CDIP I, M +3,0 +15 0,50 30 In and Out 0,000020 0,75 3,0 1,0 116 82 82 1,5 1,3 37
LMC7101 SOT-23 I +2,7 +15 0,50 24 In and Out 0,001000 3,0 7,0 1,0 110 75 80 1,1 1,1 37
LMC8101 MSMD, MSOP I +2,7 +10 0,70 49 In and Out 0,001000 0,70 5,0 4,0 80 80 80 1,0 1,0 22
LMC6492 LMC6494 SO I +5,0 +15 0,50 22 In and Out 0,000150 3,0 6,0 1,0 110 82 82 1,5 1,3 37
LMC6572 LMC6574 SO I +2,7 +10 0,038 6,0 Out 0,000020 3,0 7,0 1,5 120 75 75 0,22 0,09 36
LM833 SO, MDIP C ±4,5 ±18 2,5 40 No 500 0,30 5,0 - 110 100 100 15 7,0 4,5
LM6132 LM6134 SO, MDIP I +1,8 +24 0,5 4,3 In and Out 110 2,0 6,0 5,0 100 100 82 10 14 27
LM6142 LM6144 SO, MDIP I +1,8 +24 0,8 6,2 In and Out 180 1,0 2,5 3,0 108 107 87 17 25 16
LMH6645/7 LMH6646 SO, SOT-23 I ±2,5; +3,0 ±6,0; +12 0,70 20 In and Out 360 1,0 4,0 5,0 87 77 83 55 22 17
LM6152 LM6154 SO, MDIP I +2,7 +24 2,0 8,0 In and Out 500 2,0 5,0 10 107 84 91 75 30 9,0
LMH6622 SO, MSO I ±2,5 ±6,3 4,3 90 No 4700 0,20 1,2 2,5 83 100 95 160 80 1,6
LM6171 LM6172 SO, MDIP I ±5; +2,7 ±16; +18 4,0 135 No 1000 3,0 6,0 6,0 99 110 95 100 3600 -
LM6181 LM6182 SO, MDIP I ±3,5 ±16 7,5 130 No 2000 2,0 4,0 5,0 - 60 80 100 1400 4,0
LM7121 SO, SOT-23 I ±5; +2,7 ±18; +15 4,8 52 No 5200 0,90 8,0 - 72 93 70 175 1300 17
LM7171 SO, MDIP, CDIP I, M ±2,7 ±18 6,5 100 No 2700 1,0 3,0 35 81 105 90 200 4100 14
LM7372 LLP, SO, PSOP I ±4,5 ±18 6,5 150 No 2700 8,0 10 12 80 93 90 120 3000 14
LMH6609 SO, SOT-23 I ±3,0 ±6,3 7,0 90 No 2000 0,8 3,5 - - 73 73 180 1400 3,1
LMH6624 LMH6626 SO, MSO, CDIP, SOT-23 I, Ext I ±2,5; +5,0 ±6,0; +12 15 100 No 50 0,25 0,95 0,25 79 90 90 1500 350 0,92
LMH6628 SO, MSO, CDIP, CPACK I ±2,5 ±6,0 9,0 85 No 300 2,0 5,0 5,0 63 62 70 300 550 2,0
LMH6639 SO, MSO I ±2,5; +3,0 ±6,0; +12 3,6 160 Out 1000 1,0 7,0 8,0 100 93 96 190 170 6,0
LMH6642 LMH6643 LMH6644 SO, SOT-23 I ±2,5; +3,0 ±6,0; +12 2,7 115 Out 1500 1,0 7,0 5,0 80 72 75 130 130 17
LMH6654 LMH6655 SO, SOT-23 I ±2,5; +3,0 ±6,0; +12 4,5 180 No 5000 1,0 4,0 6,0 67 90 76 250 200 4,5
LMH6657 LMH6658 SO, MSO, SC-70, SOT-23 I ±2,5; +3,0 ±6,0; +12 6,0 45 No 5000 1,1 7,0 2,0 85 82 82 270 700 11
LMH6672 SO, PSOP, LLP I ±2,5 ±6,5 6,2 600 No 8000 0,2 4,0 - 68 100 78 200 170 4,5
LMH6682 LMH6683* SO, MSO, TSSOP I ±2,5; +3,0 ±6,0; +12 6,5 80 No 5000 1,1 7,0 2,0 85 82 76 190 940 12
LMH6702 SO, SOT-23 I ±5,0 ±6,0 12 80 No 6000 1,0 6,0 13 - 52 48 720 3100 1,8
LMH6714/20 LMH6722 SO, SOT-23 I ±5,0 ±6,0 5,6 70 No 1000 0,2 6,0 8,0 - 58 54 400 1800 3,4
LMH6715 SO, CDIP I ±5,0 ±6,0 5,0 70 No 5000 2,0 8,0 30 - 60 56 480 1300 3,4
LMH6723 SO, SOT-23 I +4,5 +12 1,0 110 No 400 1,0 3,5 - - 64 60 370 600 4,3
LMH6732 SO, SOT-23 I ±4,5 ±6,0 9,0 115 No 2000 3,0 8,0 16 - 62 52 540 2700 2,5
*строенный усилитель Электропитание

Дифференциальный усилитель на ОУ с однополярным питанием – включение

Начнем с терминов, чтобы было понятнее, о чем ниже пойдет речь.

Усилитель – это некий узел или даже целый прибор, который может увеличивать мощность проходящего через него электрического сигнала. Здесь не зря употреблено слово "мощность", так как есть и другие приборы, увеличивающие отдельные показатели тока – его силу или напряжение (например, трансформаторы), такие элементы нельзя назвать усилителями.

Дифференциальные усилители – это такой вид усилителей, у которых сигнал на выходе соответствует разности потенциалов на входах (чаще всего входов два, но очень редко применяются диф. усилители с одним входом, например, повторители) увеличенной на определенный коэффициент.

ОУ (аббревиатура от слов "операционный усилитель", в английском звучит как operational amplifier или OpAmp) – это подвид дифференциальных усилителей постоянного тока, отличающихся очень высоким коэффициентом усиления.

Обозначаются они в схемах так.

ОУ с однополярным питанием

Питание ОУ может быть двуполярным (у источника питания есть выход отрицательного потенциала, положительного и ноль) или однополярным (подается только положительный потенциал и ноль).

Однополярное питание ОУ намного проще в реализации современных схем, работающих на аккумуляторах или батареях.

К преимуществам однополярного питания ОУ можно отнести следующие:

1.Мощность потребления снижена (в сравнении с двуполярными);

2.Требуется использование только одного источника тока;

3.Имеется возможность построения эффективных схем для переносных устройств, питающихся от аккумуляторных батарей.

Именно поэтому большинство современных операционных усилителей рассчитаны на однополярное питание и работают фактически наполовину (например, семейство Rail to Rail).

Но из-за низкой точности и уменьшенного коэффициента усиления необходимо особое внимание уделять правильному подбору ОУ.

Ввиду большого ассортимента ОУ и их функциональных возможностей, процедура выбора готового усилителя под собственные нужды становится достаточно сложной. Помочь в этом может следующая схема от ведущего производителя STMicroelectronics.

Здесь GBR – это граничная частота, а Icc – это ток потребления. Для подбора готовых элементов от других производителей можно воспользоваться поиском прямых аналогов.

Включение ОУ с однополярным питанием в схемы

Ниже рассмотрим наиболее популярные реализации типовых задач ОУ.

Самая простая – включение ОУ в схемы, где входящий сигнал подается относительно земли.

Инвертирующий усилитель будет выглядеть следующим образом.

Выходной сигнал будет вычисляться по формуле

Схема будет работать только при положительном Vin.

Ниже изображен ОУ со смещением, подаваемым на неинвертирующий вход.

Более мощный неинвертирующий ОУ будет включаться так.

Здесь коэф.усиления равен 10 (при условии, что R1 имеет номинал 910 кОм, R2 100 кОм, а R3 91 кОм, в качестве DA1 используется LM358). Расчет производится на основе формулы k=1+R1/R2.

Вариант дифференциального усилителя.

15.07.2019 - 08:24
Может

  • Сергей / 06.02.2019 - 23:23
    Uвых = (1 + 2 · R1/R2) · (Uвх1 – Uвх2) Интересно чему равно напряжение на выходе если Uвх1
  • В настоящее время в мире изготавливаются сотни наименований интегральных ОУ. Все это многообразие можно разделить на группы, объединенные общей технологией и схемотехникой, точностными, динамическими или эксплуатационными характеристиками, причем эти группы могут пересекаться, т.е. включать общие элементы.

    С точки зрения внутренней схемотехники операционные усилители можно разделить на биполярные, биполярно-полевые и КМОП (на комплементарных полевых транзисторах с изолированным затвором). В биполярно-полевых ОУ полевые транзисторы с управляющим p-n переходом или МОП-транзисторы обычно используются в качестве входных в дифференциальном входном каскаде. За счет этого достигается высокое входное сопротивление и малые входные токи.

    Большая часть номенклатуры ОУ относится к усилителям общего назначения . Это дешевые усилители среднего быстродействия, невысокой точности и малой выходной мощности. Обычные параметры: K U = 20 000 ё 200 000; U см = 0,1 ё 20 мВ; f т = 0,1 ё 10 МГц. Типичные примеры: 140УД6, 140УД8, 153УД6, LF411.

    Быстродействующие усилители при средних точностных параметрах имеют высокие динамические характеристики (f т = 20 ё 1000 МГц, r = 10 ё 1000 В/мкс). Быстродействие ОУ ограничивает два обстоятельства. Во-первых, в состав входного дифференциального усилителя входят p-n-p-транзисторы, относительно низкочастотные из-за меньшей подвижности дырок по сравнению со свободными электронами. Во-вторых, скорость нарастания ограничена скоростью заряда корректирующего конденсатора С к. Влияние первого фактора устраняют, используя во входном каскаде более быстродействующие р-канальные полевые транзисторы. Увеличить скорость заряда С к можно либо увеличив ток дифференциального каскада, либо уменьшив емкость С к. В первом случае увеличивается ток потребления ОУ, а во втором ухудшается устойчивость. Повысить устойчивость можно, вводя дополнительные фазоопережающие звенья в схему усилителя или вне его. Как следствие, быстродействующие ОУ склонны к неустойчивости. Типичные примеры: 140УД10, 574УД3, 154УД4, ОРА634.

    Прецизионные усилители имеют высокий дифференциальный коэффициент усиления по напряжению, малое напряжение смещения нуля и малый входной ток обычно при низком или среднем быстродействии. Увеличение K U возможно путем усовершенствования каскадов усиления по напряжению или применением трехкаскадной схемы (например, 551УД1), что усложняет частотную коррекцию. Радикально уменьшить смещение нуля позволяет применение модуляции-демодуляции (МДМ), либо периодическая компенсация дрейфа (прерывание). Типичные примеры: 140УД26, МАХ400М, ОРА227 (без прерывания), ICL7652, 140УД24, МАХ430 (с прерыванием).

    Микромощные усилители используются в приборах, получающих питание от гальванических или аккумуляторных батарей. Эти усилители потребляют очень малый ток от источников питания (например, ОУ МАХ406 потребляет ток не более 1,2 мкА). Все другие параметры (особенно быстродействие) у них обычно невысокие. Для того, чтобы дать возможность проектировщику найти компромисс между малым потреблением и низким быстродействием некоторые модели микромощных ОУ выполняют программируемыми. Программируемый ОУ имеет специальный вывод, который через внешний резистор соединяется с общей точкой или источником питания определенной полярности. Сопротивление резистора задает ток системы токовых зеркал усилителя, которые выполняют функции генераторов стабильного тока и динамической нагрузки каскадов усилителя. Уменьшение этого резистора приводит к увеличению быстродействия ОУ и увеличению потребляемого тока. Увеличение - к обратному результату. Типичные примеры: 140УД12, 1407УД2, ОР22. Обычная величина тока потребления для микромощных и программируемых ОУ - десятки микроампер. Микромощные ОУ, как правило, допускают питание от весьма низких напряжений. Например, ОУ типа МАХ480 допускает работу от источников с напряжением от +/-0,8 до +/-18 В при токе потребления 15 мкА.

    Если источник сигнала - однополярный (например, фотодиод), целесообразно использовать операционный усилитель с однополярным питанием . Это позволит питать усилитель от одной батареи или даже элемента, например, от литиевого элемента напряжением 3 вольта. Основное требование, предъявляемое к ОУ с однополярным питанием, - диапазон входного синфазного сигнала должен простираться ниже отрицательного напряжения питания (обычно привязанного к потенциалу земли), а размах выходного напряжения должен быть ограничен снизу практически напряжением питания (потенциалом земли). Существуют усилители, диапазоны входных и выходных напряжений которых почти достигают и верхней и нижней границы питания (так называемые, rail-to-rail вход и выход), причем входные напряжения могут даже заходить за эти границы. Типичные примеры: МАХ495, потребляющий от однополярного источника ток 150 мкА, LMV321, потребляющий ток 145 мкА, от источника 1,8 В.

    Многие фирмы выпускают многоканальные усилители . Это микросхемы, имеющие на одном кристалле два, три или четыре однотипных ОУ. Например, ИМС типа 140УД20 имеет в своем составе два ОУ 140УД7. Микросхемы МАХ406/407/409 и ОРА227/2227/4227 включают, соответственно, один, два и четыре однотипных усилителя.

    Мощные и высоковольтные операционные усилители. Большинство типов ОУ рассчитаны на напряжение питания +/-15 В. Некоторые допускают питание от источников вплоть до +/-22 В. Этого недостаточно для управления, например, пьезоэлектрическими преобразователями, для некоторых физических и биологических исследований. Поэтому промышленность производит высоковольтные ОУ , допускающие более высокие питающее и выходное напряжения. К высоковольтным относят операционные усилители, имеющие разность положительного и отрицательного питающих напряжений свыше 50 вольт. Проблема повышения напряжений в интегральных полупроводниковых (монолитных) ОУ связана с трудностью создания интегральных высоковольтных транзисторов и прочной изоляции между элементами в кристалле. Поэтому большинство ОУ с напряжением питания свыше 100 В изготавливаются в виде гибридных ИМС. В то же время, фирма Apex Microtechnology (США) производит полупроводниковые интегральные ОУ РА90, PA92 и РА94, с номинальным напряжением питания +/-200 В, выходным напряжением +/-170 В и выходным током до 14 А.

    Операционные усилители общего применения обычно допускают выходной ток до 5 мА. Для управления мощной нагрузкой применяются мощные ОУ . К мощным обычно относят усилители, допускающие выходной ток свыше 500 мА. Примером полупроводникового интегрального мощного ОУ может служить LM12 с выходным током до 10 А и рассеиваемой мощностью до 90 Вт. Фирма Apex Microtechnology выпускает сверхмощный гибридный ОУ РА30, допускающий выходной ток до 100 А и способный отдать в нагрузку мощность до 2000 Вт при жидкостном охлаждении. Дальнейшее увеличение выходной мощности усилителей возможно путем использования режима класса D (ключевой режим). Рекордными являются характеристики гибридного усилителя фирмы Apex SA08 с широтно-импульсной модуляцией на частоте 22 кГц: 10 кВт при напряжении до 500 В и токе до 20 А. При этом КПД усилителя достигает 98%.

    В табл. 1 приведены основные параметры некоторых моделей ОУ различных типов.

    Таблица 1

    Параметры Операционные усилители общего применения
    140УД6 140УД7 140УД8 LF441
    Напр. питания, В +/-5 -+/-18 +/-5 -+/-18 +/-5 -+/-18 +/-5 -+/-18
    Коэфф. усиления, В/мВ 50 50 50 25
    КОСС, дБ 70 70 80 70
    U см, мВ 6 4 20 5
    Входн. ток, нА 50 200 0,2 0,1
    Диф. вход. сопр., МОм 3 0,4 1000 -
    f т, МГц 1 0,8 1 4
    Скор. нараст., В/мкс 2,5 0,7 5 15
    Ток потр., мА 4 3 5 0,25
    Макс. вых. ток, мА 5 5 5 4
    Вых. сопр. Rвых, Ом 150 150 200 -
    Примечание ОУ с ПТ на входе ОУ с ПТ на входе
    Параметры Быстродействующие операционные усилители
    574УД3 154УД4 SL2541B MAX437 ОРА641 AD8055
    Напр. питания, В +/-5 - +/-16,5 +/-5 - +/-17 +/-7 - +/-15 +/-4,5 - +/-18 +/-5 - +/-15 +/-5
    Коэфф. усиления, В/мВ 50 8 10 7000 1 3
    КОСС, дБ 80 70 47 112 - 82
    U см, мВ 2 6 10 0,015 2 5
    Входн. ток, нА 0,3 1200 10000 35 - 1000
    Диф. вход. сопр., МОм 1000 1 - - - 10
    f т, МГц 15 30 800 60 800 300
    Скор. нараст., В/мкс 50 400 900 15 650 400
    Ток потр., мА 3,5 7 25 4 - 5
    Макс. вых. ток, мА 5 5 10 15 55 60
    Вых. сопр. R вых, Ом - - - 70 - -
    Примечание ОУ с ПТ на входе Устойчив при К>2 Двухканальный вариант - AD8056
    Параметры Прецизионные операционные усилители
    140УД21 MAX400 ICL7652 OPA177 LMC6001
    Напр. питания, В +/-12 - +/-20 +/-3 - +/-18 +/-2,5 -+/-8 +/-15 +/-5 - +/-15
    Коэфф. усиления, В/мВ 1000 1000 6000 3000 5000
    КОСС, дБ 120 120 120 - 75
    U см, мВ 0,05 0,01 0,005 0,01 0,35
    Входн. ток, нА 1 1 0,03 1,5 25 фA
    Диф. вход. сопр., МОм - 60 - - >1 ТОм
    f т, МГц 3 0,6 0,45 0,4 1,3
    Скор. нараст., В/мкс 2,5 0,3 0,6 0,1 1,5
    Ток потр., мА 5 - 2 - 0,75
    Макс. вых. ток, мА - 5 - 12 20
    Вых. сопр. R вых, Ом - 60 - - -
    Примечание ОУ с прерыванием ОУ с прерыванием Сверхвысокое R вх
    Параметры Микромощные операционные усилители
    MAX438 MAX480 MAX406 AD8541 140УД12
    Напр. питания, В +/-3 -+/-5 +/-0,8 -+/-18 2,5-10 2,7-5,5 +/-1,5 - +/-18
    Коэфф. усиления, В/мВ 6 1000 1000 300 50
    25
    КОСС, дБ 90 190 80 80 70
    U см, мВ 0,5 0,075 0,5 5 5
    Входн. ток, нА 2 3 0,1 пА 0,004 50
    10
    Диф. вход. сопр., МОм 90 30 - - 50
    5
    f т, МГц 6 0,02 0,02 0,7 1
    0,2
    Скор. нараст., В/мкс 10 0,01 0,02 0,7 0,8
    0,1
    Ток потр., мА 0,075 0,015 0,0012 0,04 0,2
    0,03
    Макс. вых. ток, мА 3 1 - 25 2
    Вых. сопр. R вых, Ом - - - - 1000
    5000
    Примечание Может работать с одним источником Один источник Есть сдвоенный и счетверенный варианты I у =15 мкА
    I у =1,5 мкА
    Программируемый
    Параметры Высоковольтные и мощные операционные усилители

    Компания Maxim/Dallas выпускает широкую номенклатуру радиоэлектронных компонентов, в том числе и операционных усилителей. В статье кратко описываются так называемые "rail-to-rail" операционные усилители, допускающие изменение входного синфазного сигнала от нуля до напряжения источника питания при однополярном питании или от отрицательного до положительного источника при двуполярном и обеспечивающие выходное напряжение в том же диапазоне.

    Операционные усилители, допускающие изменение входных синфазных сигналов в полном диапазоне питающих напряжений, очень удобны во многих областях применения. Компания Maxim/Dallas выпускает более 150 типов таких ОУ. Для первичного ознакомления рассмотрим приборы, работающие при напряжения питания 2,85 В и менее, имеющие в корпусе один или два ОУ и выпускаемые в корпусах для поверхностного монтажа SC70 и SOT. Перечень таких микросхем приведен в табл. 1, а схематическое изображение корпусов и разводка выводов - на рис. 1.

    В таблице приняты следующие обозначения:

    N - число ОУ в корпусе; ShDn - возможность выключения ОУ по входу Shutdown; К У МИН - минимальный коэффициент усиления, при котором сохраняется его устойчивость; U ПИТ - диапазон питающих напряжений при однополярном питании; I ПИТ МАХ - максимальный ток потребления микросхемы; U СМ - напряжение смещения нуля; КОС.СФ - коэффициент ослабления входного синфазного напряжения; КВЛ.ИП - коэффициент влияния нестабильности источников питания на напряжение смещения; I ВХ - входной ток; f1 - частота единичного усиления; V UВЫХ - максимальная скорость нарастания выходного напряжения; U Ш - спектральная плотность шумового напряжения, приведенная к входу; I Ш - спектральная плотность шумового входного тока; f Ш - частота, на которой нормируются UШ и IШ.

    Цена микросхем указана для покупки в США партии не менее 1000 шт.

    ассмотрим некоторые особенности перечисленных в табл. 1 операционных усилителей. Все они обладают очень полезным свойством - при перегрузке по входам полярность выходного сигнал не меняется. Большинство усилителей имеет на входе резистивно-диодную защитную цепь (рис. 2), резко снижающую входное сопротивление при превышении входным сигналом уровня порядка 2 В. Для некоторых микросхем пороговое напряжение, при котором происходит снижение входного сопротивления, существенно ниже, поскольку у них в защитной цепи только два диода, а не шесть.


    Рис. 2

    Операционные усилители МАХ4122 и МАХ4124 на нагрузке 250 Ом обеспечивают выходное напряжение, лишь на 300 мВ не доходящее до напряжения питания. Аналогичными свойствами обладает ОУ МАХ4130.

    ОУ МАХ4162 имеет уникальное входное сопротивление для дифференциального сигнала - более 1013 Ом. Напряжение питания этой микросхемы может достигать 10 В. В ОУ нет защитной входной цепи, а синфазный входной сигнал может заходить за уровни напряжения питания на 250 мВ. Таким же свойством обладают и некоторые другие ОУ.

    КМОП ОУ микросхем МАХ4230-МАХ4232 обеспечивают выходной ток до 30 мА и скорость нарастания выходного сигнала до 10 В/мкс.

    Микросхема МАХ4240 может гарантированно работать при напряжении питания 1,8 В, потребляя при этом менее 18 мкА. Синфазный входной сигнал может заходить за уровни напряжения питания.

    Микросхемы МАХ4321-МАХ4323 могут работать на нагрузку 250 Ом.

    КМОП ОУ МАХ4490 и МАХ4491 обладают минимальным уровнем шумов.

    Большинство серий микросхем, перечисленных в табл. 1, имеют продолжения в виде приборов, содержащих по два и четыре ОУ в одном корпусе.

    Следует отметить, что сайт компании Maxim/Dallas очень удобен для подбора радиоэлементов. Из имеющегося обилия однотипных компонентов можно автоматически отобрать нужные по заданным параметрам - числу ОУ в корпусе, напряжению питания, быстродействию, смещению нуля, коэффициенту усиления и по всем другим функциональным возможностям. Список отобранных компонентов можно отсортировать по возрастанию или убыванию величины какого-либо параметра, а щелкнув по обозначению микросхемы, получить справочные данные (data sheet), а также модели для отобранных микросхем.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: