Понятие и виды трансляторов и компиляторов. Процесс компиляции разделяется на несколько этапов. Пусть V(u) - множество ситуаций, согласованных с u. Покажем, что функция V - индуктивна

Транслятор обычно выполняет также диагностику ошибок, форирует словари идентификаторов, выдаёт для печати тексты программы и т. д.

Трансляция программы - преобразование программы, представленной на одном из языков программирования , в программу на другом языке и, в определённом смысле, равносильную первой.

Язык, на котором представлена входная программа, называется исходным языком , а сама программа - исходным кодом . Выходной язык называется целевым языком или объектным кодом .

Понятие трансляции относится не только к языкам программирования, но и к другим компьютерным языкам , вроде языков разметки , аналогичных HTML , и к естественным языкам, вроде английского или русского . Однако данная статья только о языках программирования, о естественных языках см.: Перевод .

Виды трансляторов

  • Адресный . Функциональное устройство, преобразующее виртуальный адрес (Virtual address) в реальный адрес памяти (Memory address).
  • Диалоговый . Обеспечивает использование языка программирования в режиме разделения времени .
  • Многопроходной . Формирует объектный модуль за несколько просмотров исходной программы.
  • Обратный . То же, что детранслятор . См. также: декомпилятор , дизассемблер .
  • Однопроходной . Формирует объектный модуль за один последовательный просмотр исходной программы.
  • Оптимизирующий . Выполняет оптимизацию кода в создаваемом объектном модуле.
  • Синтаксически-ориентированный (синтаксически-управляемый) . Получает на вход описание синтаксиса и семантики языка и текст на описанном языке, который и транслируется в соответствии с заданным описанием.
  • Тестовый . Набор макрокоманд языка ассемблера , позволяющих задавать различные отладочные процедуры в программах, составленных на языке ассемблера.

Реализации

Цель трансляции - преобразовать текст с одного языка на другой, который понятен адресату текста. В случае программ-трансляторов, адресатом является техническое устройство (процессор) или программа-интерпретатор .

Можно привести ряд других примеров, в которых архитектура разработанных серий вычислительных машин базировалась или сильно зависела от некоторой модели структуры программы. Так, серия GE/Honeywell Multics основывалась на семантической модели выполнения программ, написанных на языке ПЛ/1 . В Шаблон:Не переведено B5500, B6700 … B7800 прототипом послужила модель программы этапа выполнения, написанной на расширенном языке Алгол . …

Процессор i432, подобно этим ранним архитектурам, также базируется на семантической модели структуры программы. Однако, в отличие от своих предшественников, i432 не основывается на модели некоторого конкретного языка программирования. Вместо этого, основной целью разработчиков было обеспечение непосредственной поддержки на этапе выполнения как для абстрактных данных (то есть программирование с абстрактными типами данных), так и для доменно-ориентированных операционных систем . …

Достоинство компилятора: программа компилируется один раз и при каждом выполнении не требуется дополнительных преобразований. Соответственно, не требуется наличие компилятора на целевой машине, для которой компилируется программа. Недостаток: отдельный этап компиляции замедляет написание и отладку и затрудняет исполнение небольших, несложных или разовых программ.

В случае, если исходный язык является языком ассемблера (низкоуровневым языком, близким к машинному языку), то компилятор такого языка называется ассемблером .

Противоположный метод реализации - когда программа исполняется с помощью интерпретатора вообще без трансляции. Интерпретатор программно моделирует машину, цикл выборки-исполнения которой работает с командами на языках высокого уровня, а не с машинными командами. Такое программное моделирование создаёт виртуальную машину , реализующую язык. Этот подход называется чистой интерпретацией . Чистая интерпретация применяется как правило для языков с простой структурой (например, АПЛ или Лисп). Интерпретаторы командной строки обрабатывают команды в скриптах в UNIX или в пакетных файлах (.bat) в MS-DOS также как правило в режиме чистой интерпретации.

Достоинство чистого интерпретатора: отсутствие промежуточных действий для трансляции упрощает реализацию интерпретатора и делает его удобнее в использовании, в том числе в диалоговом режиме. Недостаток - интерпретатор должен быть в наличии на целевой машине, где должна исполняться программа. А свойство чистого интерпретатора, что ошибки в интерпретируемой программе обнаруживаются только при попытке выполнения команды (или строки) с ошибкой, можно признать как недостатком, так и достоинством.

Существуют компромиссные между компиляцией и чистой интерпретацией варианты реализации языков программирования, когда интерпретатор перед исполнением программы транслирует её на промежуточный язык (например, в байт-код или p-код), более удобный для интерпретации (то есть речь идёт об интерпретаторе со встроенным транслятором). Такой метод называется смешанной реализацией . Примером смешанной реализации языка может служить Perl . Этот подход сочетает как достоинства компилятора и интерпретатора (бо́льшая скорость исполнения и удобство использования), так и недостатки (для трансляции и хранения программы на промежуточном языке требуются дополнительные ресурсы; для исполнения программы на целевой машине должен быть представлен интерпретатор). Также, как и в случае компилятора, смешанная реализация требует, чтобы перед исполнением исходный код не содержал ошибок (лексических, синтаксических и семантических).

По мере увеличения ресурсов компьютеров и расширения гетерогенных сетей (в том числе интернета), связывающих компьютеры разных типов и архитектур, выделился новый вид интерпретации, при котором исходный (или промежуточный) код компилируется в машинный код непосредственно во время исполнения, «на лету». Уже скомпилированные участки кода кешируются , чтобы при повторном обращении к ним они сразу получали управление, без перекомпиляции. Этот подход получил название динамической компиляции .

Достоинством динамической компиляции является то, что скорость интерпретации программ становится сравнимой со скоростью исполнения программ в обычных компилируемых языках, при этом сама программа хранится и распространяется в единственном виде, независимом от целевых платформ. Недостатком является бо́льшая сложность реализации и бо́льшие требования к ресурсам, чем в случае простых компиляторов или чистых интерпретаторов.

Этот метод хорошо подходит для

Для перевода с одного языка на другой программам, как и людям, требуется переводчик или, говоря по-научному, транслятор.

Транслятор: основные понятия

Такая программа как транслятор представляет собой лингвистическое представление вычислений I ->P ->P (i). Интерпретатор представляет собой программу, на вход которой подается программа P с некоторыми входными данными X.Выполняет он P на X: I(P, x)=P(x).Существует единственный транслятор, который способен выполнять все возможные программы (которые можно представить в формальной системе). Это является очень значительным и глубоким открытием Тьюринга. Процессор представляет собой интерпретатор программ на машинном языке. Писать интерпретаторы для языков высокого уровня, как правило, слишком дорого, поэтому их транслируют в ту форму, которую легче интерпретировать. Некоторые виды трансляторов обладают очень странными именами. Программа транслирует программы на ассемблере в машинный язык. Компилятор позволяет транслировать с языка высокого уровня на язык более низкого уровня. Транслятор представляет собой программу, которая в качестве входных данных принимает программу на некотором языке S и после обработки выдает программу на языке T.Таким образом, они обе имеют ту же семантику: P->X->Q. Таким образом, для любого xP(x)=Q(x). Если транслировать всю программу в нечто интерпретируемое, то это называется компиляцией перед исполнением или компиляцией AOT. Компиляторы AOT могут использоваться последовательно. Последний из них очень часто является ассемблером. Так, рассмотрим пример: Исходный код ->Компилятор (транслятор) -> Ассемблерный код -> Ассемблер (транслятор) -> Машинный код -> ЦПУ (интерпретатор). Динамическая или оперативная компиляция осуществляется в том случае, если часть программы транслируется, когда исполняются другие скомпилированные ранее части. Трансляторы JIT запоминают то, что они уже выполнили ранее, чтобы снова и снова не повторять исходный код. Они даже способны выполнять адаптивную компиляцию и перекомпиляцию, которая основана на поведении среды выполнения программы. Многие языки дают возможность выполнять код во время трансляции, а также компилировать новый код во время выполнения программы.

Трансляция: этапы

Процесс трансляции состоит из этапов синтеза и анализа. Схематично этот процесс выглядит примерно следующим образом: Исходный код -> Анализатор -> Концептуальное представление -> Синтезатор (генератор) -> Целевой код. Обусловлено это следующими причинами:

— любой другой способ просто не подходит;

— перевод по словам просто не работает.

Можно использовать следующее инженерное решение: если необходимо написать трансляторы для M исходных языков и N целевых, потребуется написать только M+N простых программ (полукомпиляторов), а не MxN полных (комплексных) трансляторов. На практике, тем не менее, концептуальное представление довольно редко бывает выразительным и мощным, чтобы охватить все существующие целевые и исходные языки. Хотя некоторые пользователи смогли приблизиться к этому. Реальные компиляторы проходят через множество различных этапов. При создании собственного компилятора не нужно будет заново проводить всю тяжелую работу, которую программисты уже проделали при создании генераторов и представлений. Свой язык можно транслировать непосредственно в JavaScript или C и использовать для этой цели существующие компиляторы языка C и JavaScript движки для того, чтобы сделать все остальное. Можно также использовать существующие промежуточные представления и виртуальные машины.

Запись транслятора

Транслятор может представлять собой техническое средство или программу, в которой используются три языка: исходный, целевой, базисный. Записать их можно в форме T, расположив слева исходный, справа целевой и ниже базисный. Всего существует три вида компиляторов.

  1. Транслятор – это самокомпилятор, если исходный язык у него соответствует базисному.
  2. Саморезидентным называется компилятор, у которого целевой язык равняется базисному.
  3. Если целевой и базисный языки различные, то транслятор – это кросс-компилятор.

Почему важно различать эти виды компиляторов? Даже если вы никогда не создадите по-настоящему качественный компилятор, неплохо будет узнать о технологии его создания, поскольку все используемые для этой цели концепции применяются повсеместно в языках запросов к базам данных, при форматировании текстов, в расширенных компьютерных архитектурах, графических интерфейсах, обобщенных задачах оптимизации, машинных переводах, контроллерах и в виртуальных машинах. Также, если необходимо написать препроцессоры, загрузчики, сборщики, отладчики или профилировщики, необходимо пройти через все те же этапы, что и при написании компилятора. Можно также узнать о том, каким образом лучше писать программы, поскольку разработка транслятора для языка программирования означает лучшее понимание всех его неясностей и тонкостей. Благодаря изучению общих принципов трансляции вы можете стать хорошим дизайнером языка. Но действительно ли это важно? Насколько крут язык, если он не может быть эффективно реализован?

Масштабная технология

Технология компилятора охватывает широкий круг различных областей информатики. В него входят формальная теория языка, грамматика, компьютерная архитектура, парсинг, вычислимость, наборы инструкций, CISC или RISC, конвейерная обработка, тактовые циклы, ядра и т.п., а также управление последовательностью выполнения, рекурсии, условное выполнение, функциональное разложение, итерации, модульность, синхронизация, метапрограммирование, константы, область видимости, шаблоны, тип вывода, аннотации, прототипы, потоки, почтовые ящики, монады, групповые символы, продолжения, транзакционную память, регулярные выражения, полиморфизм, наследование, режимы параметров и т.п. Также для создания компилятора необходимо разбираться в абстрактных языках программирования, алгоритмах и структуре данных, регулярных выражениях, графических алгоритмах, динамическом программировании.

Проектирование компилятора. Возможные проблемы, возникающие при создании реального транслятора

Какие проблемы могут возникать с исходным языком? Легко ли его скомпилировать? Имеется ли для этого препроцессор? Каким образом обрабатываются типы? Какая группировка проходов компилятора используется – одно- или многоходовая? Также особого внимания заслуживает желаемая степень оптимизации. Быстрая и нечистая трансляция программы практически без оптимизации может быть нормальной. Чрезмерная оптимизация может тормозить компилятор, однако, во время выполнения лучший код может того стоить.

Степень обнаружения ошибок. Нужно ли, чтобы транслятор остановился уже на первой ошибке? Когда он должен остановиться? Стоит ли доверять компилятору процедуру исправления ошибок?

Необходимый набор инструментов

Если в вашем случае исходный язык является не слишком маленьким, то наличие генератора анализаторов и сканера являются обязательным условием. Также существуют и специальные генераторы кода, но они не получили слишком большого распространения.

Что касается вида целевого кода для генерации, тут необходимо выбирать из чистого, дополненного или виртуального машинного кода. Можно также написать входную часть, которая создает популярные промежуточные представления, такие как LLVM, JVM, RTL. Можно также сделать трансляцию из исходного в исходный код на Java Script или C. Если говорить о формате целевого кода, тут здесь можно выбрать переносимый машинный код, машинный код образа памяти, язык ассемблера.

Перенацеливание

При использовании большого количества генераторов неплохо было бы иметь общую входную часть. Также по этой причине для многих входных частей лучше иметь один генератора.

Компоненты компилятора

Перечислим главные функциональные компоненты транслятора, который генерирует машинный код, если выходной программой является программа, написанная на языке C или виртуальная машина:

— входная программа поступает в лексический анализатор, или по-другому сканер, который преобразует ее в поток токенов;

— синтаксический анализатор (парсер) строит из них абстрактное синтаксическое дерево;

— семантический анализатор раскладывает семантическую информацию и проверяет на предмет наличия ошибок узлы дерева;

— в результате строится семантический граф. Под этим термином понимают абстрактное синтаксическое дерево с установленными ссылками и дополнительными свойствами;

— генератор промежуточного кода строит граф потока (кортежи группируются в основные блоки);

— машинонезависимый оптимизатор проводит локальную и глобальную оптимизацию, но в основном остается в рамках подпрограмм, при этом упрощает вычисления и сокращает избыточный код. В результате должен получиться модифицированный граф потока;

— для связи базовых блоков в прямолинейный код с передачей управления используется генератор целевого кода. Он создает на ассемблере объектный файл с визуальными регистрами, возможно не слишком эффективными;

— для распределения памяти между виртуальными регистрами и выполнения планирования команд используется машинозависимый оптимизатор-компоновщик. Он также осуществляет преобразование программы, написанной на ассемблере, в настоящий ассемблер с применением конвейерной обработки.

— используются подсистемы обнаружения ошибок и менеджер таблиц символов;

— сканирование и лексический анализ. Сканер используется для конвертации потока знаков исходного кода в поток токенов, убирая комментарии, пробелы и расширяя макросы. Довольно часто сканеры встречаются с такой проблемой, принимать ли во внимание отступы, регистр, вложенные комментарии.

Те ошибки, которые могут встретиться при сканировании, называются лексическими. Они включают в себя следующие:

— отсутствующие в алфавите символы;

— превышение количества знаков в строке или слове;

— не закрытый строковый литерал или знак;

— конец файла в комментарии.

Синтаксический анализ или парсинг применяется для преобразования последовательности токенов в абстрактное синтаксическое дерево. При этом каждый узел дерева сохраняется как объект с именованными полями. Многие из них сами являются узлами дерева. Циклы на этом этапе отсутствуют. При создании парсера нужно в первую очередь обращать внимание на уровень сложности грамматики (LRили LL) и выяснить, имеются ли какие-то правила снятия неоднозначности. Действительно некоторые языки требуют проведения семантического анализа. Ошибки, которые встречаются на данном этапе, называются синтаксическими.

Семантический анализ

При проведении семантического анализа, необходимо, прежде всего, проверить правила допустимости и связать в одно целое части синтаксического дерева для формирования семантического графа путем вставки операции для неявного приведения типов, разрешения ссылок имен и т.п. Понятно, что разные языки программирования имеют различный набор правил допустимости. Если осуществляется компиляция Java-подобных языков, трансляторы могут обнаружить следующие ошибки:

— множественные объявления переменной в пределах области ее действия;

— нарушение правил доступности;

— наличие ссылок на необъявленное имя;

— чересчур большое или, наоборот, недостаточное число аргументов при вызове метода;

— несоответствие типов.

Генерация

Путем генерации промежуточного кода производится граф потока, который составлен из кортежей, сгруппированных в базовые блоки. После генерации кода получается реальный машинный код. На первом этапе в традиционных компиляторах для машин RISC на первом этапе создается ассемблер с бесконечным количеством виртуальных регистров. Вероятно, этого не произойдет для машин CISC.

Цели и задачи дисциплины. Основные понятия и определения. Общие особенности языков программирования и трансляторов. Обобщенная структура транслятора. Варианты взаимодействия блоков транслятора.

Цели и задачи дисциплины

В настоящее время искусственные языки, использующие для описания предметной области текстовое представление, широко применяются не только в программировании, но и в других областях. С их помощью описывается структура всевозможных документов, трехмерных виртуальных миров, графических интерфейсов пользователя и многих других объектов, используемых в моделях и в реальном мире. Для того, чтобы эти текстовые описания были корректно составлены, а затем правильно распознаны и интерпретированы, используются специальные методы их анализа и преобразования. В основе методов лежит теория языков и формальных грамматик, а также теория автоматов. Программные системы, предназначенные для анализа и интерпретации текстов, называются трансляторами.

Несмотря на то, что к настоящему времени разработаны тысячи различных языков и их трансляторов, процесс создания новых приложений в этой области не прекращается. Это связно как с развитием технологии производства вычислительных систем, так и с необходимостью решения все более сложных прикладных задач. Кроме того, элементы теории языков и формальных грамматик применимы и в других разнообразных областях, например, при описании структур данных, файлов, изображений, представленных не в текстовом, а двоичном формате. Эти методы полезны и при разработке своих трансляторов даже там, где уже имеются соответствующие аналоги. Такая разработка может быть обусловлена различными причинами, в частности, функциональными ограничениями, отсутствием локализации, низкой эффективностью. Например, одной из последних разработок компании Microsoft является язык программирования C#, а одной из причин его создания является стремление к снижению популярности языка программирования Java. Можно привести множество других примеров, когда разработка своего транслятора может оказаться актуальной. Поэтому, основы теории языков и формальных грамматик, а также практические методы разработки трансляторов лежат в фундаменте инженерного образования по информатике и вычислительной технике.

Предлагаемый материал затрагивает основы методов разработки трансляторов и содержит сведения, необходимые для изучения логики их функционирования, используемого математического аппарата (теории формальных языков и формальных грамматик, метаязыков). Он используется в рамках семестровых лекционных курсов, читаемых для различных специальностей, на факультете информатики и вычислительной техники Красноярского государственного технического университета. В ходе лабораторных работ осуществляется непосредственное знакомство с отдельными методами создания трансляторов.

Цель дисциплины: предоставить знания по основам теории языков и формальных грамматик, теории автоматов, методам разработки трансляторов.

Для достижения поставленной цели в ходе преподавания дисциплины решаются следующие задачи:

  1. В ходе лекционного курса рассматриваются общие принципы организации процесса трансляции и структуры трансляторов. Изучаются основы теории построения трансляторов.
  2. На лабораторных занятиях и в ходе самостоятельной работы осуществляется практическое закрепление полученных теоретических знаний: разрабатывается транслятор для простого языка программирования.

Основные понятия и определения

Большинство рассматриваемых определений заимствовано из [АРНФТСАнгло-русско-немецко-французский толковый словарь по вычислительной технике и обработке данных, 4132 термина. Под. ред. А.А. Дородницына. М.: 1978. 416 с.) ].

Транслятор - обслуживающая программа, преобразующая исходную программу, предоставленную на входном языке программирования, в рабочую программу, представленную на объектном языке .

Приведенное определение относится ко всем разновидностям транслирующих программ. Однако у каждой из таких программ могут иметься свои особенности по организации процесса трансляции. В настоящее время трансляторы разделяются на три основные группы: ассемблеры, компиляторы и интерпретаторы.

Ассемблер - системная обслуживающая программа, которая преобразует символические конструкции в команды машинного языка . Специфической чертой ассемблеров является то, что они осуществляют дословную трансляцию одной символической команды в одну машинную. Таким образом, язык ассемблера (еще называется автокодом) предназначен для облегчения восприятия системы команд компьютера и ускорения программирования в этой системе команд. Программисту гораздо легче запомнить мнемоническое обозначение машинных команд, чем их двоичный код. Поэтому, основной выигрыш достигается не за счет увеличения мощности отдельных команд, а за счет повышения эффективности их восприятия.

Вместе с тем, язык ассемблера, кроме аналогов машинных команд, содержит множество дополнительных директив, облегчающих, в частности, управление ресурсами компьютера, написание повторяющихся фрагментов, построение многомодульных программ. Поэтому выразительность языка намного богаче, чем просто языка символического кодирования, что значительно повышает эффективность программирования.

Компилятор - это обслуживающая программа, выполняющая трансляцию на машинный язык программы, записанной на исходном языке программирования . Также как и ассемблер, компилятор обеспечивает преобразование программы с одного языка на другой (чаще всего, в язык конкретного компьютера). Вместе с тем, команды исходного языка значительно отличаются по организации и мощности от команд машинного языка. Существуют языки, в которых одна команда исходного языка транслируется в 7-10 машинных команд. Однако есть и такие языки, в которых каждой команде может соответствовать 100 и более машинных команд (например, Пролог). Кроме того, в исходных языках достаточно часто используется строгая типизация данных, осуществляемая через их предварительное описание. Программирование может опираться не на кодирование алгоритма, а на тщательное обдумывание структур данных или классов. Процесс трансляции с таких языков обычно называется компиляцией, а исходные языки обычно относятся к языкам программирования высокого уровня (или высокоуровневым языкам). Абстрагирование языка программирования от системы команд компьютера привело к независимому созданию самых разнообразных языков, ориентированных на решение конкретных задач. Появились языки для научных расчетов, экономических расчетов, доступа к базам данных и другие.

Интерпретатор - программа или устройство, осуществляющее пооператорную трансляцию и выполнение исходной программы . В отличие от компилятора, интерпретатор не порождает на выходе программу на машинном языке. Распознав команду исходного языка, он тут же выполняет ее. Как в компиляторах, так и в интерпретаторах используются одинаковые методы анализа исходного текста программы. Но интерпретатор позволяет начать обработку данных после написания даже одной команды. Это делает процесс разработки и отладки программ более гибким. Кроме того, отсутствие выходного машинного кода позволяет не "захламлять" внешние устройства дополнительными файлами, а сам интерпретатор можно достаточно легко адаптировать к любым машинным архитектурам, разработав его только один раз на широко распространенном языке программирования. Поэтому, интерпретируемые языки, типа Java Script, VB Script, получили широкое распространение. Недостатком интерпретаторов является низкая скорость выполнения программ. Обычно интерпретируемые программы выполняются в 50-100 раз медленнее программ, написанных в машинных кодах.

Эмулятор - программа или программно-техническое средство, обеспечивающее возможность без перепрограммирования выполнять на данной ЭВМ программу, использующую коды или способы выполнения операция, отличные от данной ЭВМ . Эмулятор похож на интерпретатор тем, что непосредственно исполняет программу, написанную на некотором языке. Однако, чаще всего это машинный язык или промежуточный код. И тот и другой представляют команды в двоичном коде, которые могут сразу исполняться после распознавания кода операций. В отличие от текстовых программ, не требуется распознавать структуру программы, выделять операнды.

Эмуляторы используются достаточно часто в самых различных целях. Например, при разработке новых вычислительных систем, сначала создается эмулятор, выполняющий программы, разрабатываемые для еще несуществующих компьютеров. Это позволяет оценить систему команд и наработать базовое программное обеспечение еще до того, как будет создано соответствующее оборудование.

Очень часто эмулятор используется для выполнения старых программ на новых вычислительных машинах. Обычно новые компьютеры обладают более высоким быстродействием и имеют более качественное периферийное оборудование. Это позволяет эмулировать старые программы более эффективно по сравнению с их выполнением на старых компьютерах. Примером такого подхода является разработка эмуляторов домашнего компьютера ZX Spectrum с микропроцессором Z80. До сих пор находятся любители поиграть на эмуляторе в устаревшие, но все еще не утратившие былой привлекательности, игровые программы. Эмулятор может также использоваться как более дешевый аналог современных компьютерных систем, обеспечивая при этом приемлемую производительность, эквивалентную младшим моделям некоторого семейства архитектур. В качестве примера можно привести эмуляторы IBM PC совместимых компьютеров, реализованные на более мощных компьютерах фирмы Apple. Ряд эмуляторов, написанных для IBM PC, с успехом заменяют различные игровые приставки.

Эмулятор промежуточного представления, как и интерпретатор, могут легко переноситься с одной компьютерной архитектуры на другую, что позволяет создавать мобильное программное обеспечение. Именно это свойство предопределило успех языка программирования Java, с которого программа транслируется в промежуточный код. Исполняющая этот код виртуальная Java машина, является ни чем иным как эмулятором, работающим под управлением любой современной операционной системы.

Перекодировщик - программа или программное устройство, переводящие программы, написанные на машинном языке одной ЭВМ в программы на машинном языке другой ЭВМ . Если эмулятор является менее интеллектуальным аналогом интерпретатора, то перекодировщик выступает в том же качестве по отношению к компилятору. Точно также исходный (и обычно двоичный) машинный код или промежуточное представление преобразуются в другой аналогичный код по одной команде и без какого-либо общего анализа структуры исходной программы. Перекодировщики бывают полезны при переносе программ с одних компьютерных архитектур на другие. Они могут также использоваться для восстановления текста программы на языке высокого уровня по имеющемуся двоичному коду.

Макропроцессор - программа, обеспечивающая замену одной последовательности символов другой [Браун ]. Это разновидность компилятора. Он осуществляет генерацию выходного текста путем обработки специальных вставок, располагаемых в исходном тексте. Эти вставки оформляются специальным образом и принадлежат конструкциям языка, называемого макроязыком. Макропроцессоры часто используются как надстройки над языками программирования, увеличивая функциональные возможности систем программирования. Практически любой ассемблер содержит макропроцессор, что повышает эффективность разработки машинных программ. Такие системы программирования обычно называются макроассемблерами.

Макропроцессоры используются и с языками высокого уровня. Они увеличивают функциональные возможности таких языков как PL/1, C, C++. Особенно широко макропроцессоры применяются в C и C++, позволяя упростить написание программ. Примером широкого использования макропроцессоров является библиотека классов Microsoft Foundation Classes (MFC). Через макровставки в ней реализованы карты сообщений и другие программные объекты. При этом, макропроцессоры повышают эффективность программирования без изменения синтаксиса и семантики языка.

Синтаксис - совокупность правил некоторого языка, определяющих формирование его элементов. Иначе говоря, это совокупность правил образования семантически значимых последовательностей символов в данном языке . Синтаксис задается с помощью правил, которые описывают понятия некоторого языка. Примерами понятий являются: переменная, выражение, оператор, процедура. Последовательность понятий и их допустимое использование в правилах определяет синтаксически правильные структуры, образующие программы. Именно иерархия объектов, а не то, как они взаимодействуют между собой, определяются через синтаксис. Например, оператор может встречаться только в процедуре, а выражение в операторе, переменная может состоять из имени и необязательных индексов и т.д. Синтаксис не связан с такими явлениями в программе как "переход на несуществующую метку" или "переменная с данным именем не определена". Этим занимается семантика.

Семантика - правила и условия, определяющие соотношения между элементами языка и их смысловыми значениями, а также интерпретацию содержательного значения синтаксических конструкций языка . Объекты языка программирования не только размещаются в тексте в соответствии с некоторой иерархией, но и дополнительно связаны между собой посредством других понятий, образующих разнообразные ассоциации. Например, переменная, для которой синтаксис определяет допустимое местоположение только в описаниях и некоторых операторах, обладает определенным типом, может использоваться с ограниченным множеством операций, имеет адрес, размер и должна быть описана до того, как будет использоваться в программе.

Синтаксический анализатор - компонента компилятора, осуществляющая проверку исходных операторов на соответствие синтаксическим правилам и семантике данного языка программирования . Несмотря на название, анализатор занимается проверкой и синтаксиса, и семантики. Он состоит из нескольких блоков, каждый из которых решает свои задачи. Более подробно будет рассмотрен при описании структуры транслятора.

Общие особенности языков программирования и трансляторов

Языки программирования достаточно сильно отличаются друг от друга по назначению, структуре, семантической сложности, методам реализации. Это накладывает свои специфические особенности на разработку конкретных трансляторов.

Языки программирования являются инструментами для решения задач в разных предметных областях, что определяет специфику их организации и различия по назначению. В качестве примера можно привести такие языки как Фортран, ориентированный на научные расчеты, C, предназначенный для системного программирования, Пролог, эффективно описывающий задачи логического вывода, Лисп, используемый для рекурсивной обработки списков. Эти примеры можно продолжить. Каждая из предметных областей предъявляет свои требования к организации самого языка. Поэтому можно отметить разнообразие форм представления операторов и выражений, различие в наборе базовых операций, снижение эффективности программирования при решении задач, не связанных с предметной областью. Языковые различия отражаются и в структуре трансляторов. Лисп и Пролог чаще всего выполняются в режиме интерпретации из-за того, что используют динамическое формирование типов данных в ходе вычислений. Для трансляторов с языка Фортран характерна агрессивная оптимизация результирующего машинного кода, которая становится возможной благодаря относительно простой семантике конструкций языка - в частности, благодаря отсутствию механизмов альтернативного именования переменных через указатели или ссылки. Наличие же указателей в языке C предъявляет специфические требования к динамическому распределению памяти.

Структура языка характеризует иерархические отношения между его понятиями, которые описываются синтаксическими правилами. Языки программирования могут сильно отличаться друг от друга по организации отдельных понятий и по отношениям между ними. Язык программирования PL/1 допускает произвольное вложение процедур и функций, тогда как в C все функции должны находиться на внешнем уровне вложенности. Язык C++ допускает описание переменных в любой точке программы перед первым ее использованием, а в Паскале переменные должны быть определены в специальной области описания. Еще дальше в этом вопросе идет PL/1, который допускает описание переменной после ее использования. Или описание можно вообще опустить и руководствоваться правилами, принятыми по умолчанию. В зависимости от принятого решения, транслятор может анализировать программу за один или несколько проходов, что влияет на скорость трансляции.

Семантика языков программирования изменяется в очень широких пределах. Они отличаются не только по особенностям реализации отдельных операций, но и по парадигмам программирования, определяющим принципиальные различия в методах разработки программ. Специфика реализации операций может касаться как структуры обрабатываемых данных, так и правил обработки одних и тех же типов данных. Такие языки, как PL/1 и APL поддерживают выполнение матричных и векторных операций. Большинство же языков работают в основном со скалярами, предоставляя для обработки массивов процедуры и функции, написанные программистами. Но даже при выполнении операции сложения двух целых чисел такие языки, как C и Паскаль могут вести себя по-разному.

Наряду с традиционным процедурным программированием, называемым также императивным, существуют такие парадигмы как функциональное программирование, логическое программирование и объектно-ориентированное программирование. Надеюсь, что в этом ряду займет свое место и предложенная мною процедурно-параметрическая парадигма программирования [Легалов2000 ]. Структура понятий и объектов языков сильно зависит от избранной парадигмы, что также влияет на реализацию транслятора.

Даже один и тот же язык может быть реализован нескольким способами. Это связано с тем, что теория формальных грамматик допускает различные методы разбора одних и тех же предложений. В соответствии с этим трансляторы разными способами могут получать один и тот же результат (объектную программу) по первоначальному исходному тексту.

Вместе с тем, все языки программирования обладают рядом общих характеристик и параметров. Эта общность определяет и схожие для всех языков принципы организации трансляторов.

  1. Языки программирования предназначены для облегчения программирования. Поэтому их операторы и структуры данных более мощные, чем в машинных языках.
  2. Для повышения наглядности программ вместо числовых кодов используются символические или графические представления конструкций языка, более удобные для их восприятия человеком.
  3. Для любого языка определяется:
  • Множество символов, которые можно использовать для записи правильных программ (алфавит), основные элементы.
  • Множество правильных программ (синтаксис).
  • "Смысл" каждой правильной программы (семантика).

Независимо от специфики языка любой транслятор можно считать функциональным преобразователем F, обеспечивающим однозначное отображение X в Y, где X - программа на исходном языке, Y - программа на выходном языке. Поэтому сам процесс трансляции формально можно представить достаточно просто и понятно:

Формально каждая правильная программа X - это цепочка символов из некоторого алфавита A, преобразуемая в соответствующую ей цепочку Y, составленную из символов алфавита B.

Язык программирования, как и любая сложная система, определяется через иерархию понятий, задающую взаимосвязи между его элементами. Эти понятия связаны между собой в соответствии с синтаксическими правилами. Каждая из программ, построенная по этим правилам, имеет соответствующую иерархическую структуру.

В связи с этим для всех языков и их программ можно дополнительно выделить следующие общие черты: каждый язык должен содержать правила, позволяющие порождать программы, соответствующие этому языку или распознавать соответствие между написанными программами и заданным языком.

Связь структуры программы с языком программирования называется синтаксическим отображением .

В качестве примера рассмотрим зависимость между иерархической структурой и цепочкой символов, определяющей следующее арифметическое выражение:

В большинстве языков программирования данное выражение определяет иерархию программных объектов, которую можно отобразить в виде дерева (рис. 1.1.):

В кружках представлены символы, используемые в качестве элементарных конструкций, а в прямоугольниках задаются составные понятия, имеющие иерархическую и, возможно, рекурсивную структуру. Эта иерархия определяется с помощь синтаксических правил, записанных на специальном языке, который называется метаязыком (подробнее метаязыки будут рассмотрены при изучении формальных грамматик):

<выражение> ::= <слагаемое> | <выражение> + <слагаемое>

<слагаемое> ::= <множитель> | <слагаемое> * <множитель>

<множитель> ::= <буква> | (<выражение>)

<буква>

Примечание. Знак "::=" читается как "это есть". Вертикальная черта "|" читается как "или".

Если правила будут записаны иначе, то изменится и иерархическая структура. В качестве примера можно привести следующие способ записи правил:

<выражение> ::= <операнд> | <выражение> + < операнд > | <выражение> * < операнд >

<операнд> ::= <буква> | (<выражение>)

<буква> ::= a | b | c | d | i | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

В результате синтаксического разбора того же арифметического выражения будет построена иерархическая структура, представленная на рис. 1.2.


Следует отметить, что иерархическая структура в общем случае может быть никоим образом не связана с семантикой выражения. И в том и другом случае приоритет выполнения операций может быть реализован в соответствии с общепринятыми правилами, когда умножение предшествует сложению (или наоборот, все операции могут иметь одинаковый приоритет при любом наборе правил). Однако первая структура явно поддерживает дальнейшую реализацию общепринятого приоритета, тогда как вторая больше подходит для реализации операций с одинаковым приоритетом и их выполнению справа налево.

Процесс нахождения синтаксической структуры заданной программы называется синтаксическим разбором .

Синтаксическая структура, правильная для одного языка, может быть ошибочной для другого. Например, в языке Форт приведенной выражение не будет распознано. Однако для этого языка корректным будет являться постфиксное выражение:

Его синтаксическая структура описывается правилами:

<выражение> ::= <буква> | <операнд> <операнд> <операция>

< операнд > ::= < буква > | < выражение >

< операция > ::= + | *

<буква> ::= a | b | c | d | i | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

Иерархическое дерево, определяющее синтаксическую структуру, представлено на рис. 1.3.

Другой характерной особенностью всех языков является их семантика. Она определяет смысл операций языка, корректность операндов. Цепочки, имеющие одинаковую синтаксическую структуру в различных языках программирования, могут различаться по семантике (что, например, наблюдается в C++, Pascal, Basic для приведенного выше фрагмента арифметического выражения).

Знание семантики языка позволяет отделить ее от его синтаксиса и использовать для преобразования в другой язык (осуществить генерацию кода).

Описание семантики и распознавание ее корректности обычно является самой трудоемкой и объемной частью транслятора, так как необходимо осуществить перебор и анализ множества вариантов допустимых комбинаций операций и операндов.

Обобщенная структура транслятора

Общие свойства и закономерности присущи как различным языкам программирования, так и трансляторам с этих языков. В них протекают схожие процессы преобразования исходного текста. Не смотря на то, что взаимодействие этих процессов может быть организовано различным путем, можно выделить функции, выполнение которых приводит к одинаковым результатам. Назовем такие функции фазами процесса трансляции.

Учитывая схожесть компилятора и интерпретатора, рассмотрим фазы, существующие в компиляторе. В нем выделяются:

  1. Фаза лексического анализа.
  2. Фаза синтаксического анализа, состоящая из:
  • распознавания синтаксической структуры;
  • семантического разбора, в процессе которого осуществляется работа с таблицами, порождение промежуточного семантического представления или объектной модели языка.
  • Фаза генерации кода, осуществляющая:
    • семантический анализ компонент промежуточного представления или объектной модели языка;
    • перевод промежуточного представления или объектной модели в объектный код.

    Наряду с основными фазами процесса трансляции возможны также дополнительные фазы:

      2а. Фаза исследования и оптимизации промежуточного представления, состоящая из:
    2а.1. анализа корректности промежуточного представления;
    2а.2. оптимизации промежуточного представления.
      3а. Фаза оптимизации объектного кода.

    Интерпретатор отличается тем, что фаза генерации кода обычно заменяется фазой эмуляции элементов промежуточного представления или объектной модели языка. Кроме того, в интерпретаторе обычно не проводится оптимизация промежуточного представления, а сразу же осуществляется его эмуляция.

    Кроме этого можно выделить единый для всех фаз процесс анализа и исправление ошибок, существующих в обрабатываемом исходном тексте программы.

    Обобщенная структура компилятора, учитывающая существующие в нем фазы, представлена на рис. 1.4.

    Он состоит из лексического анализатора, синтаксического анализатора, генератора кода, анализатора ошибок. В интерпретаторе вместо генератора кода используется эмулятор (рис. 1.5), в который, кроме элементов промежуточного представления, передаются исходные данные. На выход эмулятора выдается результат вычислений.

    Лексический анализатор (известен также как сканер) осуществляет чтение входной цепочки символов и их группировку в элементарные конструкции, называемые лексемами. Каждая лексема имеет класс и значение. Обычно претендентами на роль лексем выступают элементарные конструкции языка, например, идентификатор, действительное число, комментарий. Полученные лексемы передаются синтаксическому анализатору. Сканер не является обязательной частью транслятора. Однако, он позволяет повысить эффективность процесса трансляции. Подробнее лексический анализ рассмотрен в теме: "Организация лексического анализа".

    Синтаксический анализатор осуществляет разбор исходной программы, используя поступающие лексемы, построение синтаксической структуры программы и семантический анализ с формированием объектной модели языка. Объектная модель представляет синтаксическую структуру, дополненную семантическими связями между существующими понятиями. Этими связями могут быть:

    • ссылки на переменные, типы данных и имена процедур, размещаемые в таблицах имен;
    • связи, определяющие последовательность выполнения команд;
    • связи, определяющие вложенность элементов объектной модели языка и другие.

    Таким образом, синтаксический анализатор является достаточно сложным блоком транслятора. Поэтому его можно разбить на следующие составляющие:

    • распознаватель;
    • блок семантического анализа;
    • объектную модель, или промежуточное представление, состоящие из таблицы имен и синтаксической структуры.

    Обобщенная структура синтаксического анализатора приведена на рис. 1.6.

    Распознаватель получает цепочку лексем и на ее основе осуществляет разбор в соответствии с используемыми правилами. Лексемы, при успешном разборе правил, передаются семантическому анализатору, который строит таблицу имен и фиксирует фрагменты синтаксической структуры. Кроме этого, между таблицей имен и синтаксической структурой фиксируются дополнительные семантические связи. В результате формируется объектная модель программы, освобожденная от привязки к синтаксису языка программирования. Достаточно часто вместо синтаксической структуры, полностью копирующей иерархию объектов языка, создается ее упрощенный аналог, который называется промежуточным представлением.

    Анализатор ошибок получает информацию об ошибках, возникающих в различных блоках транслятора. Используя полученную информацию, он формирует сообщения пользователю. Кроме этого, данный блок может попытаться исправить ошибку, чтобы продолжить разбор дальше. На него также возлагаются действия, связанные с корректным завершением программы в случае, когда дальнейшую трансляцию продолжать невозможно.

    Генератор кода строит код объектной машины на основе анализа объектной модели или промежуточного представления. Построение кода сопровождается дополнительным семантическим анализом, связанным с необходимостью преобразования обобщенных команд в коды конкретной вычислительной машины. На этапе такого анализа окончательно определяется возможность преобразования, и выбираются эффективные варианты. Сама генерация кода является перекодировкой одних команд в другие.

    Варианты взаимодействия блоков транслятора

    Организация процессов трансляции, определяющая реализацию основных фаз, может осуществляться различным образом. Это определяется различными вариантами взаимодействия блоков транслятора: лексического анализатора, синтаксического анализатора и генератора кода. Несмотря на одинаковый конечный результат, различные варианты взаимодействия блоков транслятора обеспечивают различные варианты хранения промежуточных данных. Можно выделить два основных варианта взаимодействия блоков транслятора:

    • многопроходную организацию, при которой каждая из фаз является независимым процессом, передающим управление следующей фазе только после окончания полной обработки своих данных;
    • однопроходную организацию, при которой все фазы представляют единый процесс и передают друг другу данные небольшими фрагментами.

    На основе двух основных вариантов можно также создавать их разнообразные сочетания.

    Многопроходная организация взаимодействия блоков транслятора

    Данный вариант взаимодействия блоков, на примере компилятора, представлен на рис 1.7.


    Лексический анализатор полностью обрабатывает исходный текст, формируя на выходе цепочку, состоящую из всех полученных лексем. Только после этого управление передается синтаксическому анализатору. Синтаксический анализатор получает сформированную цепочку лексем и на ее основе формирует промежуточное представление или объектную модель. После получения всей объектной модели он передает управление генератору кода. Генератор кода, на основе объектной модели языка, строит требуемый машинный код

    К достоинствам такого подхода можно отнести:

    1. Обособленность отдельных фаз, что позволяет обеспечить их независимую друг от друга реализацию и использование.
    2. Возможность хранения данных, получаемых в результате работы каждой из фаз, на внешних запоминающих устройствах и их использования по мере надобности.
    3. Возможность уменьшения объема оперативной памяти, требуемой для работы транслятора, за счет последовательного вызова фаз.

    К недостаткам следует отнести.

    1. Наличие больших объемов промежуточной информации, из которой в данный момент времени требуется только небольшая часть.
    2. Замедление скорости трансляции из-за последовательного выполнения фаз и использования для экономии оперативной памяти внешних запоминающих устройств.

    Данный подход может оказаться удобным при построении трансляторов с языков программирования, обладающей сложной синтаксической и семантической структурой (например, PL/I). В таких ситуациях трансляцию сложно осуществить за один проход, поэтому результаты предыдущих проходов проще представлять в виде дополнительных промежуточных данных. Следует отметить, что сложные семантическая и синтаксическая структуры языка могут привести к дополнительным проходам, необходимым для установления требуемых зависимостей. Общее количество проходов может оказаться более десяти. На число проходов может также влиять использование в программе конкретных возможностей языка, таких как объявление переменных и процедур после их использования, применение правил объявления по умолчанию и т. д.

    Однопроходная организация взаимодействия блоков транслятора

    Один из вариантов взаимодействия блоков компилятора при однопроходной организации представлено на рис. 1.8.

    В этом случае процесс трансляции протекает следующим образом. Лексический анализатор читает фрагмент исходного текста, необходимый для получения одной лексемы. После формирования лексемы им осуществляется вызов синтаксического анализатора и передача ему созданной лексемы в качестве параметра. Если синтаксический анализатор может построить очередной элемент промежуточного представления, то он делает это и передает построенный фрагмент генератору кода. В противном случае синтаксический анализатор возвращает управление сканеру, давая, тем самым, понять, что очередная лексема обработана и нужны новые данные.

    Генератор кода функционирует аналогичным образом. По полученному фрагменту промежуточного представления он создает соответствующий фрагмент объектного кода. После этого управление возвращается синтаксическому анализатору.

    По окончании исходного текста и завершении обработки всех промежуточных данных каждым из блоков лексический анализатор инициирует процесс завершения программы.

    Чаще всего в однопроходных трансляторах используется другая схема управления, в которой роль основного блока играет синтаксический анализатор (рис. 1.9).

    Лексический анализатор и генератор кода выступают в роли вызываемых им подпрограмм. Как только синтаксическому анализатору нужна очередная лексема, он вызывает сканер. При получении фрагмента промежуточного представления осуществляется обращение к генератору кода. Завершение процесса трансляции происходит после получения и обработки последней лексемы и инициируется синтаксическим анализатором.

    К достоинствам однопроходной схемы следует отнести отсутствие больших объемов промежуточных данных, высокую скорость обработки из-за совмещении фаз в едином процессе и отсутствие обращений в внешним запоминающим устройствам.

    К недостаткам относятся: невозможность реализации такой схемы трансляции для сложных по структуре языков и отсутствие промежуточных данных, которые можно использовать для комплексного анализа и оптимизации.

    Такая схема часто применяется для простых по семантической и синтаксической структурам языков программирования, как в компиляторах, так и в интерпретаторах. Примерами таких языков могут служить Basic и Pascal. Классический интерпретатор обычно строится по однопроходной схеме, так как непосредственное исполнение осуществляется на уровне отдельных фрагментов промежуточного представления. Организация взаимодействия блоков такого интерпретатора представлена на рис. 1.10.

    Комбинированные взаимодействия блоков транслятора

    Сочетания многопроходной и однопроходной схем трансляции порождают разнообразные комбинированные варианты, многие из которых успешно используются. В качестве примера можно рассмотреть некоторые из них.

    На рис. 1.11 представлена схема взаимодействия блоков транслятора, разбивающая весь процесс на два прохода. На первом проходе порождается полное промежуточное представление программы, а на втором осуществляется генерация кода. Использование такой схемы позволяет легко переносить транслятор с одной вычислительной системы на другую путем переписывания генератора кода.

    Кроме этого, вместо генератора кода легко подключить эмулятор промежуточного представления, что достаточно просто позволяет разработать систему программирования на некотором языке, ориентированную на различные среды исполнения. Пример подобной организации взаимодействия блоков транслятора представлен на рис. 1.12.


    Наряду со схемами, предполагающими замену генератора кода на эмулятор, существуют трансляторы, допускающие их совместное использование. Одна из таких схем представлена на рис. 1.13.

    Процесс трансляции, включая и генерацию кода, может быть выполнен за любое число проходов (в примере используется однопроходная трансляция, представленная ранее на ). Однако сформированный объектный код не исполняется на соответствующей ему вычислительной системе, а эмулируется на компьютере с другой архитектурой. Такая схема применяется в среде построенной вокруг языка программировании Java. Сам транслятор генерирует код виртуальной Java-машины, эмуляция которого осуществляется специальными средствами как автономно, так и в среде Internet браузера.

    Представленная схема может иметь и более широкое толкование применительно к любому компилятору, порождающему машинный код. Все дело в том, что большинство современных вычислительных машин реализованы с использованием микропрограммного управления. А микропрограммное устройство управления можно рассматривать как программу, эмулирующую машинный код. Это позволяет говорить о повсеместном использовании последней представленной схемы.

    Контрольные вопросы и задания

    1. Назовите отличия:
      • интерпретатора от компилятора;
      • компилятора от ассемблера;
      • перекодировщика от транслятора;
      • эмулятора от интерпретатора;
      • синтаксиса от семантики.
    1. Расскажите об известных Вам последних разработках языков программирования. Приведите основные характеристики названных языков.
    2. Приведите конкретные примеры использования методов трансляции в областях, не связанных с языками программирования.
    3. Приведите конкретные примеры компилируемых языков программирования.
    4. Приведите конкретные примеры интерпретируемых языков программирования.
    5. Приведите конкретные примеры языков программирования, для которых имеются как компиляторы, так и интерпретаторы.
    6. Основные достоинства и недостатки компиляторов.
    7. Основные достоинства и недостатки интерпретаторов.
    8. Опишите основные различия в синтаксисе двух известных Вам языков программирования.
    9. Опишите основные различия в семантике двух известных Вам языков программирования.
    10. Назовите основные фазы процесса трансляции и их назначение.
    11. Назовите специфические особенности однопроходной трансляции.
    12. Назовите специфические особенности многопроходной трансляции.
    13. Приведите примеры возможных комбинаций однопроходной и многопроходной трансляции. Расскажите о практическом использовании этих схем.

    Транслятор (англ. translator — переводчик) — это программа-переводчик. Она преобразует программу, написанную на одном из языков программирования, в бинарный файл программы, состоящей из машинных команд, либо непосредственно выполняет действия программы.

    Трансляторы реализуются в виде компиляторов, интерпретаторов, препроцессоров и эмуляторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.

    Компилятор (англ. compiler — составитель, собиратель) — читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, то есть бинарный файл, содержащий перечень машинных команд. Бинарный файл может быть исполняемым, библиотечным, объектным), он выполняется.операционной системой без участия компилятора.

    Интерпретатор (англ. interpreter — истолкователь, переводчик) — переводит программу построчно (по одному оператору) в машинный код (команды процессора, ОС, иной среды), выполняет переведенный оператор (строку программы), а затем переходит к следующей строке программного текста. Интерпретатор не формирует исполняемых файлов, он сам выполняет все действия, записанные в тексте исходной программы.

    После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы.

    Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.

    Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

    С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

    Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

    Препроцессор — это транслятор с одного языка программирования в другой без создания исполняемого файла или выполнения программы.

    Препроцессоры удобны для расширения возможностей языка и удобства программирования путем использования на этапе написания программы более удобного для человека диалекта языка программирования и ее перевода препроцессором на текст стандартного языка программирования, который можно откомпилировать стандартным компилятором.

    Эмулятор — функционирующее в некоторой целевой операционной системе и аппаратной платформе программное и/или аппаратное средство, предназначенное для исполнения программ, изготовленных в другой операционной системе или работающих на отличном от целевого аппаратном обеспечении, но позволяющее осуществлять те же самые операции в целевой среде, что и в имитируемой системе.

    К эмулирующим языкам относятся такие системы, как Java, .Net, Mono, в которых на этапе создания программы производится ее компиляция в специальный байт-код и получение бинарного файла, пригодного для исполнения в любой операционной и аппаратной среде,а исполнение полученного байт-кода производится на целевой машине с помощью простого и быстрого интерпретатора (виртуальной машины).

    Реассемблер, дизассемблер — программное средство, предназначенное для расшифровки бинарного кода с представлением его в виде текста ассемблера или текста иного языка программирования, позволяющее проанализировать алгоритм исходной программы и использовать полученный текст для необходимой модификации программы, к примеру поменять адреса внешних устройств, обращения к системным и сетевым ресурсам, выявить скрытые функции бинарного кода (к примеру, компьютерного вируса или иной зловредной программы: трояна, червя, кейлоггера и пр.).

    к алгоритмизации алгоритмы, струкутуры данных и программирование СУБД ЯиМП 3GL 4GL 5GL технологии прогр.

    Знаете ли Вы, что абстракция через параметризацию — это прием программирования, позволяющий, используя параметры, представить фактически неограниченный набор различных вычислений одной программой, которая есть абстракция этих наборов.

    Трансляторы

    Так как текст записанной на Паскале программы не понятен компьютеру, то требуется перевести его на машинный язык. Такой перевод программы с языка программирования на язык машинных кодов называетсятрансляцией (translation - перевод), а выполняется он специальными программами —трансляторами .

    Существует три вида трансляторов: интерпретаторы, компиляторы и ассемблеры.

    Интерпретатором называется транслятор, производящий пооператорную (покомандную) обработку и выполнение исходной программы.

    Компилятор преобразует (транслирует) всю программу в модуль на машинном языке, после этого программа записывается в память компьютера и лишь потом исполняется.

    Ассемблеры переводят программу, записанную на языке ассемблера (автокода), в программу на машинном языке.

    Любой транслятор решает следующие основные задачи:

    Анализирует транслируемую программу, в частности определяет, содержит ли она синтаксические ошибки;

    Генерирует выходную программу (ее часто называют объектной или рабочей) на языке команд ЭВМ (в некоторых случаях транслятор генерирует выходную программу на промежуточном языке, например, на языке ассемблера);

    Распределяет память для выходной программы (в простейшем случае это заключается в назначении каждому фрагменту программы, переменным, константам, массивам и другим объектам своих адресов участков памяти).

    Введение в.Net и c Sharp

    Программист пишет программу на языке, понятном программисту, а компьютер исполняет только программы, написанные на языке машинных кодов. Совокупность средств написания, редактирования и преобразования программы в машинные коды и ее исполнения называют средой разработки.

    Среда разработки содержит:

      Текстовый редактор для ввода и корректировки текста программы

      Компилятор для перевода программы на язык машинных команд

      Средства отладки и запуска программы на исполнение

      Общие библиотеки с многократно используемыми программными элементами

      Справочную систему и др.

    Платформа.NET («дот нет»), разработанная компанией Microsoft, включает не только среду разработки для нескольких языков программирования, называемую Visual Studio .NET, но множество других средств, таких как средства поддержки баз данных, электронной почты и др.

    Важнейшими задачами при разработке современных программных средств являются:

      Переносимость-возможность исполнения на разных типах компьютерах

      Безопасность – невозможность несанкционированных действий

      Надежность – безотказность работы в заданных условиях

      Использование готовых компонентов для ускорения разработки

      Межъязыковое взаимодействие – применение нескольких языков программирования.

    Все эти задачи решают в рамках платформы.NET.

    Для обеспечения переносимости компиляторы платформы переводят программу не в машинный код, а в промежуточный язык MSIL (Microsoft Intermediate Language) или просто в IL. IL не содержит команд, зависящих от операционной системы или типа компьютера. Программу на IL исполняет среда выполнения CLR (Common Language Runtime), которая уже специфична для каждого типа компьютера. Перевод IL-программы в машинные коды конкретного компьютера выполняет JIT (Just In Time) –компилятор.

    Схема выполнения программы на платформе.NET приведена на рис.1.

    Компилятор создает сборку программы – файл с расширение . exe или . dll , который содержит IL-код. Выполнение программы организует среда CRL, которая следит за допустимостью операций, выполняет распределение и очистку памяти и обрабатывает ошибки исполнения. Это обеспечивает безопасность и надежность программ.

    Платой за эти достоинства является снижение быстродействия программ и необходимость установки на компьютере.NET для исполнения готовых программ.

    Итак, .NET – это платформа программирования.

    C# (Си-Шарп ) — это один из языков программирования платформы.NET. Он входит в Visual Studio — Visual Studio.NET (Версии 2008, 2010, 2012). Кроме C# в Visual Studio.NET входят Visual Basic.NET и Visual C++.

    Одна из причин разработки нового языка компанией Microsoft — это создание компонентно-ориентированного языка для платформы .NET Framework .

    Рис.1 Схема выполнения программы в.NET

    NET Framework состоит из двух частей:

      Во-первых, она включает огромную библиотеку классов, которые можно вызывать из программ на C#. Классов очень много (порядка несколько тысяч). Это избавляет от необходимости писать все самостоятельно. Поэтому программирование на С# заключается в написании собственного кода, который при необходимости вызывает классы, хранящиеся в.NET Framework.

      Во-вторых, в ее состав входит среда выполнения.NET Runtime, управляющая запуском и работой готовых программ.

    Платформа.NET является открытой средой – сторонние разработчики создали для.NET десятки компиляторов для языков Ada, COBOL, Fortran, Lisp, Oberon, Perl, Python и др.

    Платформа.NET активно развивается – выпускаются все новые версии этой платформы. С помощью меню Project Properties выясните версию используемой платформы.NET.

    Теоретически программа для среды.NET может выполняться под любой операционной системой, в которой.NET установлена. Но на практике единственная официальная платформа для этого — это операционная система Windows. Однако существуют неофициальные реализации.NET для Unix-подобных ОС Linux, Mac OS X и других (Mono - проект системы.NET Framework на базе свободного программного обеспечения).

    Слово рапира

    Слово рапира английскими буквами(транслитом) — rapira

    Слово рапира состоит из 6 букв: а а и п р р

    Значения слова рапира. Что такое рапира?

    Рапи́ра (нем. Rapier, от фр. rapière, изначально исп. espadas roperas - буквально, «меч для одежды» (то есть не для доспеха), искажённое в фр. la rapiere) - преимущественно колющее холодное оружие, разновидность шпаги…

    ru.wikipedia.org

    Рапира (нем. Rapier, от франц. rapière), спортивное колющее оружие, состоит из стального эластичного клинка и эфеса (защитной чашеобразной гарды и рукоятки).

    БСЭ. - 1969-1978

    РАПИРА (нем. Rapier, от франц. rapiere). Спортивное колющее оружие. Состоит из стального гибкого клинка и эфеса (защитной чашеобразной гарды и рукоятки). Клинок прямоугольного сечения, сужающийся к вершине…

    Олимпийская энциклопедия. - 2006

    РАПИРА, Расширенный Адаптированный Поплан-Интерпретатор, Редактор, Архив, - учебно-производственный язык программирования. Разработан в начале 80-х годов в СССР. Рапира является средством…

    Энциклопедия языков программирования

    Рапира (ЗРК)

    Рапира - ракетная система класса «земля-воздух», разработанная британскими вооружёнными силами для Королевских военно-воздушных сил. Состоит на вооружении армий Австралии, Великобритании, Индонезии, Сингапура, Турции, Малайзии и Швейцарии.

    ru.wikipedia.org

    Рапира боевая

    Рапира боевая — (от франц. rapiere) — колющее, резке колюще-рубящее длинноклинковое Х.0. с рукояткой, известно в Европе со 2-й половины 17 в. Состояли из прямого плоского или граненого стального клинка с заостренным (у дуэльных Р.)…

    Рапира спортивная

    РАПИРА СПОРТИВНАЯ - спортивное холодное оружие, состоящее из гибкого прямоугольного в сечении клинка и съемного черена с круглой чашкообразной гардой.

    weapon.slovaronline.com

    Рапира спортивная — спортивное холодное оружие, состоящее из гибкого прямоугольного в сечении клинка и съемного черена с круглой чашкообразной гардой.

    Петров А. Словарь холодного оружия и доспехов

    Рапира (язык программирования)

    РАПИРА - Расширенный Адаптированный Поплан-Интерпретатор, Редактор, Архив - процедурный язык программирования. Разработан в начале 80-х годов в СССР в качестве средства перехода от более простых языков (в частности, учебного языка Робик)…

    ru.wikipedia.org

    Фехтование на летних Олимпийских играх 1896 - рапира

    Соревнования по фехтованию на рапирах среди мужчин на летних Олимпийских играх 1896 прошли 7 апреля.

    Транслятор, компилятор, интерпретатор

    Приняли участие восемь спортсменов из двух стран. Сначала они соревновались в двух группах по четыре спортсмен…

    ru.wikipedia.org

    Фехтование на летних Олимпийских играх 1900 - рапира

    Соревнования по фехтованию на рапирах среди мужчин на летних Олимпийских играх 1900 прошли с 14 по 19 и 21 мая. Приняли участие 54 спортсмена из десяти стран.

    ru.wikipedia.org

    Русский язык

    Рапи́р/а.

    Морфемно-орфографический словарь. - 2002

    Фехтование на летних Олимпийских играх 1900 - рапира среди маэстро

    Соревнования по фехтованию на рапирах среди мужчин-маэстро на летних Олимпийских играх 1900 прошли с 22 по 25 и с 27 по 28 мая.

    Приняли участие 59 спортсменов из семи стран.

    ru.wikipedia.org

    Примеры употребления слова рапира

    Рапира сделана так, что внутрь войти не может, максимум, что может остаться, это синяк.

    По маркировке на рукоятке рапиры оперативники выходят на фехтовальный клуб и выясняют, что рапира оттуда была украдена год назад.

    Лекция: Стандарты и лицензии на программное обеспечение

    Стандарты семейства UNIX. Стандарты языка программирования C. System V Interface Definition (SVID). Комитеты POSIX. X/Open, OSF и Open Group. Лицензии на программное обеспечение и документацию.
    Содержание

    • 3.1. Стандарты семейства UNIX
      • Стандарты языка программирования C
      • System V Interface Definition (SVID)
      • Комитеты POSIX
      • X/Open, OSF и Open Group
    • 3.2. Лицензии на программное обеспечение и документацию

    3.1. Стандарты семейства UNIX

    Причиной появления стандартов на операционную систему UNIX стало то, что она была перенесена на многие аппаратные платформы. Ее первые версии работали на аппаратуре PDP, но в 1976 и 1978 годах система была перенесена на Interdata и VAX. С 1977 по 1981 годы оформились две конкурирующие ветви: UNIX AT&T и BSD. Наверное, цели разработки стандартов были разными. Одна из них – узаконить главенство своей версии, а другая – обеспечить переносимость системы и прикладных программ между различными аппаратными платформами. В связи с этим говорят и о мобильности программ. Такие свойства имеют отношение как к исходным текстам программ, так и исполнимым программам.

    Дальнейший материал приводится в хронологическом порядке появления стандартов.

    Стандарты языка программирования C

    Этот стандарт не относится непосредственно к UNIX. Но поскольку C является базовым как для этого семейства, так и других ОС, упомянем о стандарте этого языка программирования. Начало ему было положено выходом в 1978 году первой редакции книги Б.Кернигана и Д.Ритчи. Этот стандарт часто называют K&R. Программисты, авторы этого труда, работали над UNIX вместе с Кеном Томпсоном. При этом первый из них предложил название системы, а второй изобрел этот язык программирования. Соответствующий текст доступен в Интернете [45 ].

    Однако промышленный стандарт языка программирования С был выпущен в 1989 году ANSI и имел имя X3. 159 – 1989. Вот что написано про этот стандарт [46 ]:

    "Стандарт был принят для улучшения переносимости написанных на языке Си программ между различными типами ОС. Таким образом, в стандарт, кроме синтаксиса и семантики языка Си, вошли рекомендации по содержанию стандартной библиотеки. О наличии поддержки стандарта ANSI C говорит предопределенное символьное имя _STDC".

    В 1988 году на основе этого стандарта языка программирования была выпущена вторая редакция книги Кернигана и Ритчи о С. Заметим, что фирмы, производящие программные продукты для разработки программ на языке С, могут формировать свой состав библиотек и даже несколько расширять состав других средств языка.

    ^ System V Interface Definition (SVID)

    Другое направление развития стандартов UNIX связано с тем, что не только энтузиасты задумывались о создании "эталонов". Основные разработчики системы с появлением многих "вариантов" решили издавать собственные документы. Так появляются стандарты, выпускаемые USG, организацией, разрабатывающей документацию версий UNIX AT&T с того момента, когда для создания операционной системы была образована эта дочерняя компания. Первый документ появился в 1984 году на основе SVR2. Он имел название SVID (System V Interface Definition). Четырехтомное описание было выпущено после выхода в свет версии SVR4. Эти стандарты дополнялись набором тестовых программ SVVS (System V Verification Suite). Основное назначение этих средств состояло в том, чтобы разработчики имели возможность судить, может ли их система претендовать на имя System V [14 ].

    Отметим, что положение дел со стандартом SVID в чем-то сходно со стандартом языка программирования С. Изданная авторами этого языка программирования книга является одним из эталонов, но не единственным. Выпущенный позже стандарт С является результатом коллективного труда, прошел этап обсуждения широкой общественности и, видимо, может претендовать на ведущую роль в списке стандартов. Так и SVVS является набором тестов, позволяющих судить, достойна ли система соответствовать имени System V, только одной из версий UNIX. При этом не учитывается весь опыт разработки операционных систем от разных производителей.

    Комитеты POSIX

    Работа по оформлению стандартов UNIX началась группой энтузиастов в 1980 году. Была сформулирована цель – формально определить услуги, которые операционные системы обеспечивают приложениям. Такой стандарт программного интерфейса стал основой документа POSIX (Portable Operating System Interface for Computing Environment – переносимый интерфейс операционной системы для вычислительной среды) [14 ]. Первая рабочая группа POSIX была образована в 1985 году на основе UNIX-ориентированного комитета по стандартизации /usr/group, также называемой UniForum [47 ]. Название POSIX было предложено родоначальником GNU Ричардом Столмэном.

    Ранние версии POSIX определяют множество системных сервисов, необходимых для функционирования прикладных программ, которые описаны в рамках интерфейса, специфицированного для языка С (интерфейс системных вызовов). Заложенные в нем идеи использовались комитетом ANSI (American National Standards Institute) при создании стандарта языка C, упомянутого ранее. Исходный состав функций, закладываемый в первые версии, опирался на UNIX AT&T (версия SVR4 [48 ]). Но в дальнейшем происходит отрыв спецификаций стандартов POSIX от этой конкретной ОС. Подход к организации системы на основе множества базовых системных функций был применен не только в UNIX (например, WinAPI фирмы Microsoft).

    В 1988 году был опубликован стандарт 1003.1 – 1988, определяющий API (Application Programming Interface, программный интерфейс приложений). Через два года был принят новый вариант стандарта IEEE 1003.1 – 1990. В нем были определены общие правила программного интерфейса, как для системных вызовов, так и для библиотечных функций. Далее утверждаются дополнения к нему, определяющие сервисы для систем реального времени, "нитей" POSIX и др. Важным является стандарт POSIX 1003.2 – 1992 – определение командного интерпретатора и утилит.

    Имеется перевод [1 ] этих двух групп документов, которые получили такие названия: POSIX.1 (интерфейс прикладных программ) и POSIX.2 (командный интерпретатор и утилиты – интерфейс пользователя). В упомянутом переводе содержатся три главы: основные понятия, системные услуги и утилиты. Глава "Системные услуги" разделена на несколько частей, каждая из которых группирует сходные по функциям услуги. Например, в одном из разделов "Базовый ввод/вывод" седьмая часть, посвященная операциям с каталогами, описывает три функции (opendir, readdir и closedir). Они определяются в четырех пунктах: "Синтаксис", "Описание", "Возвращаемое значение" и "Ошибки".

    Для тех, кто знаком с алгоритмическим языком программирования С, приведем пример фрагментов описания.

    Языки программирования, трансляторы, компиляторы и интерпретаторы

    Фактически такое описание дает представление о том, как специфицируется "Интерфейс системных вызовов". В пункте "Синтаксис" про функцию readdir приведены такие строки:

    #include

    #include

    struct dirent *readdir(DIR *dirp);

    Второй пункт ("Описание") содержит следующий текст:

    "Типы и структуры данных, используемые в определениях с каталогами, определяются в файле dirent.h. Внутренний состав каталогов определяется реализацией. При чтении с помощью функции readdir формируется объект типа struct dirent, содержащий в качестве поля символьный массив d_name, в котором находится завершаемое символом NUL локальное имя файла.

    Readdir читает текущий элемент каталога и устанавливает указатель позиции на следующий элемент. Открытый каталог задается указателем dirp. Элемент, содержащий пустые имена, пропускается".

    А вот что приводится в пункте "Возвращаемое значение":

    "Readdir при успешном завершении возвращает указатель на объект типа struct dirent, содержащий прочитанный элемент каталога. Прочитанный элемент может заноситься в статическую память и перекрывается очередным таким вызовом, примененным к тому же открытому каталогу. Вызов readdir для различных открытых каталогов не перекрывает читаемую информацию. В случае ошибки или достижении конца файла возвращается нулевой указатель".

    В пункте "Ошибки стандарта" указано следующее:

    "Readdir и closedir обнаруживают ошибку. Dirp не являются указателем на открытый каталог".

    Этот пример показывает, как описываются представляемые приложением услуги. Требования к операционной системе (реализации) заключается в том, что она "…должна поддерживать все обязательные служебные программы, функции, заголовочные файлы с обеспечением специфицированного в стандарте поведения. Константа _POSIX_VERSION имеет значение 200112L [49 ]".

    В мире компьютерных технологий существует такое словосочетание: "программирование POSIX". Этому можно научиться, используя различные руководства по системному программированию UNIX и операционным системам (например, [5 ]). Есть отдельная книга с таким названием [3 ]. Заметим, что в предисловии к этой книге сказано, что она описывает ". . . стандарт втройне. . ", так как она опирается на последнюю версию POSIX 2003 года, в основе которой три стандарта: IEEE Std 1003.1, технический стандарт Open Group и ISO/IEC 9945.

    Как же проверить соответствие конкретной системы стандарту POSIX? Формализация такого вопроса не так проста, как кажется на первый взгляд. В современных версиях предлагается 4 вида соответствия (четыре семантических значения слова "соответствие": полное, международное, национальное, расширенное).

    В рассматриваемых документах приводятся списки двух видов интерфейсных средств: обязательные (по возможности предполагается его компактность) и факультативные. Последние должны либо обрабатываться предписанным образом, либо возвращать фиксированное значение кода ENOSYS, означающего, что функция не реализована.

    Отметим, что набор документов POSIX изменяется уже много лет. Но разработчики новых версий всегда стараются максимально сохранить преемственность с предыдущими версиями, В более свежих редакциях может появиться что-то новое. Например, в документе 2004 года были объединены четыре части [50 ]:

    • Base Definitions volume (XBD) – определение терминов, концепций и интерфейсов, общих для всех томов данного стандарта;
    • System Interfaces volume (XSH) – интерфейсы системного уровня и их привязка к языку Си, где описываются обязательные интерфейсы между прикладными программами и операционной системой, в частности – спецификации системных вызовов;
    • Shell and Utilities volume (XCU) – определение стандартных интерфейсов командного интерпретатора (т.н. POSIX-shell), а также базовой функциональности Unix-утилит;
    • Rationale (Informative) volume (XRAT) – дополнительная, в том числе историческая, информация о стандарте.

    Как и первые редакции, документ в своей основной части описывает группы представляемых услуг. Каждый элемент там описан в следующих пунктах: NAME (Имя), SINOPSIS (Синтаксис), DISCRIPTION (Описание), RETURN VALUE (Возвращаемое значение), ERRORS (Ошибки) и в заключении EXAMPLE (Примеры).

    Современные версии стандарта определяют требования как к операционной системе, так и к прикладным программам. Приведем пример [51 ].

    Функция readdir() должна возвращать указатель на структуру, относящуюся к очередному элементу каталога. Возвращаются ли элементы каталога с именами "точка" и "точка-точка", стандартом не специфицировано. В этом примере возможно четыре исхода, а требование к прикладной программе состоит в том, что она должна быть рассчитана на любой из них.

    И в заключение приведем отрывок из курса лекций Сухомлинова ("ВВЕДЕНИЕ В АНАЛИЗ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ", Сухомлинов В.А. Часть V. Методология и система стандартов POSIX OSE), посвященным области применимости стандартов [52 ]:

    "Область применимости стандартов POSIX OSE (Open System Environment) – обеспечение следующих возможностей (называемых еще свойствами открытости) для разрабатываемых информационных систем:

    • Переносимость приложений на уровни исходных текстов (Application Portability at the Source Code Level), т.е. предоставление возможности переноса программ и данных, представленных на исходных текстах языков программирования, с одной платформы на другую.
    • Системная интероперабельность (System Interoperability), т.е. поддержка взаимосвязанности между системами.
    • Переносимость пользователей (User Portability), т.е. обеспечение возможности для пользователей работать на различных платформах без переобучения.
    • Адаптируемость к новым стандартам (Accommodation of Standards), связанным с достижением целей открытости систем.
    • Адаптируемость к новым информационным технологиям (Accommodation of new System Technology) на основе универсальности классификационной структуры сервисов и независимости модели от механизмов реализации.
    • Масштабируемость прикладных платформ (Application Platform Scalability), отражающая возможность переноса и повторного использования прикладного программного обеспечения применительно к разным типам и конфигурациям прикладных платформ.
    • Масштабируемость распределенных систем (Distributed System Scalability), отражающая возможность функционирования прикладного программного обеспечения независимо от развития топологии и ресурсов распределенных систем.
    • Прозрачность реализаций (Implementation Transparency), т.е. сокрытие от пользователей за интерфейсами систем особенностей их реализации.
    • Системность и точность спецификаций функциональных требований пользователей (User Functional Requirements), что обеспечивает полноту и ясность определения потребностей пользователей, в том числе в определении состава применяемых стандартов."

    Это позволяет решать следующие задачи:

    • интеграция информационных систем из компонент различных изготовителей;
    • эффективность реализаций и разработок, благодаря точности спецификаций и соответствию стандартным решениям, отражающим передовой научно-технический уровень;
    • эффективность переноса прикладного программного обеспечения, благодаря использованию стандартизованных интерфейсов и прозрачности механизмов реализации сервисов систем.

    Также в стандартах формально определяются такие важные понятия операционных систем: пользователь; файл; процесс; терминал; хост; узел сети; время; языково-культурная среда. Там не приводятся формулировки такого определения, но вводятся применяемые к ним операции и присущие им атрибуты.

    Всего в списке стандартов POSIX более трех десятков элементов. Их имена традиционно начинаются буквой "Р", после которой расположено четырехзначное число с дополнительными символами.

    Существуют также групповые имена стандартов POSIX1, POSIX2 и т.д. Например, POSIX1 связан со стандартами на базовые интерфейсы ОС (Р1003.1х, где вместо х либо пусто, либо символы от a до g; таким образом, в этой группе 7 документов), а POSIX3 – методы тестирования (два документа – Р2003 и Р2003n).

    Языки программирования могут быть разделены на компилируемые и интерпретируемые.

    Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполнимый модуль, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.

    Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера - это интерпретатор машинного кода.

    Кратко говоря, компилятор переводит исходный текст программы на машинный язык сразу и целиком, создавая при этом отдельную исполняемую программу, а интерпретатор выполняет исходный текст прямо во время исполнения программы.

    Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль, можно написать интерпретатор. Кроме того, большинство современных "чистых" интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

    Для любого интерпретируемого языка можно создать компилятор - например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

    Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем, при каждом изменении текста программы требуется её перекомпиляция, что создаёт трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

    Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями (см. выше), кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.

    Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.

    Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции "на лету" (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# - Common Language Runtime.

    Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов. Следует упомянуть также оригинальный язык Форт (Forth) имеющий и интерпретатор и компилятор.

    Поскольку текст, записанный на языке программирования, непонятен компьютеру, то требуется перевести его на машинный код. Такой перевод программы с языка программирования на язык машинных кодов называется трансляцией, а выполняется она специальными программами - трансляторами.

    Транслятор - обслуживающая программа, преобразующая исходную программу, предоставленную на входном языке программирования, в рабочую программу, представленную на объектном языке.

    В настоящее время трансляторы разделяются на три основные группы: ассемблеры, компиляторы и интерпретаторы.

    Ассемблер - системная обслуживающая программа, которая преобразует символические конструкции в команды машинного языка. Специфической чертой ассемблеров является то, что они осуществляют дословную трансляцию одной символической команды в одну машинную. Таким образом, язык ассемблера (еще называется автокодом) предназначен для облегчения восприятия системы команд компьютера и ускорения программирования в этой системе команд. Программисту гораздо легче запомнить мнемоническое обозначение машинных команд, чем их двоичный код.

    Вместе с тем, язык ассемблера, кроме аналогов машинных команд, содержит множество дополнительных директив, облегчающих, в частности, управление ресурсами компьютера, написание повторяющихся фрагментов, построение многомодульных программ. Поэтому выразительность языка намного богаче, чем просто языка символического кодирования, что значительно повышает эффективность программирования.

    Компилятор - это обслуживающая программа, выполняющая трансляцию на машинный язык программы, записанной на исходном языке программирования. Также как и ассемблер, компилятор обеспечивает преобразование программы с одного языка на другой (чаще всего, в язык конкретного компьютера). Вместе с тем, команды исходного языка значительно отличаются по организации и мощности от команд машинного языка. Существуют языки, в которых одна команда исходного языка транслируется в 7-10 машинных команд. Однако есть и такие языки, в которых каждой команде может соответствовать 100 и более машинных команд (например, Пролог). Кроме того, в исходных языках достаточно часто используется строгая типизация данных, осуществляемая через их предварительное описание. Программирование может опираться не на кодирование алгоритма, а на тщательное обдумывание структур данных или классов. Процесс трансляции с таких языков обычно называется компиляцией, а исходные языки обычно относятся к языкам программирования высокого уровня (или высокоуровневым языкам). Абстрагирование языка программирования от системы команд компьютера привело к независимому созданию самых разнообразных языков, ориентированных на решение конкретных задач. Появились языки для научных расчетов, экономических расчетов, доступа к базам данных и другие.

    Интерпретатор - программа или устройство, осуществляющее пооператорную трансляцию и выполнение исходной программы. В отличие от компилятора, интерпретатор не порождает на выходе программу на машинном языке. Распознав команду исходного языка, он тут же выполняет ее. Как в компиляторах, так и в интерпретаторах используются одинаковые методы анализа исходного текста программы. Но интерпретатор позволяет начать обработку данных после написания даже одной команды. Это делает процесс разработки и отладки программ более гибким. Кроме того, отсутствие выходного машинного кода позволяет не "захламлять" внешние устройства дополнительными файлами, а сам интерпретатор можно достаточно легко адаптировать к любым машинным архитектурам, разработав его только один раз на широко распространенном языке программирования. Поэтому, интерпретируемые языки, типа Java Script, VB Script, получили широкое распространение. Недостатком интерпретаторов является низкая скорость выполнения программ. Обычно интерпретируемые программы выполняются в 50-100 раз медленнее программ, написанных в машинных кодах.

    Эмулятор - программа или программно-техническое средство, обеспечивающее возможность без перепрограммирования выполнять на данной ЭВМ программу, использующую коды или способы выполнения операция, отличные от данной ЭВМ. Эмулятор похож на интерпретатор тем, что непосредственно исполняет программу, написанную на некотором языке. Однако, чаще всего это машинный язык или промежуточный код. И тот и другой представляют команды в двоичном коде, которые могут сразу исполняться после распознавания кода операций. В отличие от текстовых программ, не требуется распознавать структуру программы, выделять операнды.

    Эмуляторы используются достаточно часто в самых различных целях. Например, при разработке новых вычислительных систем, сначала создается эмулятор, выполняющий программы, разрабатываемые для еще несуществующих компьютеров. Это позволяет оценить систему команд и наработать базовое программное обеспечение еще до того, как будет создано соответствующее оборудование.

    Очень часто эмулятор используется для выполнения старых программ на новых вычислительных машинах. Обычно новые компьютеры обладают более высоким быстродействием и имеют более качественное периферийное оборудование. Это позволяет эмулировать старые программы более эффективно по сравнению с их выполнением на старых компьютерах.

    Перекодировщик - программа или программное устройство, переводящие программы, написанные на машинном языке одной ЭВМ в программы на машинном языке другой ЭВМ. Если эмулятор является менее интеллектуальным аналогом интерпретатора, то перекодировщик выступает в том же качестве по отношению к компилятору. Точно также исходный (и обычно двоичный) машинный код или промежуточное представление преобразуются в другой аналогичный код по одной команде и без какого-либо общего анализа структуры исходной программы. Перекодировщики бывают полезны при переносе программ с одних компьютерных архитектур на другие. Они могут также использоваться для восстановления текста программы на языке высокого уровня по имеющемуся двоичному коду.

    Макропроцессор - программа, обеспечивающая замену одной последовательности символов другой. Это разновидность компилятора. Он осуществляет генерацию выходного текста путем обработки специальных вставок, располагаемых в исходном тексте. Эти вставки оформляются специальным образом и принадлежат конструкциям языка, называемого макроязыком. Макропроцессоры часто используются как надстройки над языками программирования, увеличивая функциональные возможности систем программирования. Практически любой ассемблер содержит макропроцессор, что повышает эффективность разработки машинных программ. Такие системы программирования обычно называются макроассемблерами.

    Макропроцессоры используются и с языками высокого уровня. Они увеличивают функциональные возможности таких языков как PL/1, C, C++. Особенно широко макропроцессоры применяются в C и C++, позволяя упростить написание программ. Макропроцессоры повышают эффективность программирования без изменения синтаксиса и семантики языка.

    Синтаксис - совокупность правил некоторого языка, определяющих формирование его элементов. Иначе говоря, это совокупность правил образования семантически значимых последовательностей символов в данном языке. Синтаксис задается с помощью правил, которые описывают понятия некоторого языка. Примерами понятий являются: переменная, выражение, оператор, процедура. Последовательность понятий и их допустимое использование в правилах определяет синтаксически правильные структуры, образующие программы. Именно иерархия объектов, а не то, как они взаимодействуют между собой, определяются через синтаксис. Например, оператор может встречаться только в процедуре, а выражение в операторе, переменная может состоять из имени и необязательных индексов и т.д. Синтаксис не связан с такими явлениями в программе как "переход на несуществующую метку" или "переменная с данным именем не определена". Этим занимается семантика.

    Семантика - правила и условия, определяющие соотношения между элементами языка и их смысловыми значениями, а также интерпретацию содержательного значения синтаксических конструкций языка. Объекты языка программирования не только размещаются в тексте в соответствии с некоторой иерархией, но и дополнительно связаны между собой посредством других понятий, образующих разнообразные ассоциации. Например, переменная, для которой синтаксис определяет допустимое местоположение только в описаниях и некоторых операторах, обладает определенным типом, может использоваться с ограниченным множеством операций, имеет адрес, размер и должна быть описана до того, как будет использоваться в программе.

    Синтаксический анализатор - компонента компилятора, осуществляющая проверку исходных операторов на соответствие синтаксическим правилам и семантике данного языка программирования. Несмотря на название, анализатор занимается проверкой и синтаксиса, и семантики. Он состоит из нескольких блоков, каждый из которых решает свои задачи. Более подробно будет рассмотрен при описании структуры транслятора. транслятор компилятор язык программирование

    Любой транслятор выполняет следующие основные задачи:

    • - анализирует транслируемую программу, в частности определяет, содержит ли она синтаксические ошибки;
    • - генерирует выходную программу (ее часто называют объектной) на языке машинных команд;
    • - распределяет память для объектной программы.1.1 Интерпретаторы

    Одно, часто упоминаемое преимущество интерпретаторной реализации состоит в том, что она допускает "непосредственный режим". Непосредственный режим позволяет вам задавать компьютеру задачу вроде PRINT 3.14159*3/2.1 и возвращает вам ответ, как только вы нажмете клавишу ENTER (это позволяет использовать компьютер стоимостью 3000 долларов в качестве калькулятора стоимостью 10 долларов). Кроме того, интерпретаторы имеют специальные атрибуты, которые упрощают отладку. Можно, например, прервать обработку интерпретаторной программы, отобразить содержимое определенных переменных, бегло просмотреть программу, а затем продолжить исполнение.

    Больше всего программистам нравится в интерпретаторах возможность получения быстрого ответа. Здесь нет необходимости в компилировании, так как интерпретатор всегда готов для вмешательства в вашу программу. Введите RUN и результат вашего самого последнего изменения оказывается на экране.

    Однако интерпретаторные языки имеют недостатки. Необходимо, например, иметь копию интерпретатора в памяти все время, тогда как многие возможности интерпретатора, а следовательно и его возможности могут не быть необходимыми для исполнения конкретной программы.

    Слабо различимым недостатком интерпретаторов является то, что они имеют тенденцию отбивать охоту к хорошему стилю программирования. Поскольку комментарии и другие формализуемые детали занимают значительное место программной памяти, люди стремятся ими не пользоваться. Дьявол менее яростен, чем программист, работающий на интерпретаторном Бейсике, пытающийся получить программу в 120К в памяти емкостью 60К. но хуже всего то, что интерпретаторы тихоходны.

    Ими затрачивается слишком много времени на разгадывание того, что делать, вместо того чтобы заниматься действительно делом. При исполнении программных операторов, интерпретатор должен сначала сканировать каждый оператор с целью прочтения его содержимого (что этот человек просит меня сделать?), а затем выполнить запрошенную операцию. Операторы в циклах сканируются излишне много.

    Рассмотрим программу: на интерпретаторном Бэйсике 10 FOR N=1 TO 1000 20 PRINT N,SQR(N) 30 NEXT N при первом переходе по этой программе Бейсик-Интерпретатор должен разгадать что означает строка 20:

    • 1. преобразовать числовую переменную N в строку
    • 2. послать строку на экран
    • 3. переместить в следующую зону печати
    • 4. вычислить квадратный корень из N
    • 5. преобразовать результат в строку
    • 6. послать строку на экран

    При втором проходе цикла все это разгадывание повторяется снова, так как абсолютно забыты все результаты изучения этой строки какую-то миллисекунду тому назад. И так во всех следующих 998 проходах. Совершенно очевидно, что если вам удалось каким-то образом отделить фазу сканирования/понимания от фазы исполнения вы имели бы более быструю программу. И это как раз то, для чего существуют компиляторы.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: