Контакт с инопланетной цивилизацией. Леса гигантской секвойи

Космические аппараты серии 4В1М предназначены для проведения исследований планеты Венера с помощью доставляемого на поверхность планеты посадочного аппарата, а также с пролетной траектории.

Серия 4В1М состоит из двух аппаратов (КА «Венера-13» и КА «Венера-14»), являющихся полной аналогией друг друга по конструкции, составу бортовых агрегатов, служебных систем и приборов, комплекту научной аппаратуры и предназначенных для выполнения идентичных исследовательских программ.

Первоначально экспедиция космических аппаратов серии 4В1М планировалась на 1980 год как простое повторение экспедиции 4В1 при той же схеме полета и с тем же составом бортовой служебной и научной аппаратуры. Однако неудача с получением цветных фотопанорам и отказ грунтозаборных устройств на посадочных аппаратах «Венеры-11, -12» вынудили провести серьезную доработку ГЗУ и механизма отделения (отстрела) крышек телефотометров, а также их отработку на стендах и экспериментальных изделиях. В результате, запуски двух аппаратов 4В1М были перенесены на 1981 год и осуществлены: «Венеры-13» - 30.10.1981 г., «Венеры-14» - 4 .11.1981 г.

В программу экспедиции входило:

Доставка СА в припланетную область и обеспечение требуемых условий по баллистике для проникновения СА в атмосферу Венеры;

Репортажная передача, транслируемая на ОА в процессе спуска СА в атмосфере, содержащая результаты измерений её основных физико-химических параметров (давления, температуры, химического состава атмосферы, содержания в ней влаги), результаты исследований облачного слоя, атмосферных грозовых электроразрядов;

Осуществление посадки ПА на поверхность планеты, на ее дневную сторону;

Транслируемая на ОА передача цветных телефотометрических изображений поверхности в месте посадки и результатов проведения непосредственного анализа грунта;

Ретрансляция с ОА на Землю результатов выполнения научной программы ПА;

Проведение с помощью ОА исследований околопланетного и межпланетного пространства при движении по пролетной траектории.

Основные научные эксперименты, проводимые в месте посадки, - получение цветных фотопанорам поверхности Венеры, а также забор образцов грунта и их физико-химический анализ.

СХЕМА ПОЛЕТА

Для экспедиций космических аппаратов серий 4В1 и 4В1М выбрана пролётно-десантная схема. Подробное описание схемы полета приведено в разделе Космические аппараты серии 4В1.

Отличия заключаются в продолжительности перелета (для аппаратов серии 4В1М она составляет чуть более 120 суток) и последовательности выполнения операций бортовой аппаратурой ПА после посадки. Работа грунтозаборного устройства начинается так же как в предшествующей экспедиции через 32 сек после достижения контакта с поверхностью, а работа телефотометров – с 4-х минутной задержкой. Первые четыре минуты отведены на трансляцию информации с других научных приборов и телеметрии о работе ГЗУ, а затем идет передача панорамы поверхности Венеры, которая продолжается до прекращения радиосвязи.

РЕАЛИЗАЦИЯ ПРОЕКТА

Несмотря на то, что КА серии 4В1М во многом повторяли своих предшественников («КА «Венера-11,-12» серии 4В1), для проверки всех изменений было изготовлено 18 экспериментальных машин. Только для проверки операции сброса крышек телефотометров запланировано 39 видов испытаний. В реальности проведено 78. Перед проведением отстрела спускаемый аппарат нагревался до 450 градусов, а затем сбрасывался с высоты, имитируя тем самым посадку на поверхность Венеры. И только после этого производился отстрел крышки. Испытания проводились на грани отказов. В результате при расчетном запасе работоспособности новых узлов ~7,5 был получен запас 20,5. С этим запасом уже можно было отправляться полет.

Выбор демпфера на посадочном устройстве и проверка теоретических расчетов потребовали многочисленных продувок модели посадочного аппарата в аэродинамической трубе.

Оба космических аппарата серии 4В1М (КА «Венера-13, -14») успешно прошли всесторонние наземные испытания и стартовали с космодрома Байконур осенью 1981 года.

Как уже ранее было сказано, запуск двух одинаковых аппаратов планировался не только для повышения общей надежности выполнения целевой задачи, но и для исследования поверхности Венеры в двух различных районах планеты.

Места посадки выбирались таким образом, чтобы определить характер рельефа и пород наиболее типичных геолого-морфологических провинций планеты.

КОСМИЧЕСКИЙ АППАРАТ «ВЕНЕРА-13»

Общая масса КА «Венера-13» составила 4397,85 кг. Масса спускаемого аппарата –1643,72 кг, масса посадочного аппарата на поверхности Венеры – 750 кг. Корректирующая двигательная установка «Венеры-13» заправлена 629,68 кг топлива: 221,75 кг горючего и 407,93 кг окислителя.

Стартовая масса головного блока с КА «Венера-13» составила 23530 кг. Масса головного блока на ОИСЗ после первого включения ДУ блока ДМ – 19822,44 кг.

Старт ракеты-носителя «Протон-К» с КА «Венера-13» произведен с космодрома Байконур 30 октября 1981 года в 9 часов 4 минуты 22,5 секунды МДВ. Старт к Венере осуществлялся с промежуточной околоземной орбиты высотой 175 на 161 км. Импульс второго включения двигателя блока ДМ, обеспечивший выведение КА «Венера-13» на межпланетную траекторию, составил 3995,2 м/с. В 10 часов 26 минут 53,0 секунды произошло отделение КА от разгонного блока.

После раскрытия элементов конструкции КА перешёл в режим постоянной солнечной ориентации. Все бортовые системы функционировали штатно. В связи с этим на следующий день были включены научные приборы: АСМ, КВ-77, «Альт», РПП-01, «Снег-2М3» и «Конус».

После нормализации газопылевой обстановки вокруг аппарата 3 ноября он был переведён в режим трехосной ориентации ПСЗО по Солнцу и звезде Канопус. 6 ноября были заложены уставки в БЦВМ САУ для проведения коррекции, а 10 ноября 1981 года была проведена сама коррекция траектории. При этом двигатель проработал на малой тяге 2 секунды, обеспечив импульс 2,47 м/с при расходе топлива 8,9 кг.

На следующий день после коррекции КА был переведён на 21 час в режим стабилизации закруткой (ГС) для калибровки магнитометра АСМ.

Уже после проведения коррекции был обнаружен отказ 6 каналов в приборе «Конус» и ФЭУ в приборе РПП-01. Кроме того, было зафиксировано падение температуры на шаробаллонах. Чтобы подогреть шаробаллоны, КА был слегка развернут в режиме так называемого «косого» ПСЗО.

На трассе перелёта сеансы связи проводились 1 раз в 3-4 суток и были в основном посвящены воспроизведению научной информации, записанной на бортовые магнитофоны в дежурном режиме. Воспроизведение обычно велось в дециметровом диапазоне со скоростью 139 измерений в секунду в режиме кодирования PN–последовательностью.

По мере приближения КА к Венере началась подготовка к посадке на планету, в связи с чем сеансы связи стали проводиться ежедневно. Этому был посвящен весь февраль. Проводились проверки режимов ретрансляции по дециметровому каналу, включение сантиметрового и метрового каналов радиокомплекса, а также ленточных магнитофонов ЭА 079, на которые должна записываться информация, принимаемая со спускаемого аппарата. В ходе проверок зафиксирован отказ одного из этих магнитофонов.

Параллельно с проверкой бортовых систем пролётного аппарата с приближением к Венере начали проводиться операции по подготовке к посадке спускаемого аппарата. В связи с увеличением теплового потока от Солнца 4 января 1982 года закрыта шторка радиационного нагревателя спускаемого аппарата.

15 февраля по команде с Земли заблокирована автоматика холодного контура спускаемого аппарата и выключен вентилятор, в результате чего температура внутри СА опустилась до минус 3-4°С.

22 февраля проведено первое пробное захолаживание в течение двух часов, что привело к понижению температуры в приборном контейнере ПА до –5,2°С.

24 февраля проведено второе пробное захолаживание в течение 4 часов (–7,6°С), а через два дня – штатное захолаживание, позволившее снизить температуру в СА до –12,3°С к моменту отделения его от пролётного аппарата.

10 февраля кроме работ по захолаживанию спускаемого аппарата проведен заряд химической батареи СА, отключение прошло по счётчику ампер-часов.

21 февраля, за 8 дней до подлёта к Венере, проведена вторая коррекция траектории, при этом импульс составил 5,13 м/с.

27 февраля, за 2 суток до подлёта, в типовом сеансе 6Р произошло отделение спускаемого аппарата, после чего был включён двигатель в режиме малой тяги для увода орбитального аппарата на пролетную траекторию. Импульс увода составил 224,35 м/с (время работы двигателя – 60,2 секунды, расход топлива – 218 кг), то есть оказался близок к расчетному.

1 марта, то есть спустя 122 суток после старта, начался пролетный сеанс. Баллистические условия пролета Венеры в 1982 году не потребовали изменения ориентации КА с целью наилучшего приема антеннами метрового радиокомплекса информации со спускаемых аппаратов (как на КА «Венера-13», так и на работающим одновременно с ним КА «Венера-14»).

Даже без этих частичных отворотов от Солнца сеанс оказался достаточно напряженным с точки зрения энергетики. Поэтому по началу сеанса был заблокирован датчик минимального напряжения для исключения формирования сигнала «U min».

Сеанс начался с включения передатчиков дециметрового и сантиметрового диапазонов для ретрансляции сигнала со спускаемого аппарата. Приём сигнала в обоих диапазонах осуществлялся с помощью 70-метровой антенны П2500 в Евпатории. Практически в расчетное время появился сигнал со спускаемого аппарата, а затем началось выделение информации из него. Приём информации на участке спуска длился 61 минуту.

Спускаемый аппарат штатно прошёл все этапы снижения в атмосфере: аэродинамическое торможение, спуск на парашюте и, наконец, спуск ПА на тормозном щитке. Спустя 62 минуты после входа СА в атмосферу ПА совершил мягкую посадку в равнинной местности к востоку от области Феба (7°30" южной широты и 303°11" долготы). Первые четыре минуты помимо информации с других научных приборов передавалась телеметрия о работе ГЗУ, а затем началась передача панорамы поверхности Венеры, которая длилась 127 минут. За это время панорамы с обоих телефотометров были дважды переданы, причем с использованием каждого из бортового комплекта светофильтров, и начался третий цикл съёмки. Приём информации с посадочного аппарата был прекращён по команде с Земли.

В ходе спуска в атмосфере Венеры и после посадки на её поверхность проводились комплексные научные исследования. В том числе - эксперименты по изучению химического и изотопного состава атмосферы и облаков, структуры облачного слоя, рассеянного солнечного излучения, а также регистрация электрических разрядов в атмосфере. Температура окружающей среды в месте посадки ПА составила 462° С, давление 88,7 атмосфер, освещенность 3 килолюкс. Высота в месте посадки - 1,9 км относительно среднего уровня, соответствующего радиусу планеты 6050 км.

После пролёта Венеры ОА «Венера-13» вышел на гелиоцентрическую орбиту. В течение нескольких дней неоднократно воспроизводились записи на магнитофонах ЭА 079 информации, полученной со спускаемого аппарата.

В дальнейшем сеансы связи с ОА проводились один раз в 3-5 суток и были посвящены, в основном, воспроизведению с магнитофонов научной информации, записанной в дежурном режиме - продолжалась работа по изучению межпланетного пространства. В частности, продолжались исследования рентгеновского, гамма-излучений и магнитных полей в космическом пространстве, характеристик солнечного ветра, космических лучей и межпланетной плазмы.

Уже в 1980 году появилось решение о проведении в последующей экспедиции (1984 г.) последовательного сближения КА с двумя космическими объектами - Венерой и кометой Галлея. С целью отработки баллистической схемы полета к комете Галлея было запланировано проведение (после выполнения основных задач) соответствующих коррекций траектории на одном из аппаратов серии 4В1М. Для этой цели был выбран КА «Венера-13».

Первая из таких коррекций, которая имитировала прицеливание в точку встречи с кометой, состоялась 10 июня 1982 года. Импульс коррекции составил 192 м/с, время работы двигателя – 47,8 секунды.

Еще одна коррекция была проведена 14 октября того же года. На сей раз импульс коррекции составил 69,08 м/с, а время работы двигателя – 17,3 секунды.

В принципе, баллистическая схема перелета от Венеры к комете Галлея предусматривала проведение трех коррекций, но на КА «Венера-13» еще на одну коррекцию топлива просто не осталось. Впрочем, и без нее была подтверждена реализуемость баллистической схемы полета к комете Галлея.

КОСМИЧЕСКИЙ АППАРАТ «ВЕНЕРА-14»

Общая масса КА «Венера-14» составила 4394,5 кг. Масса спускаемого аппарата – 1632,71 кг, масса посадочного аппарата на поверхности Венеры – 750 кг. Корректирующая двигательная установка «Венеры-14» заправлена 641,35 кг топлива: 225,8 кг горючего и 415,55 кг окислителя.

Старт ракеты-носителя «Протон-К» с КА «Венера-14» произведен с космодрома Байконур 4 ноября 1981 года в 8 часов 31 минут 16,1 секунды МДВ. Старт к Венере осуществлялся с промежуточной околоземной орбиты высотой 178 на 159 км. Импульс второго включения двигателя блока ДМ, обеспечивший выведение КА «Венера-14» на межпланетную траекторию, составил 3990,5 м/с. В 9 часов 53 минуты 50,6 секунды произошло отделение КА от разгонного блока.

После раскрытия элементов конструкции КА перешёл в режим постоянной солнечной ориентации. Все бортовые системы функционировали штатно. Единственные замечания - завышенный на 0,5 ампера ток дежурной нагрузки и регулярное изменение ТМ-параметра, свидетельствующего о запуске программно-временного механизма СА, чего на самом деле не было.

10 ноября 1981 года построена трёхосная постоянная солнечно-звёздная ориентация. В том же сеансе, а также на следующий день заложены временная уставка на включение сеанса коррекции и уставки в БЦВМ САУ.

14 ноября проведена первая коррекция траектории КА «Венера-14». Импульс коррекции составил 7,3 м/с, что лежало в пределах допуска, при этом двигатель проработал на малой тяге 4,1 секунды. Расход топлива составил 15,05 кг.

После коррекции, как и на «Венере-13», произошел отказ 4-х каналов прибора «Конус» и упала температура на шар-баллонах, причем весьма значительно. Официальная версия – нарушение целостности ЭВТИ. Принято решение слегка развернуть аппараты, чтобы подогреть Солнцем оголившиеся шар-баллоны. После выполнения этой процедуры температура на шар-баллонах резко «скакнула» вверх. Вероятно, маты ЭВТИ с них просто сорвало.

Однако в результате отворота в режим так называемого «косого» ПСЗО некоторые клапаны системы исполнительных органов резервной пневмосистемы попали в тень, и температура на них упала ниже нормы. Зафиксировано травление газа. По-видимому, из-за низких температур начался процесс «стеклования» резиновых прокладок с их растрескиванием. Через эти трещины и утекал азот. По команде с Земли осуществлен переход на основную пневмосистему, а из резервной газ постепенно весь вышел.

Спустя некоторое время аппарат возвращен в режим «прямого» ПСЗО, когда ось +Z смотрит точно на Солнце. Еще через некоторое время, уже в декабре, произведен наддув магистралей резервной пневмосистемы. После этого в каж¬дом сеансе особенно тщательно контролировали давление в магистралях, однако оно не менялось. Проблема была снята. По-видимому, в результате прогрева резина восстановила свои изолирующие свойства.

Кроме того, во время проведения коррекции произошел скачок времени в ПВУ – на 1 минуту. Возможной причиной этого стала помеха, возникшая в результате пробоя каналов «Конуса».

Во время полета произошла переполюсовка отдельных банок аккумуляторной батареи системы электропитания, в результате чего реальная максимальная разрядная емкость оказалась меньше заявленной. Чтобы предотвратить процесс дальнейшей деградации батареи, без которой невозможно провести длительный сеанс радиосвязи во время пролета Венеры, регулярно проводилось её циклирование.

За месяц до посадки начались проверки режимов ретрансляции по дециметровому каналу, включение сантиметрового и метрового каналов радиокомплекса, а также магнитофонов ЭА 079, на которые должна была записываться информация, принимаемая со спускаемых аппаратов. Как и на «Венере-13» произошёл отказ одного из двух видеомагнитофонов.

С приближением к Венере начали проводиться операции по подготовке спускаемого аппарата к посадке. В связи с увеличением теплового потока от Солнца 4 января 1982 года закрыта шторка радиационного нагревателя спускаемого аппарата.

19 февраля включена блокировка автоматики холодного контура спускаемого аппарата и выключен вентилятор, а уже 2 марта сразу проведено штатное захолаживание в течение 11 часов, что позволяло увеличить время работы ПА на поверхности планеты. В результате, температура внутри приборного контейнера к моменту отделения СА от пролетного аппарата составила –14,5°С.

25 февраля проведена вторая коррекция траектории «Венеры-14». На время работы двигательной установки бортовой передатчик был выключен, а телеметрическая информация записывалась на бортовой магнитофон. После обратных разворотов аппарата в исходное пространственное положение, которое было перед коррекцией, передатчик включился по метке ПВУ.

Результаты коррекции оперативно определялись по скачку доплеровской частоты принимаемого с борта сигнала в режиме «Самоход»*, а о том, как работали бортовые системы, – после воспроизведения магнитофона в следующем сеансе.

Первые же замеры скачка показали, что он несколько отличается от расчетного: 4,52 м/с вместо 5,93 м/с по расчету. После построения режима ПСЗО на следующий день были проведены полноценные траекторные измерения в когеренте, оперативная обработка которых показала, что отработанный двигателем импульс несколько отличается от расчетного. Это приводило к сдвигу точки посадки спускаемого аппарата на 400 км.

Анализ воспроизведённой с магнитофона информации показал, что двигатель во время коррекции работал неустойчиво: на графике наблюдался колебательный процесс со снижением. Средняя тяга составила 700-800 кг (максимум 836 кг) вместо 1000 кг – режим малой тяги. При этом двигатель был выключен не по набору характеристической скорости, а по страховочному времени. В результате, недобор по импульсу второй коррекции составил 1,9 м/с (5,37 м/с вместо 7,27 м/с).

По мнению специалистов, произошло затирание подшипников в турбонасосном агрегате. Впоследствии в качестве версий частичного отказа КДУ были выдвинуты: переохлаждение окислителя в расходной трубе в связи с нарушением теплоизоляции, а также негерметичность клапана на линии газогенератора.

Для проведения важного маневра увода ОА на пролётную траекторию после сброса СА, импульс которого значительно превышал импульс коррекции, решено увеличить на 1 минуту страховочное время работы двигателя. При полном отказе двигателя во время увода орбитальный аппарат вошёл бы в атмосферу вслед за спускаемым аппаратом, и ретрансляция информация с него на Землю была бы невозможна.

3 марта 1982 года по временной уставке в ПВУ включён сеанс 6Р. Первые 16 минут сеанса прошли штатно. На 16-й минуте по метке ПВУ был выключен бортовой радиопередатчик. После включения передатчика через 40 минут и получения телеметрии было определено, что спускаемый аппарат отделился.

Траекторные измерения, проведённые сразу после появления сигнала, показали, что импульс коррекции существенно отличается от расчетного: 171,4 м/с вместо 227,8 м/с. Недобор по скорости составил целых 56,4 м/с. Однако отработанного двигателем импульса хватило, чтобы ОА не «врезался» в Венеру, а прошел от неё на расстоянии 26050 км. Это на 10000 км ближе к поверхности Венеры, чем необходимо для приёма в полном объёме информации с посадочного аппарата.

Уже после воспроизведения записей с магнитофона стала еще более очевидной картина нештатной работы двигателя. До 68-й секунды тяга двигателя колебалась в пределах от 340 до 680 кг (при норме 1000 кг). Затем упало давление окислителя и горючего перед камерой сгорания вследствие выхода из строя ТНА. Далее двигатель работал за счет давления наддува, при этом тяга двигателя менялась с частотой 2 Гц в пределах от 230 до 360 кг.

Снижение высоты перицентра пролетной гиперболы увеличивало скорость КА в перицентре и напрямую уменьшало время радиосвязи между орбитальным и спускаемым аппаратами. Оперативно проведённые баллистиками расчёты показали, что при возникших ограничениях на условия радиосвязи можно было в течение 17 минут гарантированно, то есть с запасом, принимать сигнал с посадочного аппарата после его посадки и 32 минуты без запаса по энергетике радиолинии**. Семнадцати минут хватало на то, чтобы принять информацию с аппаратуры «Арахис» и одну черно- белую панораму, а за 32 минуты принять панораму еще и под красным фильтром.

* Измерения в самоходе – это беззапросные измерения, когда сигнал бортового передатчика формируется от бортового же задающего генератора. Измерения в самоходе менее точны, чем измерения в когеренте, когда сигнал бортового передатчика формируется от частоты запросного сигнала, излучаемого с Земли. В этом случае говорят, что сигналы когерентны, то есть взаимозависимы.

**. При расчете потенциала радиолинии обычно принимается, что для гарантированной передачи информации нужно, чтобы уровень сигнала в 2 раза или на 3 децибела превышал сигнал, минимально необходимый для передачи информации с определенной скоростью. Соответственно, без запаса по энергетике радиолинии означает, что уровень сигнала соответствует минимально необходимому для передачи информации с данной скоростью.

Пролетный сеанс начался 5 марта 1982 года, то есть спустя 121 сутки после старта. Как и в случае с «Венерой-13» сеанс приёма информации с СА проводился в режиме постоянной солнечно-звёздной ориентации, то есть без разворотов КА на гироплатформе. С учётом энергонапряжённости пролётного сеанса, а также в связи с нештатным функционированием аккумуляторных батарей по началу сеанса был заблокирован датчик минимального напряжения для исключения формирования сигнала «Umin».

Сеанс был включён по команде с Земли. Также по командам с Земли включены дециметровый и сантиметровый каналы в режим ретрансляции и подготовлен метровый канал к приему информации со спускаемого аппарата.

В 5 часов 58 минут 11 секунд начался приём сигнала со спускаемого аппарата, причём передача информации велась как по дециметровому, так и по сантиметровому каналам. Передатчики спускаемого аппарата включились на высоте 63,5 км над поверхностью Венеры, и сразу началась передача телеметрической и научной информации. На высоте ~47 км произошел отстрел тормозного парашюта, и далее продолжался спуск ПА на тормозном аэродинамическом щитке. В 7 часов 0 минут 11 секунд зафиксировано касание поверхности планеты. Продолжительность спуска от включения передатчиков до момента касания поверхности составила 62 минуты 20 секунд.

Посадочный аппарат «Венеры-14» совершил посадку на поверхность планеты в ~1000 км от места посадки ПА «Венеры-13». Координаты точки посадки аппарата составили 13°15" южной широты (номинал –16°±1°) и 310°09" долготы (номинал 314°±1°).

Первые 4 минуты работало ГЗУ ВБ02, при этом на Землю передавалась информация о его работе и работе аппаратуры «Арахис». Затем были сброшены крышки телефотометров, и началась передача изображений с вкраплениями ТМ-информации с других приборов.

Через 56 минут после посадки закончился полный цикл съёмки поверхности Венеры вторым телефотометром (первый закончил на 31-й минуте). На 57-й минуте прекратилось выделение полезной информации из принимаемого с посадочного аппарата сигнала из-за снижения его уровня ниже порогового. Таким образом, программа работы спускаемого аппарата «Венера-14» была выполнена полностью.

В последующие после посадки несколько дней воспроизводилась информация, принятая со спускаемого аппарата и записанная на бортовые магнитофоны. В дальнейшем сеансы связи с КА «Венера-14» проводились один раз в 3-5 суток и были посвящены в основном воспроизведению с магнитофонов научной информации, записанной в дежурном режиме. Таким образом, продолжалась работа по изучению межпланетного пространства. В частности, продолжались исследования рентгеновского, гамма-излучений и магнитных полей в космическом пространстве, характеристик солнечного ветра, космических лучей и межпланетной плазмы. Последний сеанс связи с КА «Венера-14» был проведен 9 апреля 1983 года.

РЕЗУЛЬТАТЫ ПОЛЕТА

Программа ЛКИ КА «Венера-13,-14» реализована успешно и в полном объеме. Посадочные аппараты осуществили мягкую посадку на поверхность планеты в намечаемых районах. Орбитальные аппараты, выведенные на пролетную траекторию, обеспечили прием и ретрансляцию на Землю информации, получаемой каждым со своего посадочного аппарата, в том числе, в течение 127 минут с места посадки ПА «Венеры-13» и более 56 минут с места посадки ПА «Венеры-14».

Обеспечено выполнение основных исследовательских экспериментов в рамках запланированной научной программы экспедиции.

Подтверждена реализуемость на КА серии «Венера» межпланетного полета с целью последовательного изучения двух космических объектов – Венеры и кометы Галлея.

ТЕХНИЧЕСКАЯ И ТЕХНОЛОГИЧЕСКАЯ НОВИЗНА

В полете КА «Венера-13, -14» завершена отработка пролетно-десантной схемы исследовательской экспедиции к Венере.

Решена задача забора проб грунта в условиях высоких температур и давлений.

В программе работы аппаратов были предусмотрены научные эксперименты:

По сравнению с аппаратами серии 4В1 (КА «Венера-11,-12») изменен состав научной аппаратуры.

Сняты приборы СКС‑04 и Д‑137, предназначенные для изучения солнечного ветра, а также прибор ДУМС‑1 для исследования ультрафиолетового излучения в верхних слоях атмосферы. Установлен магнитометр АСМ, созданный совместно с Австрией.

Таким образом, в комплекс научной аппаратуры пролетного аппарата вошли:

Гамма-спектрометр Конус для измерения рентгеновского и гамма-излучения в области энергий 30-300 кэВ;

Гамма-спектрометр Снег 2М3 (Франция) для измерения рентгеновского и гамма-излучения в области энергий 80-2500 кэВ;

Спектрометр РПП-01 для изучения заряженных частиц солнечного происхождения;

Прибор КВ‑77 для изучения заряженных частиц солнечного происхождения и измерения интенсивности и энергетического спектра протонов и электронов;

Анализатор спектра протонов АСП-8 для контроля радиационной обстановки;

Магнитометр АСМ (Австрия);

Передатчик 15П24Б (λ=8 см) для проведения эксперимента «Дисперсия».

Перечисленные выше приборы предназначены для исследования космического пространства в основном на трассе перелёта, поскольку в пролётном сеансе в момент максимального сближения с Венерой все ресурсы пролётного аппарата, как по информативности, так и по энергетике, заняты приёмом, записью на магнитофоны и ретрансляцией данных с посадочного аппарата.

Для проведения эксперимента «Дисперсия» задействуется также штатный передатчик дециметрового диапазона. Использование штатного сантиметрового передатчика невозможно из-за импульсного характера излучения.

Состав научной аппаратуры посадочного аппарата –

обеспечивает выполнение программы научных экспериментов, проводимых в процессе спуска в атмосфере Венеры и в месте контакта с ее поверхностью.

При снаряжении экспедиций аппаратов 4В1М учтен негативный опыт, полученный при работе на венерианской поверхности ПА «Венеры-11» и «Венеры-12».

Во-первых, доработана конструкция грунтозаборного устройства. В частности, усилены стенки трубопровода полости герметизации механизма перегрузки грунта в ГЗУ, так как именно разрыв трубопровода привел к отказу грунтозаборного устройства. Кроме того, увеличен объем вакуумной полости для перезагрузки (со 100 до 300 см 3). Доработанное ГЗУ получило индекс ВБ02.

Во-вторых, была полностью переделана конструкция сброса крышек телефотометров. Наиболее вероятными причинами отказа были признаны заклинивание крышек теплоизоляции ввиду малого зазора, уменьшение энергии давления рабочих газов для открытия крышки, вызванное несрабатыванием одного из пироузлов, а также отказ обоих пиропатронов в пироузлах отделения крышки. Помимо переделки конструкции, были заменены более термостойкими провода и припой, и введено механическое крепление жгутов.

Продолжительность время работы посадочных аппаратов на поверхности (от 95 до 110 минут), в течение, которого с ними должна поддерживаться устойчивая радиосвязь, позволяет многократно передать панораму поверхности Венеры. Подразумевается трансляция изображения с использованием разных светофильтров, из чего в результате синтезируется цветное изображение. В принципе, это предусматривалось уже в экспедициях КА серии 4В1, но как факультативный режим. На 4В1М такая съемка планировалась как штатная. Кроме того, для определения (на Земле) истинного цвета поверхности Венеры используются цветные тесты, «выносимые» из ПА на поверхность после посадки.

Определению истинности цветного изображения способствует также прибор для измерения механических характеристик грунта (ПрОП-4В1) – плотность грунта определяется по углу поворота двухцветного кружка на выносной штанге прибора.

Разнесены на 4 минуты после посадки моменты задействования телефотометров и ГЗУ, дабы исключить влияние подрыва пиропатронов во время забора грунта на работу телефотометров.

В остальном все, что касается конструкции телефотометров и принципов их функционирования, осталось без изменений.

Предусмотрена следующая программа работы телефотометров. Каждый из них спустя 4 минуты после посадки, в течение которых на Землю передаются данные с аппаратуры «Арахис» о химическом составе грунта, начинает снимать панораму поверхности Венеры.

Время передачи одной полной панорамы без фильтра – 13 минут 10 секунд. После окончания передачи черно-белой панорамы подставляется красный светофильтр, и начинается обратный ход зеркала телефотометра. При этом первая камера ведет съемку фрагмента панорамы в секторе 60 градусов (время съемки – 4,5 минуты), а вторая камера – в секторе 165 градусов (время съемки – 12 минут 50 секунд). Далее красный светофильтр меняется на зеленый, и снова включается прямой ход в том секторе панорамы. Наконец, тот же фрагмент снимается под синим светофильтром при обратном ходе, после чего зеркало телефотометра возвращается в исходное состояние, попутно снимая черно-белый фрагмент панорамы при обратном ходе. Полный цикл работы первой камеры телефотометра составляет 36 минут 17 секунд или 27 минут 8 секунд до окончания съемки под синим светофильтром, а цикл работы второй камеры 52 минуты 42 секунды или 51 минута 41 секунда до окончания съемки под синим светофильтром.

Помимо двух телефотометров на посадочном аппарате установлены также следующие научные приборы:

Аппаратура Арахис для определения содержания породообразующих элементов, слагающих поверхность планеты, и элементного состава грунта;

Аппаратура Гроза для поиска и исследования атмосферных грозовых электроразрядов;

Аппаратура Сигма для определения химического состава атмосферы во время спуска методом газовой хроматографии;

Масс-спектрометр МХ-6411 для измерения состава атмосферы;

Нефелометр МНВ-78-2 для исследования строения и оптических характери­стик аэрозольных слоев в атмосфере;

Прибор ИОАВ-2 для получения подробного спектра солнечного излучения и изучения оптических свойств атмосферы;

Система ИТ для измерения температуры атмосферы на участке спуска СА и у поверхности планеты;

Система ИД для измерения давления атмосферы на участке спуска СА и у поверхности планеты;

Система Бизон М для измерения линейных и ударных перегрузок;

Прибор ПрОП-4В1 для определения структуры и физико-механических свойств грунта;

прибор ВМ-3 для измерения содержания влаги в атмосфере;

Экспериментальные солнечные батареи для определения мощности светового потока.

НАУЧНЫЕ РЕЗУЛЬТАТЫ

Ко многим из проведенных в экспедиции КА «Венеры-13, -14» экспериментов применимо слово «впервые». Впервые получены цветные панорамы поверхности Венеры с круговым обзором. Причем при сравнении между собой ряда панорам, полученных за весь сеанс передачи, обнаружены динамические явления: сдувание слоя грунта, попавшего на посадочную платформу, изменение цветовых оттенков и колебания средней освещенности. Последние явления до сих пор не объяснены.

Впервые прямыми измерениями показано, что сера является основным элементом, определяющим состав облачного слоя.

Впервые с помощью грунтозаборного устройства взяты пробы грунта Венеры для определения элементного состава пород методом рентгено-флюоресцентного анализа, что потребовало решения исключительно трудной задачи - именно забора проб грунта в условиях высоких температур и давлений.

В ходе полета СА в атмосфере Венеры и после посадки ПА на её поверхность проводились комплексные научные исследования. Были осуществлены эксперименты по изучению химического и изотопного состава атмосферы и облаков, структуры облачного слоя, рассеянного солнечного излучения, а также регистрация электрических разрядов в атмосфере.

Спускаемые аппараты «Венера-13» и «Венера-14» проводили эксперименты в различных геологических районах планеты. Место посадки выбрано таким образом, чтобы определить характер рельефа и пород в одном из наиболее типичных геолого-морфологических провинций планеты - холмистой возвышенности.

Забор пробы осуществлялся миниатюрным грунтозаборным устройством, после чего она доставлялась через шлюзовый канал в прибор, расположенный в гермоотсеке посадочного аппарата. Сложность заключалась в том, чтобы не допустить следом за грунтом огромное давление атмосферы (~95 атм.) и высокую температуру (~465°С). Проба, поданная в прибор, подвергалась интенсивному облучению радиоизотопными источниками.

Возбужденное в ней флюоресцентное излучение регистрировалось чувствительными детекторами, а получаемые в результате спектры несли информацию об элементном составе породы.

Состав породы в районе посадки «Венеры-13» оказался близким к калиевым щелочным базальтам, обнаружены и сильнощелочные базальты, довольно редко встречающиеся на Земле - главным образом на океанических островах и в рифтовых зонах Мирового океана. Следует отметить, что, по радиолокационным данным, к этому типу геологических провинций можно отнести около двух третей поверхности Венеры.

Другим важным научным экспериментом, выполненным «Венерой-13», стала передача цветных панорамных изображений поверхности. Анализируя снимки, полученные с ее помощью, ученые выдвинули гипотезу о том, что им удалось наблюдать древнюю кору планеты, поскольку поверхность в этом районе сильно эродирована (за исключением выступов коренной породы) и в большей степени покрыта дробленым мелкозернистым материалом.

Специфический цвет поверхности и необычный фон на панораме, полученной «Венерой-13» и подтвержденный на панораме, полученной «Венерой-14» - результат влияния мощной и плотной венерианской атмосферы, поглощающей синюю часть спектра солнечного излучения.

Изучение отдельных фрагментов панорам дает дополнительную интересную информацию. Так, на изображениях, переданных «Венерой-13», хорошо заметны выбросы грунта на посадочную платформу. Несколько последовательных снимков платформы показывают, что насыпной грунт не остается неподвижным, он перемещается под действием ветра. Тщательный анализ телевизионных изображений позволил уточнить направление и величину скорости ветра, определяемую по акустическим измерениям. У поверхности планеты она составляла 0,3-0,6 м/с.

Для исследования физико-механических свойств поверхности использовано выносное рычажное устройство с пружинными аккумуляторами энергии для его раскрытия, внедрения и разворота штампа в грунте.

По глубине вдавливания и углу разворота штампа выявлялись прочностные свойства породы. Оценка механических характеристик при этом совмещалась с определением электропроводности грунта.

Механические свойства грунта уточнялись по результатам измерения ударных перегрузок, позволяющих судить о процессе динамического вдавливания ПА в грунт.

Так, в месте посадки «Венеры-13» оба эксперимента показали, что грунт поверхности по своим механическим свойствам соответствует уплотненному мелкозернистому песку. Следовательно, можно сделать вывод, что данная порода, по крайней мере ее поверхностный слой, имеет прочность и плотность заметно меньшие, чем изверженные кристаллические породы земной коры.

Температура окружающей среды в месте посадки «Венеры-14» составила 465°С, давление 94,7 атмосфер, освещенность 10 килолюкс, высота 1,3 км относительно среднего уровня, соответствующего радиусу планеты 6050 км.

В отличие от «Венеры-13» пробы грунта взяты из другого наиболее типичного для венерианской поверхности района - гладкой низменности. В месте посадки «Венеры-14» иной ландшафт. Довольно ровная, с ярко выраженной расслоенностью, поверхность менее выветрена, что указывает на более молодую структуру. Проведенный анализ показал, что грунт в районе посадки «Венеры-14» содержит значительно меньше щелочных элементов по сравнению с породой в месте посадки «Венеры-13». По своему составу поверхность там напоминает базальты, слагающие земную океаническую кору.

Впервые осуществлялись сейсмические измерения на планете. «Венере-14» удалось зарегистрировать микросейсмы - небольшие колебания грунта, составляющие единицы или доли микрометра. Они могли иметь различные источники. Не исключено, что их возникновение связано с вулканической деятельностью.

Впервые в экспедиции КА «Венера-13, -14» проведены измерения ультрафиолетового потока солнечного излучения в атмосфере. Обнаружено, что значительная часть солнечного излучения поглощается выше 60 км. Это позволяет объяснить совершенно необычные характеристики движения атмосферы.

Продолжены исследования атмосферы, начатые предыдущими советскими автоматическими космическими аппаратами.

Газохроматографический анализ позволил уточнить наличие малых примесей в атмосфере. Впервые удалось проанализировать содержание водорода и соединений серы (H 2 S ; COS).

Обнаружено новое химическое соединение - предположительно SFe.

Macс-спектрометрические измерения проводились на более высоком уровне чувствительности, что позволило точно определить изотопный состав неона, получить сведения о содержании в атмосфере криптона и ксенона.

Все эти данные необходимы для понимания процессов образования и эволюции атмосферы не только Венеры, но и других планет «земной» группы.

Сведения о содержании водяных паров в атмосфере планеты, собранные предыдущими аппаратами, были разноречивы. Внести ясность должны были «Венера-13» и «Венера-14», оснащенные для этой цели специальным анализатором влажности, чувствительным элементом которого был датчик на основе хлористого лития.

Результаты измерений свидетельствуют о сильной обезвоженности атмосферы Венеры, а своеобразное изменение концентрации паров в зависимости от высоты указывает на то, что вода, по всей вероятности, играет значительную роль в формировании облачного слоя планеты. Эксперименты, выполненные «Венерой-13, 14», стали важным шагом в развитии исследований планеты.

В разделе перечилены только успешные миссии США, направленные на освоение Венеры.

Mariner 2

Запуск: 27.08.1962

Маринер 2 был вторым космическим аппаратом США, направленным к Венере для ее изучения. Маринер 2 точная копия первого аппарата Маринер 1, при запуске которого произошла авария (ракета ушла осталась на орбите).
В целом запуск прошел успешно. По программе расскрылись солнечные батареи через 44 минуты после запуска. 8 Сентября в 17:50 космический корабль вдруг потерял равновесие, которое было восстановлено гироскопом через 3 минуты. Причина до сих пор неизвестна, но возможно произошло столкновением с небольшим объектом. 31 октыбря частично вышла из строя одна из солнечных батарей и временно была выключена. Т.е. аппарат был достаточно повернут к Солнцу, мощности всего одной батареи было достаточно, чтобы достигнуть Венеры. 8 декабря аппарат прошел на расстоянии 34 773 км и в течение 42 минут вел исследования этой планеты. Последнее сообщение от "Mariner 2" было получено 3 января 1963.
Mariner 2 обнаружил, что Венера крайне медленно обращается в направлении, обратном орбитальному движению. С помощью инфракрасного и микроволнового радиометра аппарат установил, что Венера имеет относительно холодный верхний слой облаков, но экстремально горячую внутреннюю атмосферу, насыщенную углекислым газом, высокое давление. Впрочем, эти данные были интерпретированы не со стопроцентной уверенностью. NASA Official

Mariner 5

Запуск: 14.06.1967

"Mariner 5" был резервным кораблем для "Mariner 4". Изначально он предназначался для марсианской миссии, но был переоборудован под миссию к Венере. Космический корабль прошол на расстоянии 4 000 от Венеры в октябре 1967. Инструменты космического корабля измерили магнитное поле планеты, заряженные частицы, плазму, а также УФ эмиссии атмосферы Венеры. Миссия была охарактеризована как успешная.

Mariner 10

Запуск:11.03.1973


"Mariner 10" был седьмым успешным запуском в серии Mariner. Использовал гравитационное действие Венеры для разгона до конечной цели - Меркурия. Первая миссия космического корабля, цель которой было исследование сразу двух планет - Венеры и Меркурия. "Mariner 10" был первым космическим кораблем, который посетил Меркурий. Космический корабль облетел Меркурий три раза на обратной гелиоцентрической орбите и передал первые изображения и данные о планете. Цели миссии - измерения среды Меркурия, атмосферы, поверхности, а так же формы планеты. Аналогичные исследования планировались и для Венеры. Второстепенные цели - эксперименты в межпланетной среде, а так же накопление опыта для миссияй, расчитанных на исследование сразу двух космических объектов.

Возникшие проблемы: "Маринер 10", был выведен на орбиту после запуска через 25 минуты. После запуска защитный купол полностью не открывался, поэтому некоторое оборудование не могло быть использованное, такое как: Scanning Electrostatic Analyzer and Electron Spectrometer. Также было обнаружено, что нагреватели для телевизионных камер не заработали, так что камеры были на некоторое время отключены, чтобы предохранять оптику от влияния низких температур.
Первая коррекция орбиты была проведена через 10 дней после запуска. После чего корабль потерял ориентацию на звезду Канопус. Через некоторое время ориентация была возвращена, но проблемы подобного рода преследовали миссию до ее окончания. Так же были некоторые проблемы с бортовым компьютером и антеной.

Космический корабль прошел Венеру в феврале 1974 на расстоянии 5768 км и передал первые изображения поверхности Венеры.

Это был последний аппарат серии "Маринер", поскольку аппараты "Маринер-11" и "Маринер-12" были переименованы в "Вояджер-1" и "Вояджер-2" соответственно.

The Pioneer Venus Orbiter

Запуск: 20.02.1978
Конструкция

Конструкционно аппарат представлял цилиндр высотой 1.22 м, диаметром 2.54 м, общая длинна 4.5 м. Энергоустановка состоит из солнечных батарей на боковой поверхности аппарата (общая площадь 7,5 м2, мощность 312 Вт) и двух никель-кадмиевых аккумуляторных батарей емкостью 7.5 А час.

Радиосистема в режиме приема работает на частоте 2115 МГц, в режиме передачи - на частоте ~ 2300 МГц, а также в диапазоне Х (5200-10900 МГц) для радиозатменного зондирования. Диаметр отражателя остронаправленной антенны ~ 1 м.

Информативность телеметрической системы до 2048 бит/сек, емкость бортового записывающего устройства ~ 122 Кбайт.

Аппарат стабилизируется вращением(5 об/мин). В системе обеспечения заданных скорости вращения и ориентации оси вращения используются солнечные и звездный датчики, а в качестве исполнительных органов - семь гидразиновых микродвигателей тягой по 4,5 Н. Они же служат для коррекции траектории на трассе "Земля - Венера" и орбиты вокруг Венеры. Запас гидразина 32 кг.

В системе терморегулирования используются жалюзи, нагреватели, теплоизоляция, покрытия и краски.

Бортовой тормозной РДТТ тягой 18 кН, служащий для перевода АМС на орбиту вокруг Венеры, обеспечивает приращение скорости ~1 км/сек.

В составе научной аппаратуры АМС анализаторы плазмы, масс-спектрометры ионов и нейтральных частиц, зонд для измерений электронной температуры, УФ спектрометр, ИК радиометр, фотополяриметр для облачного слоя, магнитометр, детекторы электрического поля и гамма-всплесков, а также радиокартограф, рассчитанный как на получение изображений поверхности планеты через облачный слой, так и на измерение высоты элементов рельефа. Общий вес научной аппаратуры 45 кг.

Масса аппарата: у Земли: 517 кг, на орбите ИС Венеры: 360 кг.

На орбите Венеры

Станция ушла в космос 20 мая 1978 года, для старта использовалась ракета-носитель Atlas-Centaur.
4 декабря 1978 г. она выведена на начальную орбиту с высотой перицентра 376 км, высотой апоцентра ~ 64 000 км и наклонением к плоскости эклиптики ~ 105°. В дальнейшем были проведены несколько коррекций орбиты, с тем чтобы снизить высоту перицентра до ~ 150 км, увеличить высоту апоцентра до ~66 000 км и обеспечить 24-часовой период обращения. После чего станция приступила к выполнению намеченных экспериментов. Планировалось что станция будет работоспособной минимум 1 венерианские сутки (243 земных). Вскоре после выход на орбиту Венеры отказал инфракрасный радиометр но остальные приборы работали.

Исследования Венеры показали, что планета или вовсе не имеет магнитного поля, или имеет очень слабое поле. Однако солнечный ветер индуцирует магнитное поле в ионосфере планеты, которое образует барьер для солнечного ветра. Солнечный ветер прижимает ионосферу к планете, удерживая ее в пределах определенной границы, называемой "ионопауза", высота которой изменяется с изменением скорости солнечного ветра. Масс-спектрометр ионов обнаружил в ионосфере Венеры однозарядный и двухзарядный атомный кислород, а также ионы молекулярного кислорода, атомарного и молекулярного водорода, гелия, углерода, азота и углекислого газа.

Тем временем гарантийный срок работы прошел, но станция оставалась работоспособной. К концу второго года работы она передала на Землю снимки облачного покрова в ультрафиолетовых лучах и произвела картографирование 93 % поверхности планеты, но станция продолжала работать. К этому времени гидразин для коррекции траектории практически закончился (осталось около 2.3 кг) и станция стала изменять траекторию из-за взаимодействия Венеры и Солнца.

Кроме Венеры её аппаратура производила изучение комет Энке, Галлея, Вильсона и NTT, были изучены их размеры, скорость испарения воды.

Под воздействием Солнца орбита аппарата постепенно приближалась к экваториальной, высота перицентра тем временем увеличилась до 2200 км, затем перицентр стал уменьшаться. К 1992 году он снизился до уровня атмосферы Венеры. 8 октября состоялся последний сеанс связи, станция была работоспособна - работали 11 из 12 приборов. Станция все продолжалась приближаться к Венере и ориентировочно 20 октября упала на Венеру. Исследования Венеры продолжил Магеллан.

Pioneer Venus Multiprobe

Запуск: 08.08.1978

Конструкция

Целью АМС Pioneer Venus Multiprobe было доставка в атмосферу Венеры 4 зондов, одного большого и трех малых. Масса АМС около 900 кг, из них большой зонд 315 кг, малые зонды общей массой 270 кг и траекторный блок 290 кг. Конструктивно траекторный блок аналогичен АМС Pioneer Venus Orbiter, основное отличие отсутствие твердотопливного двигателя для выхода на орбиту Венеры. Основной источник энергии солнечные батареи на поверхности аппарата общей мощностью 241 Вт. В составе научной аппаратуры этого блока - спектрометры нейтральных частиц и ионов.

Большой зонд

Большой зонд представляет из себя сферический герметизированный контейнер(титановый сплав)(4) диаметром 1.5 м, он снабжался отделяемым коническим экраном(6) из алюминиевого сплава с защитой из фенопласта, армированного углеродным волокном, хвостовым обтекателем(2) с радиопрозрачным окном (1) и двумя вытяжными парашютами. Вытяжной парашют имеет диаметр 0.76 м, основной диаметр около 5 м. Электропитание серебряно-цинковая батарея емкостью 40 А-час. Предусмотрены программно-временное устройство, передатчик мощностью 10 Вт (информативность до 256 бит/сек), рассчитанный на непосредственную передачу на Землю через антенну(3) , и записывающее устройство емкостью 384 байт, используемое в период пропадания сигнала. В состав научной аппаратуры большого зонда входят масс-спектрометр нейтральных частиц, газовый хроматограф, датчики температуры, давления и ускорений, солнечный и ИК радиометры, спектрометр облачных частиц и нефелометр. На поверхности сферического герметизированного контейнера установлены лопасти для вращения аппарата.

Малый зонд

На станции стояло три малых зонда. Малый зонд состоял из сферического герметизированного контейнера(титановый сплав) диаметром 73.2 см (4). На зонд устанавливался неотделяемый конический лобовой экран (алюминиевый сплав с теплозащитой из фенопласта, армированного углеродным волокном)(3).

Электропитание обеспечивает серебряно-цинковая батарея емкостью 11 А-час. Предусмотрены программно-временное устройство и передатчик мощностью 10 Вт (информативность до 64 бит/сек), рассчитанный на непосредственную передачу на Землю через антенну (1). В состав научной аппаратуры каждого малого зонда входят датчики температуры(2), давления и ускорений, нефелометр(5) и радиометр чистого потока(6).

Посадка на Венеру

Станция ушла в космос 8 августа 1978 года, для старта использовалась ракета-носитель Atlas-Centaur.

Большой зонд отделился от траекторного блока АМС 15 ноября 1978 г. на расстоянии ~ 12 млн. км от Венеры, три малых зонда - 20 ноября 1978 г. на расстоянии ~ 10 млн. км. 9 декабря 1978 г. все четыре зонда с небольшими интервалами вошли в атмосферу Венеры и примерно в течение часа совершали спуск на планету, причем большой зонд на одном из участков спуска использовал парашют.

Большой и один малый зонд вошли в атмосферу на дневной стороне планеты, остальные два малых зонда - на ночной (в южном и в северном полушариях). Малый зонд, вошедший в атмосферу на дневной стороне, проработал на поверхности 67 мин, хотя ни один зонд на функционирование на поверхности рассчитан не был.

Все приборы четырех зондов работали нормально за исключением датчиков температуры, которые на всех зондах отказали на высоте 14 км, когда температура достигла ~ 360°. Позже возобновилось поступление информации от датчика температуры на большом зонде.

Траекторный блок АМС вошел в атмосферу Венеры вскоре после зондов и через 2 мин после входа сгорел, как это и ожидалось.

Ежегодник БСЭ. 1972-1990 г., Pioneer Venus Project Information

Magellan

Запуск: 4.05.1989

Космический корабль Magellan был запущен 4 мая 1989. Последний контакт с Магелланом был проведен в октябре 1994 года. Главной задачей миссии было составление карты поверхности Венеры. В итоге были составлены карты 98% поверхности планеты с разрешение лучше 100 метров, к тому же, многие изображения были сделаны несколько раз. На рисунке вы видите кратер аривар диаметром 30 км.

Миссия была разделена на циклы, каждый из которых занял 243 дня (время необходимое Магеллану, чтобы сфотографировать всю поверхность Венеры).

15 сентября 1990 - Этап 1: съемка поверхности планеты (левое направление). За первый этап аппарат сфотографировал 84% всей поверхности.

15 мая 1991 - Этап 2: съемка поверхности планеты (правое направление). Съемка южной поляной области и восстановление неполной информации, полученной на первом этапе.

15 января 1992 - Этап 3: съемка поверхности планеты (левое направление). Повторная съемка поверхности, а так же получение стереоизображений планеты на основе изображений, полученных на первом этапе.

14 сентября 1992 - Этап 4: съемка поверхности планеты (правое направление). Повтор 2 этапа, а также изучение гравитации планеты с эллиптической орбиты.

3 августа 1993 - Изучение гравитации. Составлена гравитационная карты на 95% поверхности планеты.

Результаты миссии:
Сфотографировано 99% поверхности планеты, причем качество полученных изображений было лучше, чем во время советских миссий "Венера 15, 16".

Экзогенные (поверхностные) процессы.

Эоловые образования (довольно много ветровых полос - "хвостов" надувания или раздувания за ветровыми препятствиями, мало дюн и ярдангов - борозд раздувания). На крутых склонах изредка видны следы обвалов и оползней. Предполагается химическое выветривание с участием CO2 и серосодержащих газов атмосферы. Суммарная интенсивность экзогенных процессов очень низка: формы рельефа возрастом 500 млн. лет выглядят морфологически юными (при разрешении изображений 100-200 м).

Вулканизм.

Преобладали площадные базальтовые излияния. Именно они сформировали большую часть равнин Венеры, которые на этой планете занимают около 80% поверхности. Часто встречаются базальтовые щитовые вулканы (диаметром километры - сотни км). Самые крупные вулканы Венеры крупнее самых крупных вулканов Земли. Изредка встречаются крутосклонные вулканические купола, похожие на лепешки. Возможно, их крутосклонность есть свидетельство того, что они небазальтовые.

Тектоника.

Деформированность пород, видимых на поверхности, - от интенсивной до слабой. Есть признаки и растяжения, и сжатия. Наиболее древние из сильно деформированных образований - массивы т.н. тессер со структурами сжатия и растяжения, наиболее молодые - рифтовые зоны со структурами растяжения, похожие на континентальные рифты Земли (напр., Байкальский рифт или африканские рифты).
Глобальный стиль эндогенной (определяемой процессами в недрах планеты) активности. Присущей Земле тектоники плит на Венере нет. Не наблюдается типичных для нее образований: срединно-океанических хребтов и комплементарных им островных дуг и субдукционных впадин. Нет дивергентно-конвергентной комлементарности в распределении наблюдаемых вулканических и тектонических образований. Распределение ударных кратеров по площади неотличимо от случайного.

Эволюция.

Возраст поверхности 0.5-1 млрд. лет (определен по количеству ударных кратеров), что есть лишь последние 10-20% истории планеты. Геологическая история этого последнего периода реконструируется через выявление возрастной последовательности геологических подразделений - т.н. стратиграфической колонки. Такая колонка была составлена для разных областей Венеры и оказалась довольно простой и примерно одинаковой для разных мест. Анализируя отношения ударных кратеров с геологическими подразделениями (наложен на лавы или подтапливается ими) удалось показать, что в начале рассматриваемого периода интенсивность эндогенных процессов на Венере была примерно такая же, как на современной Земле. Но вскоре она снизилась и до настоящего времени сильно не менялась. Современный вулканизм и тектоника пока не наблюдались, но весьма возможны.

Galileo

Запуск: 18.10.1989

Галилео - автоматичексий космический аппарат НАСА, созданный для исследования Юпитера и его спутников.

Пролетел мимо Венеры на расстоянии 16 000 km (10 000 миль), что позволило группе ученых протестировать инструменты Галлилео, а также увеличивать наше понимание об атмосфере Венеры.

План полета Галилео (размер изображения 1.4 МB):

Cassini-Huygens

Запуск: 15.10.97

Кассини-Гюйгенс - космический аппарат, созданный совместно НАСА, Европейским космическим агентством и Итальянским космическим агентством, целью которого является изучение планеты Сатурн и её колец и спутников. Аппарат состоит из двух основных компонент: непосредственно самой станции Кассини Орбитер и спускаемого зонда Гюйгенс, который был отделён от станции и спустился на поверхность спутника Сатурна Титан. Кассини-Гюйгенс был запущен 15 октября 1997 и достиг системы Сатурна 1 июля 2004. Это первый искусственный спутник Сатурна.

Когда мы слышим «фотография с поверхности другой планеты», то первым на ум, как правило, приходит Марс. Оно, конечно, и не удивительно: в последние годы мы избалованы стереоскопическими снимками HRSC , панорамами HiRISE с огромным разрешением, и марсоходом Curiosity с почти ежедневными фотоотчетами. И даже когда речь заходит об истории вопроса, вспоминаем успех американских миссий «Викинг». Но мало кто помнит (или даже знает) о том, что первая в истории фотография с поверхности другой планеты получена не на Марсе и не американским аппаратом, а советской станцией «Венера-9» в 1975 году.

В этом топике я хочу восстановить историческую справедливость и рассказать о том, как советским инженерам удалось создать устройство, которое успешно осуществило панорамную съемку в условиях крайне агрессивной среды при температуре более 470°С и давлении в 93 атм.


История советского успеха в изучении Венеры описана достаточно неплохо (да хоть в Википедии), поэтому я обозначу лишь основные вехи:

  • В 1961 году был отправлен первый в истории человечества аппарат, предназначенный для исследования других планет, «Венера-1».
  • 1967 год - «Венера-4» стала первым аппаратом, проникшим в атмосфру планеты и передавшим оттуда научные данные.
  • 1970 год - спускаемый аппарат «Венера-7» совершил мягкую посадку на поверхность Венеры, информация передавалась 53 минуты, в том числе 20 минут - с поверхности (это первый случай радиосвязи с поверхности другой планеты).
  • 1975 год - первые черно-белые панорамные изображения с поверхности другой планеты («Венера-9, 10»).
  • 1982 год - впервые были получены цветные изображения поверхности и проведён прямой анализ грунта планеты («Венера-13, 14»).
Итак, к моменту запуска «Венеры-9» у советских ученых было достаточно информации о тех условиях, в которых предстояло вести фотосъемку: в первую очередь, это параметры температуры и давления, необходимые для правильного расчета инженерных конструкций (до «Венеры-4» давление атмосферы считалось равным 10 атм, что привело к разрушению этого спускаемого аппарата еще до достижения им поверхности планеты), а также параметры освещенности для корректной настройки фотоаппаратуры (так, из-за неправильных выдержек фотоснимки с «Марса-2» и «Марса-3» практически не представляли научной ценности).

В состав научной аппаратуры спускаемого аппарата «Венера-9» входили: системы измерения температуры и давления, масс-спектрометр для определения химического состава атмосферы, акселерометры, нефелометры (2), фотометр для исследования светового режима (3 полосы в видимой области + 2 ИК в трех телесных углах), фотометр на полосы поглощения CO 2 и H 2 O, анемометр, гамма-спектрометр для определения содержания естественных радиоактивных элементов в венерианских породах, радиационный плотномер для определения плотности грунта в поверхностном слое планеты, панорамные телефотометры (2).


Для получения изображения поверхности Венеры в месте посадки спускаемого аппарата панорамная камера устанавливалась в герметичном приборном отсеке, в котором в течение длительного времени обеспечивались нормальные условия по температуре и давлению. Кроме того, необходимо было создать «оптическое окно» к поверхности Венеры, где давление могло достигать 100 атм, а температура 500°С, и не допускать их влияния на камеру. Эти обстоятельства требовали целого ряда оригинальных технических и конструкторских решений. Так, за двое суток до подлета к планете производилось внутреннее захолаживание системы (до -10°С). Для стабилизации внутреннего температурного режима во время работы на поверхности использовались сотовые композитные материалы с малой теплопроводностью, экранно-вакуумная изоляция, аккумуляторы тепла из тригидрата азотнокислого лития, обладающего высокой удельной теплоемкостью и температурой плавления ~30°C. После 75-минутного спуска и часовой работы на поверхности Венеры, температура внутри спускаемого аппарата поднялась с начальных -10°C до 60°C.

Существенное влияние на конструктивно-компоновочную схему оказал комплекс задач, связанных с обеспечением необходимого поля зрения камеры и разрешения на поверхности. В НПО им. Лавочкина (разработчик аппарата) было признано наиболее целесообразным расположить камеру в верхней зоне приборного контейнера. Однако ввиду необходимости передачи изображения как ближнего, так и дальнего плана ось панорамирования камер была наклонена на 50° к вертикальной оси посадочного аппарата. При этом минимальное расстояние от поверхности до камеры составляло около 1 м. Таким образом в поле зрения камеры должна была попасть часть устройства с нанесенными на нее тестовыми контрастными изображениями. Такое расположение камеры позволяло получить изображение поверхности при малой прозрачности атмосферы и определить фотометрические характеристики поверхности планеты, а также в случае благоприятных метеоусловий получить панораму, охватывающую значительную площадь поверхности Венеры.

В месте установки камеры со стороны наружной части приборного отсека располагался оптический иллюминатор цилиндрической формы:

Иллюминатор был изготовлен из толстостенного кварцевого стекла толщиной 10 мм с фокусным расстоянием 371 мм и светопропусканием 95%. Внутри цилиндрического иллюминатора было расположено перископическое устройство камеры со сканирующим зеркалом. Тем самым основные тепловые потоки, проникающие через иллюминатор, воздействовали только на верхнюю часть камеры, не достигая электронной аппаратуры.

Для обеспечения заданного теплового режима и исключения влияния высокой температуры на аппаратуру камера и иллюминатор были закреплены в приборном отсеке при помощи нетеплопроводных и теплопоглотительных конструктивных элементов. Иллюминатор был закрыт мощной теплоизоляцией, за исключением смотрового выреза‚ обеспечивающего необходимое поле зрения. Смотровой вырез, в свою очередь, был закрыт теплоизоляционной крышкой, которая с помощью пироустройств сбрасывалась после посадки. Этим обеспечивался, во-первых, тепловой режим камеры во время снижения, а во-вторых‚ защита стекла иллюминатора от возможного закопчения, осаждения и конденсации на нем продуктов газовыделения теплозащиты и каких-либо непрозрачных осадков из атмосферы Венеры.

Поскольку у советских инженеров имелся большой положительный опыт использования оптико-механических панорамных камер на лунных аппаратах, как неподвижных («Луна-Э», «Луна-13»), так и подвижных («Луноход-1», «Луноход-2»), а оптические и электрические характеристики этих камер в целом соответствовали потребностям венерианской миссии, было решено использовать именно их. Единственное, в отличие от лунных камер, работавших непосредственно во внешней среде, в данном случае была предусмотрена защита от особо жестких климатических воздействий на Венере.

Сборка камеры:

В оптико-механической панорамной камере используется принцип сканирующего телефотометра. Основные элементы камеры и их установка на аппарате:

Как уже говорилось выше, камера была расположена внутри герметичного и теплоизолированного корпуса. Съемка поверхности производится через цилиндрический иллюминатор, внутри которого установлено сканирующее зеркало и элементы его привода. Обзор окружающей поверхности в номинальном угле 40х180° осуществляется за счет двух движений сканирующего зеркала - вращения вокруг оси панорамирования и качания в плоскости, проходящей через эту ось. Для повышения надежности получения изображения в условиях пониженной освещенности или очень малых контрастов снаружи были установлены два источника искусственного света, освещающих локальные зоны поверхности в двух секторах панорамы.

Устройство камеры:

Конструктивно камера разбивается на две части: основной корпус и перископическое устройство. Перископ выносил за пределы теплоизоляционных оболочек сканирующее зеркало и располагается в зоне, где температура могла достигать 475°С. Основной же корпус с электронными блоками и оптической системой находится в зоне, где рабочая температура не превышала 40-50°С. Перископическое устройство выполнено в виде тонкостенной трубы из материала с низкой теплопроводностью. Качание зеркала от кулачка и толкателя производилось через проволочную тягу длиной 250 мм. Труба перископа, вращавшаяся при панорамном обзоре, была установлена на шарикоподшипниках, между которыми был расположен радиатор, обеспечивающий передачу тепла на корпус. В самом корпусе по всему периметру были сделаны герметичные полости, заполненные тригидратом азотнокислого лития, обладающим большой теплоемкостью.

Оптическая схема камеры:

Пучок лучей от поверхности, проходя через иллюминатор, становится расходящимся в сагиттальном сечении, так как иллюминатор представляет собой цилиндрическую линзу (см. фотографию выше). Расходящийся пучок падает на сканирующее зеркало и, отражаясь от него, попадает на компенсирующую цилиндрическую линзу, передний фокус которой совпадает с задним фокусом иллюминатора. После линзы пучок снова становится параллельным и, отражаясь от поворотного зеркала, проходит через объектив с фокусным расстоянием 28 мм и относительным отверстием 1:2. В плоскости изображения стоит диафрагма, которая является развертывающим элементом, формирующим апертурную характеристику камеры. После диафрагмы пучок попадает на светоприемник. На время обратного хода строчной развертки световой поток перекрывается гребешком обтюратора. В это же время фотодиод засвечивается лампой накаливания через отверстие на обтюраторе и формирует электрический импульс начала обратного хода. Во время обратного хода происходит калибровка прибора. Для этой цели свет от лампы, яркость которой стабилизирована, с помощью световода подается на светоприемник.

Сканирующее зеркало совершает колебательное движение (строчная развертка), отклоняя световые пучки на угол ±20° с линейной угловой скоростью и обратным ходом, составляющим 10% от периода строки. Одновременно сканирующее зеркало поворачивается вокруг оси панорамирования. Конструкция камеры позволяла производить полный панорамный обзор в угле 360°, однако поле зрения, не закрытое элементами самого аппарата, составляет величину, примерно в два раза меньшую, поэтому панорамная развертка ограничена углом 180±4°.

Приводом оптико-механической части служил двигатель постоянного тока, скорость вращения которого стабилизирована с помощью сервосистемы с опорой на частоту, подаваемую от бортового хронизатора. Номинальной угловой разрешающей способности 21" соответствует четкость в 115 элементов в строке, которая ограничивалась не апертурной характеристикой камер, а частотой дискретизации видеосигнала (в строчном направлении) и заданным шагом панорамной развертки. При угловом разрешении 21" в ближней зоне могли быть обнаружены детали поверхности с размерами около 10 мм, а достоверно должны были различаться детали, имеющие размеры в несколько раз больше. Объективы камер были настроены на гиперфокальное расстояние, благодаря чему можно получить резкое изображение предметов, находящихся на расстоянии 800 мм и далее от иллюминатора, т. е. во всех зонах панорамного обзора, включая край посадочной платформы.

Основные параметры камеры:
Все приборы посадочного аппарата, в том числе и панорамная камера, работали в автоматическом режиме и управлялись программно-временны́м устройством, которое после посадки подавало на камеру команду на включение. После этого собственная автоматика камеры производила включение и выключение осветителей в заданных секторах обзора и реверсирование развертки по достижении камерой крайних положений угла панорамирования. С выхода камеры видеосигнал подавался на кодирующее устройство и далее на передатчик. Каждые 4 минуты видеосигнал прерывался, так как в канал связи поступала телеметрическая информация со всех научных приборов аппарата. А поскольку панорамная развертка в это время не прекращалась, это приводило к потере 4-5 строк изображения на каждый цикл измерений. В это же время передавалась следующая информация о работе камеры: изменение уровня автоматической регулировки чувствительности, изменение азимутального угла, наличие строчной развертки, наличие видеосигнала, моменты включения и выключения осветителей, температура камеры.

Вот так выглядела необработанная панорама:

После устранения шумов данная панорама стала выглядеть так:

Некоторыми любителями были найдены пленки с необработанными 6-битными данными, по которым они самостоятельно проводили реконструкции. Наиболее известна работа

На снимках, сделанных на Венере в 1980-е годы советскими посадочными зондами, присутствуют перемещающиеся объекты, возможно, имеющие свойства живых существ, считает главный научный сотрудник заведующий лабораторией Института космических исследований РАН Леонид Ксанфомалити.

В издании Астрономический вестник опубликована статья заведующего лабораторией Института космических исследований РАН Леонида Ксанфомалити, в которой он предположил, что на снимках, сделанных на Венере еще в 1980-е годы советскими посадочными зондами серии Венера, присутствуют перемещающиеся объекты, обладающие свойствами живых существ.

В 1970-е и 1980-е годы советские ученые осуществили ряд успешных миссий по исследованию Венеры, в ходе которых были получены первые в истории снимки ее поверхности, невидимой с Земли из-за постоянного плотного облачного покрова в атмосфере планеты.

Серии телевизионных панорам Венеры были получены аппаратами «Венера-9» и «Венера-10» в 1975 году, а затем «Венера-13» и «Венера-14» в 1982 году с помощью сканирующих фотометрических камер оптико-механического типа.

«Вене́ра-13» — советская автоматическая межпланетная станция (АМС), запущенная по программе исследования планеты Венера.

Состав научной аппаратуры

Общая масса КА «Венера-13» составляла 4397,85 кг. Масса спускаемого аппарата — 1643,72 кг, масса посадочного аппарата на поверхности Венеры — 750 кг .

На «Венере-13» были установлены приборы, сконструированные советскими, австрийскими и французскими специалистами. Всего на станции было установлено 14 научных приборов.

В 1981 году было благоприятное взаимное расположение Земли и Венеры для запуска космических аппаратов. Через пять суток после старта «Венеры-13» была запущена АМС «Венера-14 ».

Через четыре месяца «Венера-13» достигла планеты Венера. От АМС отделился спускаемый аппарат, который 1 марта 1982 года совершил мягкую посадку на поверхности Венеры. «Венера-13» продолжила полёт по гелиоцентрической орбите.

В результате торможения спускаемый аппарат вошёл в атмосферу Венеры. его скорость снизилась до скорости звука. после этого был раскрыт тормозной парашют. На высоте 47 километров над поверхностью парашют был отстёгнут и спускаемый аппарат продолжил спуск, используя аэродинамическое торможение. Спускаемый аппарат «Венеры-13» совершил посадку на планету в точке с координатами: 7°30’ южной широты и 303°восточной долготы. Район посадки — область Фебы (Phoebe Regio). Место посадки спускаемого аппарата «Венеры-13» находится в 950 километрах к северо-востоку от места посадки спускаемого аппарата «Венеры-14».

Во время спуска СА прибор «Гроза-2» зафиксировал многочисленные электрические разряды. После посадки спускаемый аппарат «Венеры-13» передал панорамное изображение окружающего венерианского пейзажа. Камерой модуля было сделано 14 цветных и 8 черно-белых снимков поверхности планеты . В месте посадки обнаружены скальные породы, окружённые тёмной мелкозернистой почвой. С помощью автоматического бура были взяты образцы грунта, помещённые затем для исследования в специальную камеру внутри аппарата. В ней поддерживалось давление 0,05 атмосферы и температура 30°C. Впервые в мировой космонавтике химический состав образцов грунта исследовался рентгеновским флуоресцентным спектрометром, всего принято 40 спектров и установлено количество основных элементов в пробе, как оказалось, порода в месте посадки — лейцитовый щелочной базальт . Также СА имел микрофон, хотя на телеметрию сигнал поступал в продетектированном виде, т. е. передавалась только огибающая . Спускаемый аппарат действовал в течение 127 минут (запланированное время действия было 32 минуты) в окружающей среде с температурой 456 °C и давлением 92 земных атмосферы.

Состав научной аппаратуры

На «Венере-13» были установлены приборы, сконструированные советскими, австрийскими и французскими специалистами.

Через пять суток после старта «Венеры-13» была запущена АМС «Венера-14». В 1981 году было благоприятное взаимное расположение Земли и Венеры для запуска космических кораблей.

Через четыре месяца «Венера-13» достигла планеты Венера. От АМС отделился спускаемый аппарат, который 1 марта 1982года совершил мягкую посадку на поверхности Венеры. «Венера-13» продолжила полёт по гелиоцентрической орбите.

В результате торможения спускаемый аппарат вошёл в атмосферу Венеры, его скорость снизилась до скорости звука. после этого был раскрыт тормозной парашют. На высоте 47 километров над поверхностью парашют был отстёгнут и спускаемый аппарат продолжил спуск, используя аэродинамическое торможение. Спускаемый аппарат «Венеры-13» совершил посадку на планету в точке с координатами: 7°30’ южной широты и 303°восточной долготы. Район посадки— область Фебы (Phoebe Regio). Место посадки спускаемого аппарата «Венеры-13» находится в 950 километрах к северо-востоку от места посадки спускаемого аппарата «Венеры-14».

После посадки спускаемый аппарат «Венеры-13» передал панорамное изображение окружающего венерианского пейзажа. В месте посадки обнаружены скальные породы, окружённые тёмной мелкозернистой почвой. С помощью автоматического бура были взяты образцы грунта, помещённые затем для исследования в специальную камеру внутри аппарата. В ней поддерживалось давление 0,05 атмосферы и температура 30°C. Химический состав образцов грунта исследовался рентгеновским флуоресцентным спектрометром.

На «Венере-13» было установлено звукозаписывающее устройство, которое зафиксировало звук грома. Это была первая запись звука на другой планете.

Спускаемый аппарат действовал в течение 127 минут (запланированное время действия было 32 минуты) в окружающей среде с температурой 457°C и давлением 93 земных атмосферы.

Источники: stihi.ru, j-times.ru, gruzdoff.ru, dic.academic.ru, proza.ru

Леса гигантской секвойи

Каменные шары Коста-Рики

Тир - финикийский город

Тонги – радикальные организации Китая

Камни Ики

Контакт с инопланетной цивилизацией

Современная уфология располагает множеством фактов и эпизодов контактов человека с представителями Внеземных Цивилизации. Как классифицируются и подразделяются контакты с инопланетянами...

Самый быстрый в мире бронированный электромобиль

Компания под названием Armormax из Соединённых Штатов разработала пуленепробиваемый вариант седана от бренда по имени Tesla под названием Model ...

США - Большой каньон

Соединенные штаты Америки - страна, богатая удивительными природными достопримечательностями. Буйные леса, огромные озера, величественные пустыни, Скалистые горы и множество национальных природных...

Цивилизация атлантов владела знаниями не только технологического характера. Есть основания считать, что повсеместное распространение получила оккультная практика и связь...

Изготовление визиток

В среде бизнеса давно пришли к пониманию, что оказание типографских услуг - неплохой способ заработка. Особое место в этой сфере заннимает изготовление...

Самые страшные аттракционы

Казалось бы, аттракционы являются развлечением, от которого принято получать удовольствие. Однако каждому человеку - свое удовольствие. Приведенные ниже аттракционы считаются самыми...

Финикийский город Сидон

Финикия занимала важнейшее место в древнем мире. Это государство простиралось от Египта до Междуречья, выгодно расположившись на восточном берегу...

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Венера-13
Автоматическая межпланетная станция «Венера-13»
Заказчик

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Оператор

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Задачи
Ракета-носитель
Стартовая площадка
Длительность полёта

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Сход с орбиты

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

NSSDC ID

Ошибка выражения: неожидаемый оператор <

SCN
Стоимость

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Технические характеристики
Платформа

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Масса
Размеры

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Диаметр

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Мощность

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Источники питания

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ориентация

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Движитель

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Срок активного существования

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Тип орбиты

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Точка стояния

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Большая полуось

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Эксцентриситет

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Наклонение

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Период обращения

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Апоцентр

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Перицентр

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Интервал повторения

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Витков за день

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Опорная система

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Высота орбиты

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Повторение орбиты

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Полоса обзора

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Пересечение экватора

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Посадка на небесное тело
Координаты посадки

7°30′ ю. ш. 303°00′ в. д.  /  7.5° ю. ш. 303° в. д.  / -7.5; 303

Взлёт с небесного тела

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Возвращение на Землю

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Транспондеры

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Площадь покрытия

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Пространственное разрешение

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Полоса захвата

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Спектральная полоса

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Скорость передачи

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Бортовая память

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Разрешение изображения

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Старт АМС «Венера-13» был осуществлён 30 октября 1981 года в 06:04:00 UTC с космодрома Байконур , с помощью ракеты-носителя «Протон» .

Состав научной аппаратуры

Общая масса КА «Венера-13» составляла 4397,85 кг. Масса спускаемого аппарата - 1643,72 кг, масса посадочного аппарата на поверхности Венеры - 750 кг .

На «Венере-13» были установлены приборы, сконструированные советскими, австрийскими и французскими специалистами. Всего на станции было установлено 14 научных приборов, в частности:

Полёт

В 1981 году было благоприятное взаимное расположение Земли и Венеры для запуска космических аппаратов. Через пять суток после старта «Венеры-13» была запущена АМС «Венера-14 ».

Через четыре месяца «Венера-13» достигла планеты Венера. От АМС отделился спускаемый аппарат, который 1 марта 1982 года совершил мягкую посадку на поверхности Венеры. «Венера-13» продолжила полёт по гелиоцентрической орбите.

В результате торможения спускаемый аппарат вошёл в атмосферу Венеры , его скорость снизилась до скорости звука , после этого был раскрыт тормозной парашют . На высоте 47 километров над поверхностью парашют был отстёгнут и спускаемый аппарат продолжил спуск, используя аэродинамическое торможение. Спускаемый аппарат «Венеры-13» совершил посадку на планету в точке с координатами: Район посадки - область Фебы (Phoebe Regio). Место посадки спускаемого аппарата «Венеры-13» находится в 950 километрах к северо-востоку от места посадки спускаемого аппарата «Венеры-14».

Во время спуска СА прибор «Гроза-2» зафиксировал многочисленные электрические разряды. После посадки спускаемый аппарат «Венеры-13» передал панорамное изображение окружающего венерианского пейзажа. Камерой модуля было сделано 14 цветных и 8 черно-белых снимков поверхности планеты . В месте посадки обнаружены скальные породы, окружённые тёмной мелкозернистой почвой. С помощью автоматического бура были взяты образцы грунта, помещённые затем для исследования в специальную камеру внутри аппарата. В ней поддерживалось давление 0,05 атмосферы и температура 30°C . Впервые в мировой космонавтике химический состав образцов грунта исследовался рентгеновским флуоресцентным спектрометром, всего принято 40 спектров и установлено количество основных элементов в пробе, как оказалось, порода в месте посадки - лейцитовый щелочной базальт . Также СА имел микрофон, хотя на телеметрию сигнал поступал в продетектированном виде, т. е. передавалась только огибающая . Спускаемый аппарат действовал в течение 127 минут (запланированное время действия было 32 минуты) , здесь следует отметить, что средняя температура на поверхности Венеры составляет 740 (466,85 °C), а давление - 95,6 бар .

Фотогалерея

Также существуют любительские обработанные снимки, созданные из исходников фотографий станции и обработанные уже на современных компьютерах . Особенно можно отметить работы по восстановлению снимков американцем Доном Митчелом, который с помощью российского астронома Владимира Курта каталогизировал советскую программу "Венера" .

См. также

  • Список космических аппаратов с рентгеновскими и гамма-детекторами на борту

Напишите отзыв о статье "Венера-13"

Примечания

Ссылки

  • Mark Wade. . astronautix.com. Проверено 6 июня 2010. .


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: