Перспективы солнечной энергетики. Солнечная генерация обгоняет ветер

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

На большей части территории России единственными источниками энергии выступают дизельные или бензиновые электростанции. Для развития производства энергии на основе использования солнечной и ветровой энергетики, отвечающего современным подходам к экологии, государству необходимо заинтересовать инвесторов.

Чистый евроэксперимент

Страны Евросоюза стали внедрять использование солнечной энергии в рамках уменьшения зависимости от углеводородов и в целях снижения выбросов в атмосферу парниковых газов. Суммарная установленная мощность солнечных электростанций (СЭС) в мире к 2019 году может достичь 500 ГВт, следует из аналитического отчета международной консалтинговой компании IHS. По итогам 2014 года объем солнечной генерации составил 180 ГВт. На сегодня в солнечную энергетику во всем мире инвестировано уже более $150 млрд, ежегодно этот объем увеличивается на 15-20%.

Одним из мировых лидеров на рынке солнечной генерации является Германия, на долю которой приходится 31% совокупной мощности. Уникальная особенность производства солнечной энергии в этой стране состоит в том, что 90% всех панелей расположены на крышах домов. Причем половина солнечных электростанций принадлежит частным лицам, а не генерирующим компаниям.

Как следует из отчета международной Ассоциации производителей солнечной энергии (Solar Energy Industries Association, SEIA) и GTM Research, в Соединенных Штатах к концу этого года будет работать более миллиона солнечных установок — их количество увеличится на 36% по сравнению с 2014 годом. За последние два года в США было введено в действие больше солнечных станций, чем за предыдущие 38 лет.

Китай и Япония сейчас занимают в совокупности 50% мирового рынка солнечной энергетики. Индия в среднесрочной перспективе планирует увеличить мощность солнечных установок с 2 ГВт до 20 ГВт.

Российская альтернатива

В России доля солнечной генерации составляет лишь 0,5-0,8% от общего объема мощности электростанций. По данным заместителя министра энергетики Алексея Текслера, которые он привел в сентябре в интервью телеканалу «Россия 24», до 2024 года в России планируется ввести порядка 1,6 ГВт мощностей солнечной генерации. Первая солнечная электростанция запущена на Алтае, этой осенью ее мощность увеличена в два раза, до 10 МВт. В течение пяти ближайших лет в регионе планируется возвести еще четыре подобные электростанции. На данный момент массив солнечных батарей работает в Белгородской области. В Крыму до 20% энергии добывается за счет ВИЭ — в первую очередь солнечных батарей и ветряных электростанций.

Совокупная мощность проектов солнечных электростанций, ввод которых в эксплуатацию запланирован до конца 2015 года, составляет 175,2 МВт. В Астраханской области должны появиться солнечные электростанции совокупной установленной мощностью 90 МВт, в Оренбургской области — 30 МВт, в Белгородской области и Башкирии — по 15 МВт.

Возврат инвестиций в строительство солнечных электростанций осуществляется на основе договора о поставке мощности (ДПМ) по аналогии с традиционной генерацией. В соответствии с этим документом генерирующая компания получает плату за мощность, которую она поставляет на оптовый рынок. Параметры тарифа для каждого объекта рассчитываются отдельно.

При господдержке строятся заводы по производству компонентов для солнечных электростанций. Это позволяет выполнить требования законодательства, в соответствии с которыми до 70% оборудования для СЭС должно производиться в России. Строительство таких заводов планируется в Подмосковье и Татарстане. На данный момент уже построен завод «Хевел» по производству тонкопленочных солнечных модулей в Чувашии.

По мнению экспертов, такое оборудование слишком дорого для использования в частном секторе экономики, срок его окупаемости составляет четыре—семь лет. Поэтому киловатт электроэнергии, получаемой с применением солнечных батарей, по-прежнему значительно дороже, чем электричество по государственному тарифу.

В таких условиях рынок может эффективно развиваться только при поддержке государства. Например, Великобритания в 2013 году провела эксперимент — солнечные батареи были запущены в продажу в торговой сети. Стоимость 18 панелей составляла £5,7 тыс. ($9,2 тыс.), на их приобретение выдавались госсубсидии. В дальнейшем пользователи получали возможность продавать излишки электроэнергии государству.

Несмотря на экономический кризис, аналитики высоко оценивают потенциал отрасли. Как отмечает президент Ассоциации солнечной энергетики России Антон Усачев, в последние пять лет технологии и оборудование для производства солнечной энергетики заметно подешевели, одновременно выросла эффективность солнечных модулей. Благодаря этому уже сегодня можно говорить о возможности полноценной конкуренции солнечной энергетики с традиционной генерацией.

Инвесторам неинтересно

Применение энергии ветра в России развивается еще медленнее, чем солнечная энергетика. Единственная промышленная ветроэлектростанция находится в Калининградской области, есть электростанции на Чукотке, в Башкирии, Калмыкии и Коми. В прошлом году Россия получила от ветропарков всего 16,8 МВт мощности. Схему их строительства на территории России в 2013 году утвердил премьер-министр Дмитрий Медведев. Согласно этим планам за 15 лет в стране должно быть построено 16 ветряных электростанций.

Однако инвесторов не устраивают условия, которые сложились на этом рынке. Здесь действуют те же правила, что и для солнечной генерации, предполагающие высокую квоту для отечественного оборудования. Но у нас в стране нет производства компонентов для ветроэлектростанций, их приходится закупать за рубежом. Поэтому желающих строить «ветряки» пока не нашлось.

Российские власти давно пытались привлечь внимание инвесторов к созданию на севере Дальнего Востока крупного ветропарка суммарной мощностью 50-70 ГВт. О том, что этот вопрос прорабатывается с иностранными партнерами, говорил в феврале текущего года глава Минэнергетики Александр Новак. 10 сентября РАО «ЭС Востока» сообщило об открытии в поселке Усть-Камчатск самого крупного на Дальнем Востоке ветропарка. Комплекс возводится при участии японской правительственной организации по разработке новых энергетических и промышленных технологий NEDO, которая безвозмездно предоставила оборудование для парка. Японцы в этом проекте преследуют научную цель — испытывают работоспособность установок в условиях холодного климата.

Усть-камчатский комплекс состоит из трех ветроэнергетических установок суммарной мощностью 900 кВт. Прогнозируется, что он, частично заместив выработку энергии дизельной электростанцией поселка, позволит экономить более 550 т топлива в год. Его сдача в эксплуатацию планируется в конце 2015 года. Предусмотрена возможность строительства впоследствии еще семи ВЭУ, в результате чего мощность комплекса достигнет 3 МВт.

Кроме Дальнего Востока и Севера в густонаселенных районах европейской части России имеется довольно много мест, где использование ветростанций можно считать перспективным. Это северо-запад страны — Мурманская, Архангельская и Ленинградская области. А также южные регионы — Краснодарский край, Карачаево-Черкесия, Ростовская, Волгоградская, Астраханская области, Калмыкия, считает президент Российской ассоциации ветровой индустрии Игорь Брызгунов.

В конце июля текущего года глава правительства Дмитрий Медведев своим распоряжением продлил действие программы поддержки ветрогенерации на оптовом рынке электрической энергии и мощности. Поддержка продлена на четыре года — с 2020 по 2024 год. Всего до 2024 года планируется ввести объектов ветрогенерации на 3600 МВт мощности, в 2015-2016 годах — на 50 и 51 МВт соответственно. «Документ направлен на поддержание необходимого уровня конкуренции на рынке ветроэнергетики и инвестирование в развертывание нового производственного оборудования», — говорится в пояснительной записке.

  • Устройство и принцип работы
  • Где применяются?
  • Преимущества устройства

В настоящее время актуальной становится обеспеченность энергоресурсами отдаленных и труднодоступных районов. Причин этому несколько. Во-первых, электричество - незаменимый элемент комфортного существования современного человека. Во-вторых, снижение затрат за пользование электричеством и постоянная бесперебойная его подача имеют большое значение в наше время. Солнечный генератор - это прибор, с помощью которого можно решить вопросы энергообеспеченности и экономии энергоресурсов.

Устройство и принцип работы

Солнечный генератор представляет собой металлический корпус-моноблок со съемной крышкой. Он состоит из нескольких несложных элементов:

  1. Фотопанели, которые создают постоянный ток.
  2. Аккумулятор для накопления энергии.
  3. Инвертор, преобразующий постоянный ток в переменный.
  4. Контроллер заряда, накапливающий энергию в аккумуляторе.

Принцип работы: солнечная панель собирает энергию от солнца и сохраняет её в аккумуляторе для использования в дальнейшем. При этом вырабатывается постоянный ток. Также батареи обеспечивают питание максимальной нагрузки, то есть ток нагрузки обеспечивает сумма токов от солнечной батареи и аккумулятора.

Если нужно получить 220В переменного тока, то следует использовать преобразователи постоянного тока в переменный. Энергия солнца в генераторе может применяться также напрямую разными нагрузками постоянного тока.

Солнечный генератор электроэнергии имеет предохранительные модули, защищающие от превышения допустимых значений тока и напряжения. Что важно - если в какое-то время нет солнечных лучей, то генератор можно подзарядить от обыкновенной электросети.

Где применяются?

Солнечные генераторы бывают разных моделей и имеют различные характеристики (а именно производительность, ёмкость аккумулятора, время, необходимое для зарядки и т.д.). Но чаще всего у них у всех выходные параметры - розетки на 220 В и выходы на 12 В, а также в наличии дисплей, отображающий работу прибора.
Несмотря на свою универсальность, генераторы на солнечных батареях зависят от погодных условий. А потому могут применяться только в качестве резервного или вспомогательного источника электроэнергии. Особую актуальность это имеет для жилых домов, тем более в отдаленных уголках страны и районах с нестабильным электроснабжением.

Солнечные батареи устанавливаются на улице в местах с наибольшим доступом солнечных лучей, ведь их эффективность напрямую зависима от освещенности. Чаще всего ставят их на крышах домов либо на других подходящих участках. При этом желательно предусмотреть возможность менять угол наклона фотоэлементов. Например, увеличив её до 75-80 градусов, получаем то, что лучи солнца в 12-00 дня практически перпендикулярны поверхности батареи. Солнечные батареи устанавливаются и подключаются очень просто, их удобно обслуживать. К генератору они подключаются с помощью специального сетевого шнура.

Солнечный генератор создан для использования в качестве основного и дополнительного (резервного, аварийного) источника тока частных домов и коттеджей, дач, объектов торговли, демонстрационных площадок, туристических баз и тому подобное. У него весьма обширный спектр использования. Можно применять для обеспечения электричеством осветительных и бытовых приборов (холодильников, телевизоров, ноутбуков, компьютеров, оргтехники), электроинструмента, дренажных и циркуляционных насосов, отопительных котлов и так далее. Время автономной работы у всех моделей разное, но практически все они довольно производительны и могут работать непрерывно до 10-12 часов.

Преимущества устройства

Солнечный генератор имеет такие преимущества:

  1. Не зависит от электросети, заряд от энергии солнца.
  2. Возможность подзарядки от сети 220 В (или даже от прикуривателя).
  3. Выходная мощность переменного тока до 1500 Вт.
  4. На выходе 220 В переменного и 12 В постоянного тока.
  5. Не боится короткого замыкания.
  6. Не зависит от топлива (бензин, дизельное топливо), так как его не потребляет.
  7. Работа без шумов.
  8. Отсутствие вредных выбросов, альтернативный источник электроэнергии.
  9. Возможность применения в помещениях без вентиляции.
  10. Эстетичный дизайн, компактность и удобство использования.
  11. Наличие светодиодного индикатора зарядки аккумулятора.
  12. Регулируемый кронштейн для крепления солнечных панелей.
  13. Легко транспортируется.
  14. Экономит электроэнергию.

Свой генератор электричества - удовольствие не из дешевых. На начальном этапе придётся понести определенные затраты на его приобретение и установку. Он дороже привычных топливных моделей. Но не стоит об этом беспокоиться, так эти первоначальные инвестиции достаточно быстро окупятся, и уже спустя несколько лет Вы будете наслаждаться бесперебойным электроснабжением, экономя при этом свои деньги.

Можно ли собрать устройство самостоятельно?

Сейчас можно приобрести любую модификацию солнечного генератора, а можно сделать его своими руками. Для этого достаточно иметь необходимые знания по его строению и принципу работы. Можно собрать генератор электрической энергии с любым напряжением и током на выходе путем соединения цепочек фотоэлементов или батарей в последовательно-параллельные комбинации. При этом важно помнить, что параллельное подключение увеличивает мощность, а последовательное - напряжение.

Ни для кого не секрет, что природные ресурсы, используемые человеком, начинают заканчиваться. А благодаря альтернативным источникам энергии, таким как солнечный генератор можно сохранить природные ресурсы и восстанавливать их запасы. В наше время появились технологии, позволяющие использовать на пользу человека щедрый источник энергии - солнечные лучи.

Солнце - это безвозмездный совершенно чистый и неиссякаемый источник энергии. Генератор электрической энергии, несомненно, будет способствовать сохранению экологии на нашей планете и жизни будущих поколений.


Энтузиасты создали «волшебный» чемоданчик, который позволит заряжать свои мобильные устройства, ноутбуки и даже налаживать освещение там, где нет электричества. Все что нужно новинке – солнечный свет.

Ученые, размышляющие, о цивилизационном развитии разумных форм жизни считают, что характеризовать их нужно в первую очередь по принципу того, как данная форма получает для своих нужд энергию. Первый этап – получение энергии из ресурсов, человечество уже минуло, и сейчас находиться в начале второго, переходного этапа своего развития – использовании энергии самого космоса.


Хотя сегодня получение электроэнергии при помощи сжигания сырья остается одним из самых популярных способов, генераторы, основанные на получении солнечной энергии, стремительно набирают популярность. Вторгается солнечная энергия в нашу цивилизацию не только на уровне высокой науки и техники, но и на вполне бытовом уровне. Уже сегодня есть множество устройств, позволяющих получать солнечную энергию. Одним из таких является и недавно созданный Kalipak Portable Solar Generator.


Название данного девайса говорит все и сразу, что о нем вообще следует знать, во всяком случае, в общих чертах. В сложенном виде выглядит Kalipak Portable Solar Generator, как чемоданчик. Первое, что следует знать, что это электрический генератор, способный аккумулировать солнечную энергию. Получение энергии производится, как несложно догадаться, при помощи раскладных солнечных батарей. Мощность солнечных панелей 20 Ватт. Вторая важная деталь – это аккумуляторы. В Kalipak используются литий-ионные батареи. Заряжать их можно как от солнца, так и предварительно от электросети дома.

Передавать имеющийся заряд энергии Kalipak может почти любым устройствам. Для этого предусмотрены сразу 4 сверхмощных USB-разъёма. Помимо них есть еще 2 отдельных порта на 12 В, которые можно использовать, например, для налаживания освещения. Что касается емкости батарей, то полного заряда хватит, чтобы зарядить 32 iPhone или 10 ноутбуков.

Отдельно следует отметить, что в переносном генераторе имеется свой жесткий диск для хранения информации с мобильных устройств и компьютеров. Есть также возможность синхронизировать датчики чемоданчика с мобильными устройствами на базе операционных систем iOS и Android.

В продолжение темы , которым не страшна самая страшная стихия.

О солнечной энергетике и перспективах ее развития ведутся споры и дискуссии уже много лет. Большинство считают солнечную энергетику – энергетикой будущего, надеждой всего человечества. Серьезные инвестиции вкладывает в строительство солнечных электростанций большое количество компаний. Солнечную энергетику стремятся развивать во многих странах мирах, считая ее главной альтернативой традиционным энергоносителям. Германия, являясь далеко не солнечной страной, стала мировым лидеров в этой сфере. Совокупная мощность СЭС Германии растет год от года. Серьезно занимаются разработками в области энергии солнца и в Китае. Согласно оптимистичному прогнозу International Energy Agency, солнечные электростанции к 2050 году смогут производить до 20-25% мировой электроэнергии.
Альтернативный взгляд на перспективы солнечных электростанций базируется на том, что затраты, которые требуются для изготовления солнечных батарей и аккумуляторных систем, в разы превышают прибыль от производимой солнечными электростанциями электроэнергии. Противники этой позиции уверяют, что все как раз наоборот. Современные солнечные батареи способны работать без новых капиталовложений десятки и даже сотни лет, произведенная ими суммарная энергия равна бесконечности. Вот почему в долгосрочной перспективе электроэнергия, полученная с использованием энергии солнца, станет не просто рентабельной, а сверхприбыльной.
Где же истина? Попробуем разобраться в этом вместе с вами, уважаемые читатели. Мы рассмотрим современные подходы в сфере солнечной энергетики и некоторые гениальнейшие идеи, которые на сегодняшний день уже реализованы. Мы попробуем установить КПД солнечных батарей, функционирующих в настоящее время, понять, почему сегодня этот КПД является довольно низким.

Эффективность солнечных батарей в России
Согласно современным исследованиям, солнечная энергия составляет порядка 1367 Ватт на 1 кв.м (солнечная постоянная). На экваторе через атмосферу до земли доходит лишь 1020 Ватт. На территории России с помощью солнечных электростанций (при условии, что КПД солнечных элементов составляет сегодня 16%) в среднем можно получить 163,2 Ватта на квадратный метр.
В с учетом погодных условий, длительности дня и ночи, а также, типа установки солнечных батарей (КПД солнечной батареи не учитывается).
Если в Москве установить квадратный километр солнечных батарей под углом в 40 градусов (что для Москвы оптимально), то годовой объем выработанной электроэнергии составит 1173*0.16 = 187.6 ГВт*ч. При цене на электроэнергию в 3 рубля за кВт/ч, условная стоимость сгенерированной электроэнергии – 561 млн. рублей.

Наиболее распространенные способы генерации электроэнергии с помощью солнца:

Солнечные тепло-электространции
Громадные зеркала таких солнечных электростанций, поворачиваясь, ловят солнце и отражают его на коллектор. Принцип функционирования таких электрогенерирующих станций основан на преобразовании тепловой энергии солнца в механическую электроэнергию термодинамической машины либо с помощью газопоршневого двигателя Стирлинга, либо с помощью нагрева воды и т.п.

В качестве примера рассмотрим электростанцию Ivanpah (мощность 392 мегаватт), в которую вложил свои средства всемогущий Google. В строительство солнечной электростанции, расположенной в калифорнийской пустыне Мохаве, вложено более двух миллиардов долларов США. На 1 кВт установленной мощности СЭС затрачено 5612 долларов. Многие полагают, что эти затраты, хотя и превышают затраты на сооружение угольных электростанций, гораздо ниже, чем затраты на строительство АЭС. Но так ли это? Во первых, на атомной электростанции, на 1 кВт ее установленной мощности расходуется от 2000 до 4000 долларов, что дешевле, чем затраты, которые пошли на строительство Ivanpah. Во вторых, годовая выработка электроэнергии солнечной электростанции – 1079 ГВт*ч, следовательно, ее среднегодовая мощность 123.1МВт. К тому же, солнечная электростанция станция способна генерировать энергию солнца только в дневные часы. Таким образом, «усредненная» стоимость строительства СЭС доходит до 17870 долларов за 1 кВт, а это довольно значительная цена. Пожалуй, дороже обошлась бы разве что выработка электричества в открытом космосе. Затраты на строительство привычных электростанций, работающих, например, на газе, в 20-40 раз ниже. При этом, в отличие от солнечных электростанций, эти электростанции могут функционировать постоянно, производя электроэнергию тогда, когда в ней есть потребность, а не только в те часы, когда светит солнце.
Но мы знаем, что современные солнечные теплоэлектростанции способны генерировать электроэнергию круглосуточно, используя для этого большой объем нагреваемого в течение всего светового дня теплоносителя. Только стоимость строительства этих станций стараются не слишком афишировать, вероятно, потому, что она является значительной. А если в стоимость проектирования и строительства солнечных электростанций включить аккумуляторы, тем более, строительство гидроаккумулирующих электростанций, то сумма возрастет до фантастических размеров.

Кремниевые солнечные батареи
Сегодня для функционирования СЭС применяются полупроводниковые фотоэлементы, которые представляют собой полупроводниковые диоды большой площади. Влетающий в pn-переход световой квант, генерирует пару электрон-дырка, при этом, на выходах фотодиода создается перепад напряжения (порядка 0,5В).
КПД кремниевой солнечной батареи - порядка 16 %. Почему же КПД столь низок? Для того чтобы сформировать электронно-дырочную пару, требуется определенная энергия. Если прилетевший световой квант обладает малой энергией, то генерации пары не произойдет. В этом случае квант света просто пройдет сквозь кремний, как сквозь обыкновенное стекло. Вот почему кремний является прозрачным для инфракрасного света далее 1.2 мкм. Если же световой квант прилетит с большей энергией, чем требуется для генерации (зеленый свет), пара образуется, но избыток энергии просто уйдет в никуда. При синем и ультрафиолетовом свете (энергия которого является очень высокой), квант может не успеть долететь до самых глубин p-n перехода.


Для того чтобы солнечный свет не отражался от поверхности солнечной батареи, на нее наносится специальное противоотражающее покрытие (такое покрытие наносят и на линзы фотообъективов). Текстуру поверхности делают неровной (в виде гребенки). В этом случае световой поток, отразившись от поверхности один раз, возвращается вновь.
КПД фотоэлементов увеличивают, комбинируя между собой фотоэлементы, на основе различных полупроводников и с разной энергией, необходимой для генерации пары электрон-дырка. Для трехступенчатых кремниевых фотоэлементов достигается КПД в 44% и даже выше. Принцип работы трехступенчатого фотоэлемента основан на том, что сначала ставится фотоэлемент, который эффективно поглощает именно синий свет, а красный и зеленый, пропускает. Второй фотоэлемент поглощает зеленый, третий – ИК. Однако трехступенчатые фотоэлементы сегодня очень дороги, поэтому, повсеместно используются более дешевые одноступенчатые фотоэлементы, которые за счет цены опережают трехступенчатые по показателю Ватт/$.
Гигантскими темпами развивает производство кремниевых фотоэлементов Китай, за счет чего стоимость одного ватта снижается. В Китае она составляет примерно 0,5 долларов за Ватт.
Основными типами кремниевых фотоэлементов являются:
Монокристаллические
Поликристаллические
КПД монокристаллических фотоэлементов, которые являются более дорогими, несколько выше (всего лишь на 1 %), чем КПД поликристаллических. Поликристаллические кремниевые фотоэлементы сегодня обеспечивают наиболее дешевую стоимость 1 Ватта генерируемой электроэнергии.
Кремниевые солнечные батареи не могут служить вечно. За 20 лет эксплуатации в условиях агрессивной среды самые совершенные из них теряют до 15-ти процентов своей первоначальной мощности. Есть основания полагать, что в дальнейшем деградациях солнечных батарей замедляется.

Кремниевый фотоэлемент и параболическое зеркало
Изобретатели во всех странах мира предпринимают всевозможные попытки увеличить экономическую рентабельность солнечных электростанций. Если, например, взять маленький эффективный кремниевый фотоэлемент и параболическое зеркало (concentrated photovoltaics), можно достичь КПД в 40 % вместо 16, при этом, зеркало гораздо дешевле, чем солнечная батарея. Но для того чтобы следить за солнцем, требуется надежная механика. Громадная зеркальная поворотная тарелка должна быть надежно укреплена и защищена от мощных ветровых порывов и агрессивных факторов окружающей среды. Вторая проблема заключается в том, что параболические зеркала не могут фокусировать рассеянный свет. Если солнце зашло даже за не плотные тучи, выработка энергии с помощью параболической системы упадет до нуля. У привычных солнечных батарей в этих условиях выработка тепловой энергии тоже серьезно снижается, но не до нуля. Солнечные батареи с параболическими зеркалами слишком дороги по установочной стоимости и затратны в обслуживании.

Круглые солнечные элементы на крышах
Американской компанией Solyndra при поддержки правительства были сконструированы солнечные фотоэлементы круглой формы. Они монтировались на крышах, выкрашенных в белый цвет. Солнечные батареи круглой формы изготавливали путем напыления проводникового слоя (в случае с Solyndra использовался Copper indium gallium (di)selenide) на стеклянные трубы. Фактическая эффективность круглых батарей составляла порядка 8,5 %, что ниже более дешевых кремниевых. Solyndra, получившая государственные гарантии по громадному кредиту, обанкротилась. В технологии, экономическая эффективность от которых была весьма сомнительной с самого начала, американская экономика вложила немалые денежные средства. «Удачное» лоббирование неэффективных технологий – это не только российское ноу хау.

Большая проблема солнечной энергетики!
Известно, что солнечные электростанции генерируют электроэнергию днем, в то время, как огромная потребность в электричестве возникает как раз таки в вечерние часы. Это значит, что без аккумуляторов солнечные электростанции не будут эффективны. В вечерний пик потребления электричества придется задействовать альтернативные (классические) источники электроэнергии. В дневные часы часть традиционных электростанций придется отключить, а часть - держать в горячем резерве на случай плохой погоды. Если над солнечной электростанцией нависнут тучи, недостающую электроэнергию должна давать резервная. В итоге, классические генерирующие мощности стоят в резерве и теряют прибыль.


Есть еще один путь. Он отражен в проекте Desertec – передача электроэнергии из Африки в Европу. С помощью ЛЭП в вечерний пик потребления электричества можно передавать электроэнергию от СЭС, которые находятся в тех районах земного шара, где в это время в разгаре солнечный день. Но этот способ до перехода на сверхпроводники требует огромных финансовых затрат, а также, всевозможных согласований между разными государствами.

Использование аккумуляторов
Мы выяснили, что в среднем стоимость одного Ватта, произведенного солнечной батареей - 0,5 доллара. В течение дня (8 часов) батарея способна сгенерировать в пределах 8-ми Вт*ч. Эту энергию необходимо сохранить до вечернего пика потребления электричества.
Литиевые аккумуляторы, разработанные в Китае, стоят приблизительно 0,4 доллара за Вт*ч, следовательно, для солнечной батареи стоимостью 0,5 доллара, на 1 Вт будут необходимы аккумуляторы стоимостью 3,2 доллара, а это в шесть раз превышает стоимость самой батареи. Если учесть, что литиевый аккумулятор рассчитан максимум на 2000 циклов заряда-разряда, что составляет от трех до шести лет, то можно сделать вывод, - литиевый аккумулятор, это чрезвычайно дорогое решение.
Самыми дешевыми аккумуляторами являются свинцово-кислотные. Оптовая цена этих далеко не самых экологичных систем, порядка 0,08 доллара за Вт*ч. Свинцово-кислотные аккумуляторы также, как и литевые, рассчитаны на 3-6 лет работы. КПД свинцового аккумулятора составляет 75 %. Четвертую часть своей энергии этот аккумулятор теряет в цикле заряд-разряд. Чтобы сохранить дневную выработку солнечной энергии понадобится приобрести свинцово-кислотные аккумуляторы на 0.64 доллара. Мы видим, что это также больше, чем стоимость самих батарей.
Для современных СЭС разработаны гидроаккумулирующие электростанции. В течение светового дня в них закачивается вода, а ночью они функционируют как обычные гидроэлектростанции. Но строительство этих электростанций (КПД 90 %) не всегда возможно и чрезвычайно дорого.
Мы можем сделать неутешительный вывод. На сегодняшний день аккумуляторы обходятся дороже, чем сами СЭС. Для крупных солнечных электростанций они не предусмотрены. По мере генерации электроэнергии, крупные солнечные электростанции продают ее в распределительные сети. В вечернее и ночное время электроэнергию вырабатывают обычные электростанции.

Энергия солнца - какова сегодня ее цена?
Возьмем, к примеру, Германию – мирового лидера в использовании солнечной энергетики. Киловатт солнечной энергии, которая генерируется (даже в дневные часы, а ведь такая электроэнергия дешевле), выкупается в этой стране по цене от 12 до 17,45 евроцентов за кВт*ч. Поскольку газовые электростанции в Германии по прежнему строятся, функционируют или находятся в горячем резерве, солнечные электростанции в этой стране фактически просто помогают экономить российский газ.
Стоимость российского газа на сегодняшний день – 450 долларов за тысячу кубометров. Из этого объема газа (КПД генерации 40%) можно выработать приблизительно 4.32 ГВт электроэнергии. Следовательно, на 1 кВт*ч электричества выработанного от солнца, российского газа экономится на сумму в 0,104 доллара или 7,87 евроцента. Вот справедливая стоимость солнечной нерегулируемой генерации. Таким образом, в настоящее время в Германии солнечная энергетика на 50 % дотируется государством. Хотя, необходимо отметить, что Германия стремительно снижает стоимость генерации электроэнергии от солнца.

Делаем выводы
Самое экономичное солнечное электричество (0,5 долларов за 1 Ватт) получают сегодня с помощью солнечных поликристаллических батарей. Все остальные способы получения электричества с помощью энергии солнца, на порядок дороже.
Проблема, которая является ключевой для солнечной энергетики, это все же не КПД солнечных батарей, не цены, и не EROEI, который теоретически бесконечен. Главная проблема заключается в удешевлении способов генерации энергии солнца, полученной в дневные часы и сбережения этой энергии для вечернего пикового потребления. Ведь в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.
Солнечная генерация в значительных масштабах рассматривается сегодня только в виде способа экономии небольшой части традиционного ископаемого топлива в дневное время. Солнечная энергетика пока не в силах полностью взять на себя нагрузку в вечерние пиковые часы энергопотребления и уменьшить число АЭС, угольных, газовых и гидроэлектростанций, которые в дневные часы должны стоять в резерве, а в вечерние, брать на себя значительную энергетическую нагрузку.
Если в результате ужесточения тарифов (при которых, например, производителям водорода и алюминия будет выгодно запускать свое электролизное производство в дневные часы) пик потребления электроэнергии сместится на дневные часы, то у энергии солнца появятся более серьезные перспективы для развития.
Стоимость солнечной генерации, которая является «нерегулируемой», несопоставима со стоимостью генерации электроэнергии на привычных электростанциях, которые могут свободно генерировать ее в любое время, когда в этом есть необходимость.
Стоимость солнечной электроэнергии не должна превышать стоимости ископаемого топлива, сэкономленного с ее помощью. Если, например, газ в Германии стоит 450 долларов, то цена солнечной генерации в этой стране не должна превышать 0,1 доллара за киловатт час, в противном случае солнечная энергетика в этой стране является убыточной. До тех пор пока ископаемое топливо будет оставаться дешевым и легкодоступным, генерация солнечной энергии является невыгодной с экономической точки зрения.
В настоящее время использование энергии солнца и дорогостоящих солнечных аккумуляторных систем является экономически оправданным только для тех регионов и объектов, где нет других возможностей подключения к электросетям. Например, на одиноко стоящей, отдаленной станции сотовой связи.
Однако, не стоит забывать следующих важных факторов, которые вселяют оптимизм при рассмотрении солнечной энергетики:
1. Стоимость ископаемого топлива неуклонно растет по мере уменьшения его запасов.
2. Разумная государственная политика делает использование солнечных электростанций выгоднее.
3. Прогресс не стоит на месте! КПД солнечных электростанций повышается, разрабатываются новые технологии в генерировании и аккумулировании электроэнергии.

Поэтому, хочется верить, через 3-5 лет можно будет написать гораздо более позитивный обзор этой отрасли энергетики!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: