ARM процессор - мобильный процессор для смартфонов и планшетов. Процессоры ARM против x86: будет ли схватка

Британская корпорация ARM усовершенствовала гетерогенную вычислительную архитектуру ARM big.LITTLE , на которой основаны все ведущие микропроцессоры ARM начиная с Cortex-A7 (2011 год) - и вчера представила новую гетерогенную архитектуру DynamIQ big.LITTLE . На микросхемах выделено место для специальных аппаратных ускорителей приложений машинного обучения. Возможно, в будущем аппаратная поддержка нейросетей станет новым трендом среди разработчиков микропроцессоров и неотъемлемым качеством новых смартфонов.

Особенность архитектуры ARM big.LITTLE состоит в наличии процессорных ядер двух типов: относительно медленных, энергоэффективных (LITTLE) и относительно мощных и прожорливых (big). Обычно система активирует только один из двух типов ядер: только большие или только маленькие. Понятно, что фоновые задачи на смартфоне или другом устройстве удобно решать с маленькими ядрами, которые потребляют очень мало энергии. В случае необходимости процессор активирует мощные прожорливые ядра, которые в многопоточном режиме, работая сообща, демонстрируют особенно высокую производительность. В принципе, у всех ядер есть доступ к общей памяти, так что задачи можно ставить для выполнения на обоих типах ядер одновременно. То есть большие и маленькие будут переключаться на лету.

Подобная гетерогенная архитектура и переключение задач на лету с одного типа ядер на другой задуманы для создания динамического изменения мощности и энергопотребления процессора. Сама ARM заявляла, что в некоторых задачах та архитектура экономит до 75% энергии.

DynamIQ big.LITTLE - это эволюционный шаг вперёд. Новая архитектура позволяет задействовать разнообразные сочетания больших и малых ядер, которые раньше не были возможны. Например, 1+3, 2+4 или 1+7, или даже 2+4+2 (ядра трёх разных мощностей). Типичный смартфон будущего может иметь восьмиядерную систему на кристалле с двумя мощными ядрами, четырьмя средними и двумя низкопроизводительными ядрами для фонового режима.

С аппаратной поддержкой машинного обучения и ИИ разработчикам станут доступны новые специальные процессорные инструкции (например, вычисления с ограниченной точностью). ARM обещает , что в следующие три-пять лет процессоры Cortex-A на новой архитектуре обеспечат до 50-кратной прибавки производительности в приложениях ИИ, в сравнении с нынешними системами на базе Cortex-A73 и ещё дополнительную прибавку за счёт встроенных ускорителей на микросхеме. Специальный порт доступа с низкой задержкой между ЦП и акселераторами имеет 10-кратную производительность.

Это означает, что на смартфонах будут гораздо лучше работать обученные нейросети, в том числе которые обсчитывают графику и видео, приложения компьютерного зрения и другие системы, которые обрабатывают большие потоки данных.

В каждом кластере может располагаться до восьми ядер разных характеристик. Это тоже можно использовать для ускорения приложений ИИ, по сравнению с нынешними системами. К тому же, переработанная подсистема памяти обеспечит более быстрый доступ к данным и улучшит энергоэффективность. Кстати, в кластеры ядер необязательно вообще включать ядра LITTLE со слабой производительностью, которые обычно используются в мобильных устройствах для сбережения заряда аккумулятора. Если вам нужна очень высокая производительность независимо от энергопотребления - никто не мешает делать кластеры из восьми больших ядер, и объединять их в особо мощные компьютерные системы. ARM считает, что это позволит расширить сферу применения процессоров ARM за пределы смартфонов.

Кластеры DynamIQ практически неограниченного масштаба с общей памятью - это предложение создавать мощнейшие вычислительные системы самого разного назначения.

Дополнительную гибкость в динамической подстройке мощности/энергопотребления даст функция индивидуального изменения тактовой частоты отдельных процессоров в кластере из множества процессоров ARM. Разработчики из Кембриджа считают, что это особенно важно в шлемах виртуальной реальности, которые длительные периоды времени находятся в состоянии низкого энергопотребления. Переходы процессора в одно из трёх энергетических состояний (ON, OFF, SLEEP) осуществляются гораздо быстрее, автоматически на аппаратном уровне.

В конце концов, продвинутая архитектура DynamIQ позволяет строить более надёжные системы с дублированием функций, что повышает уровень безопасности в автономных системах, которым нужно реагировать на сбои. Например, это системы компьютерного зрения в беспилотных автомобилях - Advanced Driver Assistance Systems (ADAS). Когда один кластер ядер выходит из строя или ускоритель сбоит - другой кластер автоматически берёт его функции на себя.

Процессорную архитектуру ARM применяют по лицензии в своих чипах многие производители, в том числе Samsung, Qualcomm, Nvidia, Intel и Apple (iPhone, iPad). Между 2013 и 2017 годами в мире было продано более 50 млрд микрочипов на архитектуре ARM, и английские разработчики надеются, что в ближайшие четыре года это число удвоится до более 100 млрд.

Большинство устройств на процессорах ARM не нуждаются в активном охлаждении. Компания уверена, что с увеличением мощности этих систем и переходе на архитектуру DynamIQ всё останется по-прежнему.

Про ARM-архитектуру слышал каждый, кто интересуется мобильными технологиями. При этом для большинства людей это ассоциируется с процессорами планшетов или смартфонов. Другие же поправляют их, уточняя, что это не сам камень, а лишь его архитектура. Но практически никто из них уж точно не интересовался, откуда и собственно когда возникла эта технология.

А между тем данная технология широко распространена среди многочисленных современных гаджетов, которых с каждым годом становится все больше и больше. К тому же на пути развития компании, которая занялась разработкой ARM-процессоров, есть один интересный случай, о котором не грех упомянуть, возможно, для кого-то он станет уроком на будущее.

ARM-архитектура для чайников

Под аббревиатурой ARM скрывается довольно успешная британская компания ARM Limited в области IT-технологий. Расшифровывается она как Advanced RISC Machines и является одним из крупных мировых разработчиков и лицензиаров 32-разрядной архитектуры RISC-процессоров, которыми оснащается большинство портативных устройств.

Но, что характерно, сама компания не занимается производством микропроцессоров, а лишь разрабатывает и лицензирует свою технологию другим сторонам. В частности ARM-архитектура микроконтролеров закупается такими производителями:

  • Atmel.
  • Cirrus Logic.
  • Intel.
  • Apple.
  • nVidia.
  • HiSilicon.
  • Marvell.
  • Samsung.
  • Qualcomm.
  • Sony Ericsson.
  • Texas Instruments.
  • Broadcom.

Некоторые из них известны широкой аудитории потребителей цифровых гаджетов. По заверениям британской корпорации ARM, общая численность произведенных по их технологии микропроцессоров - более 2,5 миллиарда. Существует несколько серий мобильных камней:

  • ARM7 - тактовая частота 60-72 МГц, что актуально для мобильных бюджетных телефонов.
  • ARM9/ ARM9E - частота уже более высокая около 200 МГц. Такими микропроцессорами оснащаются более функциональные смартфоны и карманные компьютеры (КПК).

Cortex и ARM11 являются уже более современными семействами микропроцессоров в сравнении с прошлой архитектурой микроконтроллеров ARM, с тактовой частотой до 1 ГГц и расширенными возможностями обработки цифровых сигналов.

Популярные микропроцессоры xScale от компании Marvell (до середины лета 2007 года проект находился в распоряжении Intel) на самом деле представляют собой расширенный вариант архитектуры ARM9, дополненный набором инструкций Wireless MMX. Данное решение от Intel было ориентировано на поддержку мультимедийных приложений.

ARM-технология относится к 32-битной микропроцессорной архитектуре, содержащая сокращенный набор команд, что именуется как RISC. По проведенным подсчетам, применение процессоров ARM - это 82% от всего количества производимых RISC-процессоров, что говорит о довольно широкой зоне охвата 32-битных систем.

Многие электронные устройства оснащаются ARM-архитектурой процессора, и это не только PDA и сотовые телефоны, но и портативные игровые консоли, калькуляторы, компьютерная периферия, сетевое оборудование и многое другое.

Небольшое путешествие назад в прошлое

Отправимся на воображаемой машине времени на несколько лет назад и попробуем разобраться, с чего же все начиналось. Можно с уверенностью сказать, что компания ARM - это, скорее, монополист в своей области. И это подтверждается тем, что подавляющее большинство смартфонов и прочих электронных цифровых устройств работают под управлением микропроцессоров, созданных по данной архитектуре.

В 1980 году была основана компания Acorn Computers, которая начала создавать персональные компьютеры. Поэтому ранее ARM была представлена как Acorn RISC Machines.

Год спустя на суд потребителей была представлена домашняя версия ПК BBC Micro с самой первой ARM-архитектурой процессора. Это был успех, тем не менее чип не справлялся с графическими задачами, а прочие варианты в лице процессоров Motorola 68000 и National Semiconductor 32016 тоже не годились для этого.

Тогда руководство компании задумалось над созданием своего микропроцессора. Инженеров заинтересовала новая процессорная архитектура, придуманная выпускниками местного университета. В ней как раз использовался сокращенный набор команд, или RISC. И после появления первого компьютера, который управлялся процессором Acorn Risc Machine, успех пришел довольно быстро - в 1990 году между британским брендом и Apple был заключен договор. Это положило началу разработки нового чипсета, что, в свою очередь, привело к образованию целой команды разработчиков, именуемой как Advanced RISC Machines, или ARM.

Начиная с 1998 года, компания сменила название на ARM Limited. И теперь специалисты не занимаются производством и реализацией ARM-архитектуры. Что это дало? На развитии компании это никоим образом не сказалось, хоть основным и единственным направлением компании стала разработка технологий, а также продажа лицензий сторонним фирмам, чтобы те могли пользоваться процессорной архитектурой. При этом некоторые компании приобретают права на готовые ядра, другие же по приобретенной лицензии оснащают процессоры своими ядрами.

Согласно некоторым данным заработок компании на каждом подобном решении составляет 0,067 $. Но эти сведения усредненные и устаревшие. Ежегодно количество ядер в чипсетах растет, соответственно и себестоимость современных процессоров превосходит старые образцы.

Область применения

Именно развитие мобильных устройств и принесло компании ARM Limited огромную популярность. А когда производство смартфонов и прочих портативных электронных устройств приобрело массовый характер, энергоэффективным процессорам тут же нашлось применение. Вот интересно, а есть ли linux на arm-архитектуре?

Кульминационный период развития компании ARM приходится на 2007 год, когда были возобновлены партнерские отношения с брендом Apple. После этого на суд потребителей был представлен первый iPhone на базе ARM процессора. Начиная с этого времени подобная процессорная архитектура стала неизменной составляющей практически любого выпускаемого смартфона, которые только можно найти на современном мобильном рынке.

Можно сказать, что практически каждое современное электронное устройство, которое нуждается в управлении процессором, так или иначе оснащенном чипами ARM. А тот факт, что такая процессорная архитектура поддерживает многие операционные системы, будь то Linux, Android, iOS, и Windows, является неоспоримым преимуществом. Среди них числиться и Windows embedded CE 6.0 Core, архитектура arm тоже ею поддерживается. Данная платформа рассчитана на наладонные компьютеры, мобильные телефоны и встраиваемые системы.

Отличительные особенности x86 и ARM

Многие пользователи, которые наслышаны о ARM и x86, немного путают эти две архитектуры между собой. А между тем у них есть определенные различия. Существует два основных типа архитектур:

  • CISC (Complex Instruction Set Computing).
  • Computing).

К CISC относятся процессоры x86 (Intel либо AMD), к RISC, как уже можно понять, семейство ARM. У архитектуры x86, и arm есть свои почитатели. Благодаря стараниям специалистов ARM, которые делали упор на энергоэффективность и использование простого набора инструкций, процессоры сильно выиграли от этого - мобильный рынок начал стремительно развиваться, а многие смартфоны практически почти приравнялись с возможностями компьютеров.

В свою очередь Intel всегда славилась выпуском процессоров с высокой производительностью и пропускной способностью для настольных ПК, ноутбуков, серверов и даже суперкомпьютеров.

Эти два семейства по-своему завоевывали сердца пользователей. Но в чем их различие? Отличительных признаков или даже особенностей несколько, разберем наиболее важные из них.

Мощность обработки

Начнем разбор различий архитектур ARM и x86 с этого параметра. Особенность профессоров RISC заключается в использовании как можно меньшего количества инструкций. Причем они должны быть максимально простыми, что наделяет их преимуществами не только для инженеров, но и разработчиков программного обеспечения.

Философия здесь несложная - если инструкция простая, то для нужной схемы не нужно слишком большое количество транзисторов. Как результат, освобождается дополнительное пространство для чего-либо или же размеры чипов становятся меньше. По этой причине микропроцессоры ARM стали объединять в себе периферийные устройства, вроде графических процессоров. Показательный пример - компьютер Raspberry Pi, у которого минимальное количество компонентов.

Однако простота инструкций обходится дорого. Чтобы выполнять те или иные задачи необходимы дополнительные инструкции, что обычно приводит к росту потребления памяти и времени на выполнение задач.

В отличие от arm-архитектуры процесора инструкции чипов CISC, коими являются решения от Intel, могут выполнять сложные задачи с большой гибкостью. Иными словами, машины на базе RISC производят операции между регистрами, и обычно требуется, чтобы программа загружала переменные в регистр, перед выполнением операции. Процессоры CISC способны на выполнение операций несколькими способами:

  • между регистрами;
  • между регистром и местом памяти;
  • между ячейками памяти.

Но это лишь часть отличительных особенностей, перейдем к разбору других признаков.

Потребляемая мощность

В зависимости от типа устройства потребляемая мощность может иметь разную степень значимости. Для той системы, которая подключена к постоянному источнику питания (электросеть) ограничения потребления энергии попросту нет. Однако мобильные телефоны и прочие электронные гаджеты в полной мере зависят от управления питанием.

Еще одно различие архитектуры arm и x86 в том, что у первой энергопотребление меньше чем 5 Вт, включая многие сопутствующие пакеты: графические процессоры, периферийные устройства, память. Такая малая мощность обусловлена меньшей численностью транзисторов в совокупности с относительно низкими скоростями (если провести параллель с процессорами для настольных ПК). В то же время это нашло отпечаток на производительности - для выполнения сложных операций требуется больше времени.

Ядра Intel отличаются сложность структурой и в силу этого потребление энергии у них существенно выше. К примеру, процессор Intel I-7 с высокой производительностью потребляет около 130 Вт энергии, мобильные версии - 6-30 Вт.

Программное обеспечение

Проводить сравнение по этому параметру довольно трудно, поскольку оба бренда очень популярны в своих кругах. Устройства, которые основываются на процессорах arm-архитектуры, прекрасно работают с мобильными операционными системами (Android и прочее).

Машины под управлением процессоров от Intel способны работать с платформами наподобие Windows и Linux. К тому же оба семейства микропроцессоров дружат с приложениями, написанными на языке Java.

Разбирая различия архитектур, можно однозначно сказать одно - процессоры ARM главным образом управляют энергопотреблением мобильных устройств. Задача же настольных решений большего всего заключается в обеспечении высокой производительности.

Новые достижения

Компания ARM за счет ведения грамотной политики, полностью прибрала к рукам мобильный рынок. Но в дальнейшем она не собирается останавливаться на достигнутом. Не так давно была представлена новая разработка ядер: Cortex-A53, и Cortex-A57, в которых было проведено одно важное обновление - поддержка 64-битных вычислений.

Ядро A53 является прямым последователем ARM Cortex-A8, у которого хоть и была не очень высокая производительность, но энергопотребление на минимальном уровне. Как отмечают специалисты, у архитектуры энергопотребление снижено в 4 раза, а по производительности она не будет уступать ядру Cortex-A9. И это притом, что площадь ядра A53 на 40% меньше, чем у A9.

Ядро A57 придет на замену Cortex-A9 и Cortex-A15. При этом инженеры ARM заявляют о феноменальном приросте производительности - в три раза выше, чем у ядра A15. Иными словами микропроцессор A57 будет в 6 раз быстрее Cortex-A9, а его энергоэффективность будет в 5 раз лучше, чем у A15.

Если подытожить, то серия cortex, а именно более совершенная a53, отличается от своих предшественников более высокой производительностью на фоне не менее высокой энергоэффективности. Даже процессоры Cortex-A7, которые ставятся на большинство смартфонов, не выдерживают конкуренции!

Но что более ценно это то, что архитектура arm cortex a53 - это та составляющая, которая позволит избежать проблем, связанных с нехваткой памяти. К тому же и устройство будет медленнее разряжать батарею. Благодаря новинке эти проблемы теперь останутся в далеком прошлом.

Графические решения

Помимо разработки процессоров, компания ARM трудится над воплощением графических ускорителей серии Mali. И самый первый из них - это Mali 55. Этим ускорителем оснастили телефон LG Renoir. И да, это самый обычный мобильник. Только в нем GPU отвечала не за игры, а лишь отрисовывал интерфейс, ведь если судить по современным меркам, графический процессор отличается примитивными возможностями.

Но прогресс неумолимо летит вперед и поэтому, чтобы идти в ногу со временем, у компании ARM есть и более совершенные модели, которые актуальны для смартфонов средней ценовой категории. Речь идет о распространенных GPU Mali-400 MP и Mali-450 MP. Хоть у них и небольшая производительность и ограниченный набор API, это не мешает им находить применение в современных мобильных моделях. Яркий пример - телефон Zopo ZP998, в котором восьмиядерный чип MTK6592 работает в паре с графическим ускорителем Mali-450 MP4.

Конкурентоспособность

В настоящее время компании ARM пока еще никто не противостоит и главным образом это обусловлено тем, что в свое время было принято верное решение. Но когда-то давно еще в начале своего пути команда разработчиков трудилась над созданием процессоров для ПК и даже предприняла попытку конкурировать с таким гигантом как Intel. Но даже после того, как направление деятельности было сменено, компании приходилось тяжело.

А когда всемирно известный компьютерный бренд Microsoft заключил договор с Intel, у остальных производителей просто не было шансов - операционная система Windows отказывалась работать с процессорами ARM. Как тут не удержаться от использования эмуляторов gcam на архитектуру arm?! Что касательно компании Intel, то наблюдая волну успеха ARM Limited, тоже попыталась создать процессор, который бы составил достойную конкуренцию. Для этого широкой публике был предоставлен чип Intel Atom. Но заняло это намного больший промежуток времени, чем у ARM Limited. И в производство чип ушел лишь в 2011 году, но драгоценное время было уже потеряно.

По сути, Intel Atom - это CISC-процессор с архитектурой x86. Специалистам удалось добиться более низкого энергопотребления, чем в ARM решениях. Тем не менее весь тот софт, который выходит под мобильные платформы, плохо адаптирован к архитектуре x86.

В конечном итоге компания признала полную повальность принятого решения и в дальнейшем отказалась от производства процессоров под мобильные устройства. Единственный крупный производитель чипов Intel Atom - это компания ASUS. В то же время эти процессоры не канули в лету, ими в массовом порядке оснащали нетбуки, неттопы и прочие портативные устройства.

Однако существует вероятность, что ситуация изменится и любимая всеми операционная система Windows станет поддерживать микропроцессоры ARM. К тому же шаги в этом направлении делаются, может и правда появятся что-то наподобие эмуляторов gcam на ARM-архитектуру для мобильных решений?! Кто знает, время покажет и все расставит по местам.

В истории развития компании ARM есть один интересный момент (в самом начале статьи именно он имелся ввиду). Когда-то в основе ARM Limited находилась компания Apple и вероятно, что вся технология ARM принадлежала бы именно ей. Однако судьба распорядилась иначе - в 1998 году Apple находилась в кризисном положении, и руководство было вынуждено продать свою долю. В настоящее время она находится наравне с прочими производителями и остается для своих устройств iPhone и iPad закупать технологии у ARM Limited. Кто же мог знать, как все может обернуться?!

Современные процессоры ARM способны выполнять боле сложные операции. А в ближайшем будущем руководство компании нацелилось выйти на серверный рынок, в чем она, несомненно, заинтересована. К тому же в наше современное время, когда близится эпоха развития интернет вещей (IoT), в числе которых и «умные» бытовые приборы, можно прогнозировать еще большую востребованность чипов с ARM-архитектурой.

Так что у компании ARM Limited впереди далеко не беспросветное будущее! И вряд ли в ближайшее время найдется кто-нибудь, кто может потеснить такого, вне всякого сомнения, мобильного гиганта по разработке процессоров для смартфонов и прочих подобных электронных устройств.

В качестве заключения

Процессоры ARM довольно быстро захватили рынок мобильных устройств и все благодаря низкому энергопотреблению и пусть не очень высокой, но все же, хорошей производительности. В настоящее время положению дел у компании ARM можно только позавидовать. Многие производители пользуются ее технологиями, что ставит Advanced RISC Machines наравне с такими гигантами в области разработок процессоров как Intel и AMD. И это притом, что компания не имеет собственного производства.

Какое-то время конкурентом мобильного бренда была компания MIPS с одноименной архитектурой. Но в настоящее время есть пока единственный серьезный конкурент в лице корпорации Intel, правда ее руководство не считает, что arm-архитектура может представлять угрозу для ее рыночной доли.

Также, по мнению специалистов из Intel, процессоры ARM не способны обеспечить запуск настольных версий операционных систем. Однако такое заявление звучит немного нелогично, ведь владельцы ультрамобильных ПК не пользуются «тяжеловесным» программным обеспечением. В большинстве случаев нужен выход в сеть интернет, редактирование документов, прослушивание медиафайлов (музыка, кино) и прочие несложные задачи. А ARM решения прекрасно справляются с такими операциями.

Недавно сама постановка вопроса казалась немыслимой, но развитие технологий и причуды рынка привели к ситуации, когда возможна самая настоящая конкуренция.

Совсем недавно сама постановка вопроса казалась немыслимой: можно ли вообще сравнивать "телефонный" процессор с чипами, применяющимися в "персоналках", серверах и даже суперкомпьютерах? Между тем, развитие технологий и причуды рынка привели к ситуации, когда специалисты всерьёз обсуждают возможность даже не просто конкуренции между процессорами ARM и чипами x86, а яростной схватки между ними.

Прежде всего, определимся с понятиями и познакомимся с потенциальными соперниками.

Центральные процессоры x86 – это микропроцессоры, поддерживающие одноимённый набор инструкций и обладающие микроархитектурой, производной от IA-32, то есть Intel Architecture 32-бит. Чипы построены на основе архитектуры CISC (Complex Instruction Set Computing, то есть "с полным набором инструкций"), в которой каждая инструкция может выполнять сразу несколько низкоуровневых операций.

Исторически семейство x86 восходит к 16-разрядной модели Intel 8086, выпущенной в 1978 году. 32-битными эти процессоры стали лишь в 1985 году, когда был представлен первый "триста восемьдесят шестой". В 1989 году Intel выпустила первый скалярный (то есть выполняющий одну операцию за один такт) чип i486 (80486), в котором впервые появились встроенная кэш-память и блок вычислений с плавающей запятой FPU. Процессоры Pentium, представленные в 1993 году, стали первыми суперскалярными (то есть выполняющими несколько операций за такт) и суперконвейерными (в этих чипах было два конвейера).

Итак, современные x86-совместимые чипы – это суперскалярные суперконвейерные микропроцессоры, построенные на основе CISC-архитектуры.

ARM-процессоры – 32-битные чипы на базе архитектуры RISC (Reduced Instruction Set Computer), то есть с сокращённым набором команд. В основу этой архитектуры положена идея повышения быстродействия за счёт максимального упрощения инструкций и ограничения их длины.

История ARM-процессоров началась в том же 1978 году, когда была создана британская компания Acorn Computers. Под маркой Acorn выпускались несколько чрезвычайно популярных на местном рынке моделей персональных компьютеров на основе восьмибитных чипов MOS Tech 6502. Этот же ЦП, кстати, стоял в Apple I и II и Commodore PET.

Однако с появлением более совершенной модели 6510, которая в 1982 году стала устанавливаться в Commodore 64, линейка компьютеров Acorn, включая популярнейший образовательный BBC Micro, потеряла актуальность. Это подтолкнуло владельцев Acorn к созданию собственного процессора на базе архитектуры 6502, который позволил бы на равных конкурировать с машинами класса IBM PC.

Первая серийная модель ARM2, разработанная в рамках проекта Acorn RISC Machine, была выпущена в 1986 году и стала самым конструктивно простым и недорогим 32-битным процессором на тот момент: в нём отсутствовала не только кэш-память, что было нормой для чипов того времени, но и микропрограммы: в отличие от CISC-процессоров, микрокод исполнялся как и любой другой машинный код, путём преобразования в простые инструкции. Кристалл ARM2 состоял из 30000 транзисторов, и эта компактность конструкции осталась характерным признаком этого семейства: в ARM6 всего на 5000 транзисторов больше.

В отличие от Intel или AMD, ARM сама не занимается выпуском процессоров, предпочитая продавать лицензии другим. Среди компаний, располагающих такими лицензиями, есть те же Intel и AMD, а также VIA Technologies, IBM, NVIDIA, Nintendo, Texas Instruments, Freescale, Qualcomm и Samsung. Показательный факт: если AMD, вторая компания на рынке x86-процессоров, в 2009 году отметила выпуск своего 500-миллионного ЦП, то в одном только 2009 году на рынок было поставлено почти три миллиарда ARM-процессоров!

Современные ARM-процессоры – это суперскалярные суперконвейерные микросхемы, построенные на основе RISC-архитектуры.

Судя по этим двум определением, чуть ли не единственное формальное отличие семейств ARM и x86 – микроархитектуры RISC и CISC. Однако и это уже нельзя считать принципиальным отличием: начиная с модификации i486DX, x86-чипы стали больше напоминать RISC-процессоры. Начиная с этого поколения, микросхемы, сохраняя совместимость со всеми предыдущими наборами команд, демонстрируют максимальную производительность только с ограниченным набором простых инструкций, который подозрительно похож на набор RISC-команд. Поэтому сегодняшние x86 можно смело считать CISC-процессорами с RISC-ядрами: встроенный в микросхему аппаратный транслятор декодирует сложные CISC-инструкции в набор простых внутренних RISC-команд. Даже несмотря на то, что каждая CISC-инструкция может "раскладываться" на несколько RISC-команд, быстрота выполнения последних обеспечивает значительный прирост производительности. К тому же, не следует забывать о суперскалярности и суперконвейерности современных чипов.

Куда важнее другое отличие: львиная доля x86 – это универсальные процессоры, "обвешанные" множеством разнообразных блоков и модулей, которые призваны успешно справляться практически с любыми задачами – от веб-сёрфинга и обработки текстовых файлов до кодирования видео высокого разрешения и работы с трёхмерной графикой. У ARM-чипов, ориентированных на использование в смартфонах и прочих портативных устройствах, совершенно иные цели и возможности.

Тогда что же делить столь разным продуктам? Конечно, нелепо сравнивать четырёхъядерный Core i5 и "телефонный" Qualcomm MSM7201A, стоящий в коммуникаторах HTC Dream и Hero, но есть масштабы, где рынки ARM и i86 перекрываются уже сегодня. Это, с одной стороны, такие новейшие чипы ARM, как Cortex-A8 (архитектура ARMv7-A), а с другой – низковольтные x86-процессоры класса Intel Atom. На основе Cortex-A8 построен модный планшет Apple iPad, а Intel Atom работают в подавляющем большинстве нетбуков.

У этих чипов есть ещё одна важная общая особенность: оба этих процессора работают по принципу последовательного исполнения инструкций, в то время как большая часть x86 – процессоры с внеочередным выполнением команд. Эта схема призвана добиться максимальной производительности на ватт потребляемой энергии за счёт отказа от модулей, отвечающих за внеочередное выполнение инструкций.

Есть у Atom и несколько принципиальных отличий от Cortex-A8. Прежде всего, практически все микросхемы этого семейства поддерживают технологию параллельных вычислений Hyper-Threading, которая позволяет представить одно физическое ядро как два виртуальных. Это весьма существенное преимущество, заметно повышающее производительность, причём не только в относительно редких до сих пор многопоточных приложениях, но и при выполнении команд с интенсивным использованием систем ввода-вывода. К примеру, Atom с Hyper-Threading заметно быстрее загружает Windows, чем сравнимый с ним по возможностям одноядерный VIA Nano без поддержки такого режима.

Практическое сравнение производительности Atom и Cortex-A8 провёл Вэн Смит, автор тестовых пакетов OpenSourceMark, miniBench и один из соавторов SiSoftware Sandra. Тестировались машины на базе процессоров Atom N450, Freescale i.MX515 (Cortex-A8), VIA Nano L3050 и, для сравнения, на основе мобильного Athlon XP-M на ядре Barton. Поскольку за точку отсчёта были приняты характеристики Cortex-A8 с тактовой частотой 800 МГц, рабочие частоты VIA Nano и Athon были снижены до того же значения, а Atom – до 1000 МГц (дальнейшее снижение оказалось невозможным). При этом у Cortex-A8 осталось несколько заведомо слабых мест: поддержка медленной 32-битной памяти DDR2-200 и более чем скромная встроенная графика с максимальным разрешением 1024 на 768 при шестнадцатибитной глубине цвета. Все тесты проводились на системах под управлением операционной системы Ubuntu 9.04 Linux.

Результаты тестирования оказались более чем любопытными: Cortex-A8 продемонстрировал вполне конкурентоспособную производительность в целочисленных вычислениях при значительно более низком энергопотреблении по сравнению с соперниками. Ожидаемо провальными оказались лишь тесты на пропускную способность памяти и на вычисления с плавающей запятой – традиционной "ахиллесовой пятой" ARM-чипов. В течение продолжительного времени в ARM-процессорах вообще отсутствовали модули FPU и хотя в Cortex-A8 есть два таких модуля (Neon 32-бит SP и VFP), их мощности явно недостаточно. Вычисления с плавающей запятой – это и трёхмерные игры, и научное моделирование, и некоторые виды обработки и кодирования видео и звука. Так что если производители процессоров ARM действительно нацелились на нишу нетбуков, неттопов и планшетников, им нужно существенно улучшить производительность FPU. С подробными результатами всех тестов можно ознакомиться здесь (http://www.brightsideofnews.com/news/2010/4/7/the-coming-war-arm-versus-x86.aspx).

Стоит ли нам ожидать схватки между столь разными и столь похожими семействами процессоров ARM и x86? Пока по производительности в массовых развлекательных приложениях "армы" существенно уступают даже "атомам". Однако перспективы внушают оптимизм: новейшая архитектура Cortex-A9 рассчитана на создание процессоров с одним-четырьмя ядрами и, как утверждают в ARM Limited, в них значительно улучшена производительность вычислений с плавающей запятой. Первые чипы на базе Cortex-A9 – NVIDIA Tegra 2 – это двухъядерные микросхемы с графическим ядром, поддерживающим видео формата Full HD 1080p и трёхмерную графику с программным интерфейсом OpenGL ES 2.0. Планшет или нетбук с такими характеристиками запросто поспорит с любым устройством на основе Atom. Добавим сюда исключительную экономичность, а значит, и длительное время автономной работы. Так что Apple iPad вполне может стать символом начала борьбы чипов ARM с x86-процессорами на их же собственном поле.

ARM процессор - мобильный процессор для смартфонов и планшетов.

В этой таблице представлены все известные на сегодняшний день ARM процессоры. Таблица ARM процессоров будет дополнятся и модернизироваться по мере появления новых моделей. В данной таблице используется условная система оценки производительности CPU и GPU. Данные о производительности ARM процессоров были взяты из самых разных источников, в основном исходя из результатов таких тестов, как: PassMark , Antutu , GFXBench .

Мы не претендуем на абсолютную точность. Абсолютно точно ранжировать и оценить производительность ARM процессоров невозможно, по той простой причине, что каждый из них, в чем-то имеет преимущества, а в чем-то отстает от других ARM процессоров. Таблица ARM процессоров позволяет увидеть, оценить и, главное, сравнить различные SoC (System-On-Chip) решения. Воспользовавшись нашей таблицей, Вы сможете сравнить мобильные процессора и достаточно точно узнать, как позиционируется ARM-сердце Вашего будущего (или настоящего) смартфона или планшета.

Вот мы провели сравнение ARM процессоров. Посмотрели и сравнили производительность CPU и GPU в различных SoC (System-оn-Chip). Но у читателя может возникнуть несколько вопросов: Где используются ARM процессора? Что такое ARM процессор? Чем отличается архитектура ARM от x86 процессоров? Попробуем разобраться во всем этом, не сильно углубляясь в подробности.

Для начала определимся с терминологией. ARM - это название архитектуры и одновременно название компании, ведущей ее разработку. Аббревиатура ARM расшифровывается как (Advanced RISC Machine или Acorn RISC Machine), что можно перевести как: усовершенствованная RISC-машина. ARM архитектура объединяет в себе семейство как 32, так и 64-разрядных микропроцессорных ядер, разработанных и лицензируемых компанией ARM Limited. Сразу хочется отметить, что компания ARM Limited занимается сугубо разработкой ядер и инструментария для них (средства отладки, компиляторы и т.д), но никак не производством самих процессоров. Компания ARM Limited продает лицензии на производство ARM процессоров сторонним фирмам. Вот неполный список компаний, получивших лицензию на производство ARM процессоров сегодня: AMD, Atmel, Altera, Cirrus Logic, Intel, Marvell, NXP, Samsung, LG, MediaTek, Qualcomm, Sony Ericsson, Texas Instruments, nVidia, Freescale ... и многие другие.

Некоторые компании, получившие лицензию на выпуск ARM процессоров, создают собственные варианты ядер на базе ARM архитектуры. Как пример можно назвать: DEC StrongARM, Freescale i.MX, Intel XScale, NVIDIA Tegra, ST-Ericsson Nomadik, Qualcomm Snapdragon, Texas Instruments OMAP, Samsung Hummingbird, LG H13, Apple A4/A5/A6 и HiSilicon K3.

На базе ARM процессоров сегодня работают фактически любая электроника: КПК, мобильные телефоны и смартфоны , цифровые плееры, портативные игровые консоли, калькуляторы, внешние жесткие диски и маршрутизаторы. Все они содержат в себе ARM-ядро, поэтому можно сказать, что ARM - мобильные процессоры для смартфонов и планшетов.

ARM процессор представляет из себя SoC , или "систему на чипе". SoC система, или "система на чипе", может содержать в одном кристалле, помимо самого CPU, и остальные части полноценного компьютера. Это и контроллер памяти, и контроллер портов ввода-вывода, и графическое ядро, и система геопозиционирования (GPS). В нем может находится и 3G модуль, а также многое другое.

Если рассматривать отдельное семейство ARM процессоров, допустим Cortex-A9 (или любое другое), нельзя сказать, что все процессоры одного семейства имеют одинаковую производительность или все снабжены GPS модулем. Все эти параметры сильно зависят от производителя чипа и того, что и как он решил реализовать в своем продукте.

Чем же отличается ARM от X86 процессоров ? Сама по себе RISC (Reduced Instruction Set Computer) архитектура подразумевает под собой уменьшенный набор команд. Что соответственно ведет к очень умеренному энергопотреблению. Ведь внутри любого ARM чипа находится гораздо меньше транзисторов, чем у его собрата из х86 линейки. Не забываем, что в SoC-системе все периферийные устройства находится внутри одной микросхемы, что позволяет ARM процессору быть еще более экономным в плане энергопотребления. ARM архитектура изначально была предназначена для вычисления только целочисленных операций, в отличии от х86, которые умеют работать с вычислениями с плавающей запятой или FPU. Нельзя однозначно сравнивать эти две архитектуры. В чем-то преимущество будет за ARM. А где-то и наоборот. Если попробовать ответить одной фразой на вопрос: в чем разница между ARMи X86 процессорами, то ответ будет таким: ARM процессор незнает того количества команд, которые знает х86 процессор. А те, что знает, выглядят гораздо короче. В этом его как плюсы, так и минусы. Как бы там ни было, в последнее время все говорит о том, что ARM процессора начинают медленно, но уверенно догонять, а кое в чем и перегонять обычные х86. Многие открыто заявляют о том, что в скором времени ARM процессоры заменят х86 платформу в сегменте домашних ПК. Как мы уже , в 2013 году уже несколько компаний с мировым именем полностью отказались от дальнейшего выпуска нетбуков в пользу планшетных пк. Ну а что будет на самом деле, время покажет.

Мы же будем отслеживать уже имеющиеся на рынке ARM процессоры.

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

ARM Limited

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

Ядра Cortex

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Perfomance Cortex-A53, Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

ARM big.LITTLE

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

big.LITTLE IKS (миграция между ядрами)

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

big.LITTLE MP (гетерогенный мультипроцессинг)

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании Mediatek — MT6592, который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Графические ускорители Mali

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).

А как вы думаете, сможет ли кто-нибудь потеснить ARM, и как дальше сложится судьба этой компании и её архитектуры?



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: