Криптография и виды шифрования. Сочетание методов шифрования. Шифры, их виды и свойства

Методы аутентификации

Аутентификация - выдача определённых прав доступа абоненту на основе имеющегося у него идентификатора. IEEE 802.11 предусматривает два метода аутентификации:

1. Открытая аутентификация (англ. Open Authentication ):

Рабочая станция делает запрос аутентификации, в котором присутствует только MAC-адрес клиента. Точка доступа отвечает либо отказом, либо подтверждением аутентификации. Решение принимается на основе MAC-фильтрации, т.е. по сути это защита на основе ограничения доступа, что не безопасно.

2. Аутентификация с общим ключом (англ. Shared Key Authentication ):

Необходимо настроить статический ключ шифрования алгоритма WEP (англ. Wired Equivalent Privacy ). Клиент делает запрос у точки доступа на аутентификацию, на что получает подтверждение, которое содержит 128 байт случайной информации. Станция шифрует полученные данные алгоритмом WEP (проводится побитовое сложение по модулю 2 данных сообщения с последовательностью ключа) и отправляет зашифрованный текст вместе с запросом на ассоциацию. Точка доступа расшифровывает текст и сравнивает с исходными данными. В случае совпадения отсылается подтверждение ассоциации, и клиент считается подключенным к сети.
Схема аутентификации с общим ключом уязвима к атакам «Man in the middle». Алгоритм шифрования WEP – это простой XOR ключевой последовательности с полезной информацией, следовательно, прослушав трафик между станцией и точкой доступа, можно восстановить часть ключа.
IEEE начал разработки нового стандарта IEEE 802.11i, но из-за трудностей утверждения, организация WECA (англ. Wi-Fi Alliance ) совместно с IEEE анонсировали стандарт WPA (англ. Wi-Fi Protected Access ). В WPA используется TKIP (англ.Temporal Key Integrity Protocol , протокол проверки целостности ключа), который использует усовершенствованный способ управления ключами и покадровое изменение ключа.

WPA также использует два способа аутентификации:

1. Аутентификация с помощью предустановленного ключа WPA-PSK (англ. Pre-Shared Key ) (Enterprise Autentification);

2. Аутентификация с помощью RADIUS-сервера (англ. Remote Access Dial-in User Service )

Шифрова́ние - способ преобразования открытой информации в закрытую и обратно. Применяется для хранения важной информации в ненадёжных источниках или передачи её по незащищённым каналам связи. Шифрование подразделяется на процесс зашифровывания и расшифровывания.

В зависимости от алгоритма преобразования данных, методы шифрования подразделяются на гарантированной или временнойкриптостойкости.

В зависимости от структуры используемых ключей методы шифрования подразделяются на



§ симметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, но неизвестна небольшая порция секретной информации - ключа, одинакового для отправителя и получателя сообщения;

§ асимметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, и, возможно, открытый ключ, но неизвестен закрытый ключ, известный только получателю.

Существуют следующие криптографические примитивы:

§ Бесключевые

1. Хеш-функции

2. Односторонние перестановки

3. Генераторы псевдослучайных чисел

§ Симметричные схемы

1. Шифры (блочные,потоковые)

2. Хеш-функции

4. Генераторы псевдослучайных чисел

5. Примитивы идентификации

§ Асимметричные схемы

3. Примитивы идентификации

Шифрование данных на диске
Система Zserver - средство защиты конфиденциальной информации, хранимой и обрабатываемой на корпоративных серверах, методом шифрования данных на диске. Zserver работает по принципу «прозрачного» шифрования разделов жестких дисков. Система автоматически, в online режиме, осуществляет шифрование информации при записи на диск и расшифровывает при чтении с него. Это обеспечивает хранение данных на диске в зашифрованном виде и невозможность использования их без ключа шифрования даже при изъятии сервера или носителя. Система Zserver обеспечивает шифрование файлов и папок на диске, а также всей служебной информации - таблицы размещения файлов и т. д. Таким образом, система Zserver не только надежно защищает конфиденциальные данные, но и скрывает сам факт их наличия от посторонних. Информация на защищенных дисках хранится в зашифрованном виде и становится доступна, только когда администратор сети предоставит пользователю соответствующие полномочия. Права доступа к защищенным дискам устанавливаются средствами операционной системы. Шифрование файлов и папок на диске осуществляется программным драйвером. Ключи шифрования данных на диске вводятся при загрузке сервера со смарт-карты, защищенной PIN-кодом. Не зная PIN-кода, воспользоваться смарт-картой нельзя. Три попытки неправильного ввода PIN-кода заблокируют карту. Смарт-карта необходима только при подключении защищенных носителей, и в процессе работы не требуется. При перезагрузке сервера без смарт-карты, защищенные диски не будут доступны. Система Zserver предоставляет возможность удаленного ввода ключей шифрования и администрирования системы с любой рабочей станции локальной сети, или через Интернет. В настоящее время разработаны системы Zserver, которые работают под управлением следующих операционных систем: Windows 2000/XP/2003/2008 (32- и 64-разрядные); Linux с ядром 2.6.x.

Данные в этом случае рассматриваются как сообщения, и для защиты их смысла используется классическая техника шифрования .

Криптография предполагает наличие трех компонентов: данных, ключа и криптографического преобразования. При шифровании исходными данными будет сообщение, а результирующими - шифровка. При расшифрований они меняются местами. Считается, что криптографическое преобразование известно всем, но, не зная ключа, с помощью которого пользователь закрыл смысл сообщения от любопытных глаз, требуется потратить невообразимо много усилий на восстановление текста сообщения. (Следует еще раз повторить, что нет абсолютно устойчивого от вскрытия шифрования. Качество шифра определяется лишь деньгами, которые нужно выложить за его вскрытие от $10 и до $1000000.) Такое требование удовлетворяется рядом современных криптографических систем, например, созданных по "Стандарту шифрования данных Национального бюро стандартов США" DES и ГОСТ 28147-89. Так как ряд данных критичен к некоторым их искажениям, которые нельзя обнаружить из контекста, то обычно используются лишь такие способы шифрования, которые чувствительны к искажению любого символа. Они гарантируют не только высокую секретность, но и эффективное обнаружение любых искажений или ошибок.

Тема: "Криптография. Шифры, их виды и свойства"


Введение

1. История криптографии

2. Шифры, их виды и свойства

Заключение

Список литературы


Введение

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации.

Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных.

Целью данной работы является знакомство с криптографией; шифрами, их видами и свойствами.

Ознакомиться с криптографией

Рассмотреть шифры, их виды и свойства


1. История криптографии

Перед тем как приступить к собственно истории криптографии необходимо прокомментировать ряд определений, так как без этого все нижесказанное будет "слегка" затруднительным для понимания:

Под конфиденциальностью понимают невозможность получения информации из преобразованного массива без знания дополнительной информации (ключа).

Аутентичность информации состоит в подлинности авторства и целостности.

Криптоанализ объединяет математические методы нарушения конфиденциальности и аутентичности информации без знания ключей.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита. В качестве примеров алфавитов можно привести следующие:

алфавит Z 33 - 32 буквы русского алфавита (исключая "ё") и пробел;

алфавит Z 256 - символы, входящие в стандартные коды ASCII и КОИ-8;

двоичный алфавит - Z 2 = {0, 1};

восьмеричный или шестнадцатеричный алфавит

Под шифром понимается совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, заданных алгоритмом криптографического преобразования. В шифре всегда различают два элемента: алгоритм и ключ. Алгоритм позволяет использовать сравнительно короткий ключ для шифрования сколь угодно большого текста.

Криптографическая система, или шифр представляет собой семейство Т обратимых преобразований открытого текста в шифрованный. Членам этого семейства можно взаимно однозначно сопоставить число k, называемое ключом. Преобразование Тk определяется соответствующим алгоритмом и значением ключа k.

Ключ - конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного варианта из совокупности всевозможных для данного алгоритма. Секретность ключа должна обеспечивать невозможность восстановления исходного текста по шифрованному.

Пространство ключей K - это набор возможных значений ключа.

Обычно ключ представляет собой последовательный ряд букв алфавита. Следует отличать понятия "ключ" и "пароль". Пароль также является секретной последовательностью букв алфавита, однако используется не для шифрования (как ключ), а для аутентификации субъектов.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и целостность сообщения.

Зашифрованием данных называется процесс преобразования открытых данных в зашифрованные с помощью шифра, а расшифрованием данных - процесс преобразования закрытых данных в открытые с помощью шифра.

Дешифрованием называется процесс преобразования закрытых данных в открытые при неизвестном ключе и, возможно, неизвестном алгоритме, т.е. методами криптоанализа.

Шифрованием называется процесс зашифрования или расшифрования данных. Также термин шифрование используется как синоним зашифрования. Однако неверно в качестве синонима шифрования использовать термин "кодирование" (а вместо "шифра" - "код"), так как под кодированием обычно понимают представление информации в виде знаков (букв алфавита).

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию. Обычно эта характеристика определяется периодом времени, необходимым для дешифрования.

С распространением письменности в человеческом обществе появилась потребность в обмене письмами и сообщениями, что вызвало необходимость сокрытия содержимого письменных сообщений от посторонних. Методы сокрытия содержимого письменных сообщений можно разделить на три группы. К первой группе относятся методы маскировки или стеганографии, которые осуществляют сокрытие самого факта наличия сообщения; вторую группу составляют различные методы тайнописи или криптографии (от греческих слов ktyptos - тайный и grapho - пишу); методы третьей группы ориентированы на создание специальных технических устройств, засекречивания информации.

В истории криптографии условно можно выделить четыре этапа: наивный, формальный, научный, компьютерный.

1. Для наивной криптографии (до начала XVI в) характерно использование любых, обычно примитивных, способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии.

Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5 × 5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

2. Этап формальной криптографии (конец XV - начало XX вв) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI в. Блеза Вижинера, состоял в последовательном "сложении" букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа "Трактат о шифре" считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования, является труд "Полиграфия" немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX в. Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование "двойным квадратом". Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX в. голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма.

Наконец, последним словом в донаучной криптографии, которое обеспечило еще более высокую криптостойкость, а также позволило автоматизировать процесс шифрования стали роторные криптосистемы.

Одной из первых подобных систем стала изобретенная в 1790 г. Томасом Джефферсоном механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет "прошитую" в нем подстановку.

Практическое распространение роторные машины получили только в начале XX в. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 г. Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple (Япония). Роторные системы - вершина формальной криптографии, так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х гг.

3. Главная отличительная черта научной криптографии (1930 - 60-е гг.) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х гг. окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона "Теория связи в секретных системах", которая подвела научную базу под криптографию и криптоанализ. С этого времени стали говорить о криптологии (от греческого kryptos - тайный и logos - сообщение) - науке о преобразовании информации для обеспечения ее секретности. Этап развития криптографии и криптоанализа до 1949 г. стали называть донаучной криптологией.

Шеннон ввел понятия "рассеивание" и "перемешивание", обосновал возможность создания сколь угодно стойких криптосистем. В 1960-х гг. ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающих практическую реализацию только в виде цифровых электронных устройств.

4. Компьютерная криптография (с 1970-х гг.) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации криптосистем, обеспечивающих при большой скорости шифрования на несколько порядков более высокую криптостойкость, чем "ручные" и "механические" шифры.

Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е гг. был разработан американский стандарт шифрования DES. Один из его авторов, Хорст Фейстель описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89.

С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег.

В 1980-90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г. после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Таким образом, мы узнали следующее:

Криптология - это наука о преобразовании информации для обеспечения ее секретности, состоящая из двух ветвей: криптографии и криптоанализа.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров.

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей. Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития новых подходов и методов.


2. Шифры, их виды и свойства

В криптографии криптографические системы (или шифры) классифицируются следующим образом:

симметричные криптосистемы

асимметричные криптосистемы

2.1 Симметричные криптографические системы

Под симметричными криптографическими системами понимаются такие криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ, хранящийся в секрете. Все многообразие симметричных криптосистем основывается на следующих базовых классах:

I. Моно - и многоалфавитные подстановки.

Моноалфавитные подстановки - это наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. В случае моноалфавитных подстановок каждый символ исходного текста преобразуется в символ шифрованного текста по одному и тому же закону. При многоалфавитной подстановке закон преобразования меняется от символа к символу. Один и тот же шифр может рассматриваться и как моно - и как многоалфавитный в зависимости от определяемого алфавита.

Например, самой простой разновидностью является прямая (простая) замена, когда буквы шифруемого сообщения заменяются другими буквами того же самого или некоторого другого алфавита. Таблица замены может иметь следующий вид:


Исходные символы шифруемого текста а б в г д е ж з и к л м н о п р с т у ф
Заменяющие символы s р x l r z i m a y e d w t b g v n j o

Используя эту таблицу, зашифруем слово победа. Получим следующее: btpzrs

II. Перестановки - также несложный метод криптографического преобразования, заключающийся в перестановке местами символов исходного текста по некоторому правилу. Шифры перестановок в настоящее время не используются в чистом виде, так как их криптостойкость недостаточна, но они входят в качестве элемента в очень многие современные криптосистемы.

Самая простая перестановка - написать исходный текст наоборот и одновременно разбить шифрограмму на пятерки букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней пятерке не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти, тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

III. Блочные шифры - семейство обратимых преобразований блоков (частей фиксированной длины) исходного текста. Фактически блочный шифр - это система подстановки на алфавите блоков. Она может быть моно - или многоалфавитной в зависимости от режима блочного шифра. Иначе говоря, при блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов: шифры перестановки (transposition, permutation, P-блоки) и шифры замены (подстановки, substitution, S-блоки) . В настоящее время блочные шифры наиболее распространены на практике.

Американский стандарт криптографического закрытия данных DES (Data Encryption Standard), принятый в 1978 г., является типичным представителем семейства блочных шифров и одним из наиболее распространенных криптографических стандартов на шифрование данных, применяемых в США. Этот шифр допускает эффективную аппаратную и программную реализацию, причем возможно достижение скоростей шифрования до нескольких мегабайт в секунду. Первоначально метод, лежащий в основе данного стандарта, был разработан фирмой IBM для своих целей. Он был проверен Агентством Национальной Безопасности США, которое не обнаружило в нем статистических или математических изъянов.

DES имеет блоки по 64 бит и основан на 16-кратной перестановке данных, также для шифрования использует ключ в 56 бит. Существует несколько режимов DES: Electronic Code Book (ECB) и Cipher Block Chaining (CBC).56 бит - это 8 семибитовых символов, т.е. пароль не может быть больше чем восемь букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 2 56 . Однако, данный алгоритм, являясь первым опытом стандарта шифрования, имеет ряд недостатков. За время, прошедшее после создания DES, компьютерная техника развилась настолько быстро, что оказалось возможным осуществлять исчерпывающий перебор ключей и тем самым раскрывать шифр. В 1998 г. была построена машина, способная восстановить ключ за среднее время в трое суток. Таким образом, DES, при его использовании стандартным образом, уже стал далеко не оптимальным выбором для удовлетворения требованиям скрытности данных. Позднее стали появляться модификации DESa, одной из которой является Triple Des ("тройной DES" - так как трижды шифрует информацию обычным DESом). Он свободен от основного недостатка прежнего варианта - короткого ключа: он здесь в два раза длиннее. Но зато, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

IV. Гаммирование - преобразование исходного текста, при котором символы исходного текста складываются с символами псевдослучайной последовательности (гамме), вырабатываемой по некоторому правилу. В качестве гаммы может быть использована любая последовательность случайных символов. Процедуру наложения гаммы на исходный текст можно осуществить двумя способами. При первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю k, где k - число символов в алфавите. При втором методе символы исходного текста и гаммы представляются в виде двоичного кода, затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать и другие логические операции.

Таким образом, симметричными криптографическими системами являются криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ. Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования. Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю.

2.2 Асимметричные криптографические системы

Еще одним обширным классом криптографических систем являются так называемые асимметричные или двухключевые системы. Эти системы характеризуются тем, что для шифрования и для расшифрования используются разные ключи, связанные между собой некоторой зависимостью. Применение таких шифров стало возможным благодаря К. Шеннону, предложившему строить шифр таким способом, чтобы его раскрытие было эквивалентно решению математической задачи, требующей выполнения объемов вычислений, превосходящих возможности современных ЭВМ (например, операции с большими простыми числами и их произведениями). Один из ключей (например, ключ шифрования) может быть сделан общедоступным, и в этом случае проблема получения общего секретного ключа для связи отпадает. Если сделать общедоступным ключ расшифрования, то на базе полученной системы можно построить систему аутентификации передаваемых сообщений. Поскольку в большинстве случаев один ключ из пары делается общедоступным, такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями системы, которые зашифровывают данные. Расшифрование данных с помощью известного ключа невозможно. Для расшифрования данных получатель зашифрованной информации использует второй ключ, который является секретным. Разумеется, ключ расшифрования не может быть определен из ключа зашифрования.

Центральным понятием в асимметричных криптографических системах является понятие односторонней функции.

Под односторонней функцией понимается эффективно вычислимая функция, для обращения которой (т.е. для поиска хотя бы одного значения аргумента по заданному значению функции) не существует эффективных алгоритмов.

Функцией-ловушкой называется односторонняя функция, для которой обратную функцию вычислить просто, если имеется некоторая дополнительная информация, и сложно, если такая информация отсутствует.

Все шифры этого класса основаны на так называемых функциях-ловушках. Примером такой функции может служить операция умножения. Вычислить произведение двух целых чисел очень просто, однако эффективных алгоритмов для выполнения обратной операции (разложения числа на целые сомножители) - не существует. Обратное преобразование возможно лишь, если известна, какая-то дополнительная информация.

В криптографии очень часто используются и так называемые хэш-функции. Хэш-функции - это односторонние функции, которые предназначены для контроля целостности данных. При передаче информации на стороне отправителя она хешируется, хэш передается получателю вместе с сообщением, и получатель вычисляет хэш этой информации повторно. Если оба хэша совпали, то это означает, что информация была передана без искажений. Тема хэш-функций достаточно обширна и интересна. И область ее применения гораздо больше чем просто криптография.

В настоящее время наиболее развитым методом криптографической защиты информации с известным ключом является RSA, названный так по начальным буквам фамилий его изобретателей (Rivest, Shamir и Adleman) и представляющий собой криптосистему, стойкость которой основана на сложности решения задачи разложения числа на простые сомножители. Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для примера выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей). Определим параметр n как результат перемножения р и q. Выберем большое случайное число и назовем его d, причем оно должно быть взаимно простым с результатом умножения (р - 1) * (q - 1). Найдем такое число e, для которого верно соотношение:

(e*d) mod ((р - 1) * (q - 1)) = 1

(mod - остаток от деления, т.е. если e, умноженное на d, поделить на ((р - 1) * (q - 1)), то в остатке получим 1).

Открытым ключом является пара чисел e и n, а закрытым - d и n. При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию:

C (i) = (M (i) e) mod n

В результате получается последовательность C (i), которая и составит криптотекст.д.екодирование информации происходит по формуле

M (i) = (C (i) d) mod n

Как видите, расшифровка предполагает знание секретного ключа.

Попробуем на маленьких числах. Установим р=3, q=7. Тогда n=р*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17. Открытый ключ 17, 21, секретный - 5, 21.

Зашифруем последовательность "2345":

C (2) = 2 17 mod 21 =11

C (3) = 3 17 mod 21= 12

C (4) = 4 17 mod 21= 16

C (5) = 5 17 mod 21= 17

Криптотекст - 11 12 16 17.

Проверим расшифровкой:

M (2) = 11 5 mod 21= 2

M (3) = 12 5 mod 21= 3

M (4) = 16 5 mod 21= 4

M (5) = 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда пользователь подсоединяется к защищенному серверу, то здесь применяется шифрование открытым ключом с использованием идей алгоритма RSA. Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора.

Таким образом, асимметричные криптографические системы - это системы, в которых для шифрования и для расшифрования используются разные ключи. Один из ключей даже может быть сделан общедоступным. При этом расшифрование данных с помощью известного ключа невозможно.


Заключение

Криптография - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации. Изначально криптография изучала методы шифрования информации - обратимого преобразования открытого (исходного) текста на основе секретного алгоритма и ключа в шифрованный текст. Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Криптография является одним из наиболее мощных средств обеспечения конфиденциальности и контроля целостности информации. Во многих отношениях она занимает центральное место среди программно-технических регуляторов безопасности. Например, для портативных компьютеров, физически защитить которые крайне трудно, только криптография позволяет гарантировать конфиденциальность информации даже в случае кражи.


Список литературы

1. Златопольский Д.М. Простейшие методы шифрования текста. /Д.М. Златопольский - М.: Чистые пруды, 2007

2. Молдовян А. Криптография. /А. Молдовян, Н.А. Молдовян, Б.Я. Советов - СПб: Лань, 2001

3. Яковлев А.В., Безбогов А.А., Родин В.В., Шамкин В.Н. Криптографическая защита информации. /Учебное пособие - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2006

4. http://ru. wikipedia.org

5. http://cryptoblog.ru

6. http://Stfw.ru

7. http://www.contrterror. tsure.ru


Молдовян А. Криптография./А. Молдовян, Н. А. Молдовян, Б. Я. Советов – СПб: Лань, 2001

Действий в сфере информационных технологий. Таким образом, можно считать актуальным и значительным старших классов изучение элективного курса «Компьютерная и информационная безопасность» в образовательной области «Информатика». Курс ориентирован на подготовку подрастающего поколения к жизни и деятельности в совершенно новых условиях информационного общества, в котором вопросы обеспечения...

Сергей Панасенко ,
начальник отдела разработки программного обеспечения фирмы «Анкад»,
[email protected]

Основные понятия

Процесс преобразования открытых данных в зашифрованные и наоборот принято называть шифрованием, причем две составляющие этого процесса называют соответственно зашифрованием и расшифрованием. Математически данное преобразование представляется следующими зависимостями, описывающими действия с исходной информацией:

С = Ek1(M)

M" = Dk2(C),

где M (message) - открытая информация (в литературе по защите информации часто носит название "исходный текст");
C (cipher text) - полученный в результате зашифрования шифртекст (или криптограмма);
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над исходным текстом;
k1 (key) - параметр функции E, называемый ключом зашифрования;
M" - информация, полученная в результате расшифрования;
D (decryption) - функция расшифрования, выполняющая обратные зашифрованию криптографические преобразования над шифртекстом;
k2 - ключ, с помощью которого выполняется расшифрование информации.

Понятие "ключ" в стандарте ГОСТ 28147-89 (алгоритм симметричного шифрования) определено следующим образом: "конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований". Иными словами, ключ представляет собой уникальный элемент, с помощью которого можно изменять результаты работы алгоритма шифрования: один и тот же исходный текст при использовании различных ключей будет зашифрован по-разному.

Для того, чтобы результат расшифрования совпал с исходным сообщением (т. е. чтобы M" = M), необходимо одновременное выполнение двух условий. Во-первых, функция расшифрования D должна соответствовать функции зашифрования E. Во-вторых, ключ расшифрования k2 должен соответствовать ключу зашифрования k1.

Если для зашифрования использовался криптостойкий алгоритм шифрования, то при отсутствии правильного ключа k2 получить M" = M невозможно. Криптостойкость - основная характеристика алгоритмов шифрования и указывает прежде всего на степень сложности получения исходного текста из зашифрованного без ключа k2.

Алгоритмы шифрования можно разделить на две категории: симметричного и асимметричного шифрования. Для первых соотношение ключей зашифрования и расшифрования определяется как k1 = k2 = k (т. е. функции E и D используют один и тот же ключ шифрования). При асимметричном шифровании ключ зашифрования k1 вычисляется по ключу k2 таким образом, что обратное преобразование невозможно, например, по формуле k1 = ak2 mod p (a и p - параметры используемого алгоритма).

Симметричное шифрование

Свою историю алгоритмы симметричного шифрования ведут с древности: именно этим способом сокрытия информации пользовался римский император Гай Юлий Цезарь в I веке до н. э., а изобретенный им алгоритм известен как "криптосистема Цезаря".

В настоящее время наиболее известен алгоритм симметричного шифрования DES (Data Encryption Standard), разработанный в 1977 г. До недавнего времени он был "стандартом США", поскольку правительство этой страны рекомендовало применять его для реализации различных систем шифрования данных. Несмотря на то, что изначально DES планировалось использовать не более 10-15 лет, попытки его замены начались только в 1997 г.

Мы не будем рассматривать DES подробно (почти во всех книгах из списка дополнительных материалов есть его подробнейшее описание), а обратимся к более современным алгоритмам шифрования. Стоит только отметить, что основная причина изменения стандарта шифрования - его относительно слабая криптостойкость, причина которой в том, что длина ключа DES составляет всего 56 значащих бит. Известно, что любой криптостойкий алгоритм можно взломать, перебрав все возможные варианты ключей шифрования (так называемый метод грубой силы - brute force attack). Легко подсчитать, что кластер из 1 млн процессоров, каждый из которых вычисляет 1 млн ключей в секунду, проверит 256 вариантов ключей DES почти за 20 ч. А поскольку по нынешним меркам такие вычислительные мощности вполне реальны, ясно, что 56-бит ключ слишком короток и алгоритм DES необходимо заменить на более "сильный".

Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

Стандарт ГОСТ 28147-89

Алгоритм, определяемый ГОСТ 28147-89 (рис. 1), имеет длину ключа шифрования 256 бит. Он шифрует информацию блоками по 64 бит (такие алгоритмы называются блочными), которые затем разбиваются на два субблока по 32 бит (N1 и N2). Субблок N1 обрабатывается определенным образом, после чего его значение складывается со значением субблока N2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - "исключающее или"), а затем субблоки меняются местами. Данное преобразование выполняется определенное число раз ("раундов"): 16 или 32 в зависимости от режима работы алгоритма. В каждом раунде выполняются две операции.

Первая - наложение ключа. Содержимое субблока N1 складывается по модулю 2 с 32-бит частью ключа Kx. Полный ключ шифрования представляется в виде конкатенации 32-бит подключей: K0, K1, K2, K3, K4, K5, K6, K7. В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

Вторая операция - табличная замена. После наложения ключа субблок N1 разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

Табличные замены (Substitution box - S-box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция. В таблицу записываются выходные значения блоков. Блок данных определенной размерности (в нашем случае - 4-бит) имеет свое числовое представление, которое определяет номер выходного значения. Например, если S-box имеет вид 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 и на вход пришел 4-бит блок "0100" (значение 4), то, согласно таблице, выходное значение будет равно 15, т. е. "1111" (0 а 4, 1 а 11, 2 а 2 ...).

Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммирования с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

В режиме простой замены для зашифрования каждого 64-бит блока информации выполняются 32 описанных выше раунда. При этом 32-бит подключи используются в следующей последовательности:

K0, K1, K2, K3, K4, K5, K6, K7, K0, K1 и т. д. - в раундах с 1-го по 24-й;

K7, K6, K5, K4, K3, K2, K1, K0 - в раундах с 25-го по 32-й.

Расшифрование в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

K0, K1, K2, K3, K4, K5, K6, K7 - в раундах с 1-го по 8-й;

K7, K6, K5, K4, K3, K2, K1, K0, K7, K6 и т. д. - в раундах с 9-го по 32-й.

Все блоки шифруются независимо друг от друга, т. е. результат зашифрования каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N1 и N2 (см. рис. 1).

1. В регистры N1 и N2 записывается их начальное заполнение - 64-бит величина, называемая синхропосылкой.

2. Выполняется зашифрование содержимого регистров N1 и N2 (в данном случае - синхропосылки) в режиме простой замены.

3. Содержимое регистра N1 складывается по модулю (232 - 1) с константой C1 = 224 + 216 + 28 + 24, а результат сложения записывается в регистр N1.

4. Содержимое регистра N2 складывается по модулю 232 с константой C2 = 224 + 216 + 28 + 1, а результат сложения записывается в регистр N2.

5. Содержимое регистров N1 и N2 подается на выход в качестве 64-бит блока гаммы шифра (в данном случае N1 и N2 образуют первый блок гаммы).

Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифрование или расшифрование), выполняется возврат к операции 2.

Для расшифрования гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция XOR. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (таблица).

Зашифрование и расшифрование в режиме гаммирования

Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровании информации. В противном случае получить исходный текст из зашифрованного не удастся.

В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка - такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

В режиме гаммирования с обратной связью для заполнения регистров N1 и N2, начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 2). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

Рис. 2. Выработка гаммы шифра в режиме гаммирования с обратной связью.

Рассматривая режим генерации имитоприставок , следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с использованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-бит блок массива информации, для которого вычисляется имитоприставка, записывается в регистры N1 и N2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в N1 и N2.

Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-бит содержимое регистров N1 и N2 или его часть и называется имитоприставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки r бит вероятность, что изменение сообщения останется незамеченным, равна 2-r.Чаще всего используется 32-бит имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровании какой-либо информации и посылается вместе с шифртекстом. После расшифрования вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают - значит, шифртекст был искажен при передаче или при расшифровании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифрования ключевой информации при использовании многоключевых схем.

Алгоритм ГОСТ 28147-89 считается очень сильным алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод "грубой силы". Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

Стандарт AES

В отличие от алгоритма ГОСТ 28147-89, который долгое время оставался секретным, американский стандарт шифрования AES, призванный заменить DES, выбирался на открытом конкурсе, где все заинтересованные организации и частные лица могли изучать и комментировать алгоритмы-претенденты.

Конкурс на замену DES был объявлен в 1997 г. Национальным институтом стандартов и технологий США (NIST - National Institute of Standards and Technology). На конкурс было представлено 15 алгоритмов-претендентов, разработанных как известными в области криптографии организациями (RSA Security, Counterpane и т. д.), так и частными лицами. Итоги конкурса были подведены в октябре 2000 г.: победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen).

Алгоритм Rijndael не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название "сеть Фейстеля" и аналогична российскому ГОСТ 28147-89. Особенность сети Фейстеля состоит в том, что входное значение разбивается на два и более субблоков, часть из которых в каждом раунде обрабатывается по определенному закону, после чего накладывается на необрабатываемые субблоки (см. рис. 1).

В отличие от отечественного стандарта шифрования, алгоритм Rijndael представляет блок данных в виде двухмерного байтового массива размером 4X4, 4X6 или 4X8 (допускается использование нескольких фиксированных размеров шифруемого блока информации). Все операции выполняются с отдельными байтами массива, а также с независимыми столбцами и строками.

Алгоритм Rijndael выполняет четыре преобразования: BS (ByteSub) - табличная замена каждого байта массива (рис. 3); SR (ShiftRow) - сдвиг строк массива (рис. 4). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4X4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта. Далее идет MC (MixColumn) - операция над независимыми столбцами массива (рис. 5), когда каждый столбец по определенному правилу умножается на фиксированную матрицу c(x). И, наконец, AK (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который, в свою очередь, определенным образом вычисляется из ключа шифрования (рис. 6).


Рис. 3. Операция BS.

Рис. 4. Операция SR.

Рис. 5. Операция MC.

Количество раундов шифрования (R) в алгоритме Rijndael переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

Расшифрование выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для MC - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию: c(x) * d(x) = 1. Добавление ключа AK является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

Rijndael стал новым стандартом шифрования данных благодаря целому ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Его отличают несравнимо лучшие возможности распараллеливания вычислений по сравнению с другими алгоритмами, представленными на конкурс. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

Недостатком же алгоритма можно считать лишь свойственную ему нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на сети Фейстеля, хорошо исследованы, а Rijndael, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

Асимметричное шифрование

Алгоритмы асимметричного шифрования, как уже отмечалось, используют два ключа: k1 - ключ зашифрования, или открытый, и k2 - ключ расшифрования, или секретный. Открытый ключ вычисляется из секретного: k1 = f(k2).

Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению, функция y = f(x) является однонаправленной, если: ее легко вычислить для всех возможных вариантов x и для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x).

Примером однонаправленной функции может служить умножение двух больших чисел: N = P*Q. Само по себе такое умножение - простая операция. Однако обратная функция (разложение N на два больших множителя), называемая факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Например, разложение на множители N размерностью 664 бит при P ? Q потребует выполнения примерно 1023 операций, а для обратного вычисления х для модульной экспоненты y = ax mod p при известных a, p и y (при такой же размерности a и p) нужно выполнить примерно 1026 операций. Последний из приведенных примеров носит название - "Проблема дискретного логарифма" (DLP - Discrete Logarithm Problem), и такого рода функции часто используются в алгоритмах асимметричного шифрования, а также в алгоритмах, используемых для создания электронной цифровой подписи.

Еще один важный класс функций, используемых в асимметричном шифровании, - однонаправленные функции с потайным ходом. Их определение гласит, что функция является однонаправленной с потайным ходом, если она является однонаправленной и существует возможность эффективного вычисления обратной функции x = f-1(y), т. е. если известен "потайной ход" (некое секретное число, в применении к алгоритмам асимметричного шифрования - значение секретного ключа).

Однонаправленные функции с потайным ходом используются в широко распространенном алгоритме асимметричного шифрования RSA.

Алгоритм RSA

Разработанный в 1978 г. тремя авторами (Rivest, Shamir, Adleman), он получил свое название по первым буквам фамилий разработчиков. Надежность алгоритма основывается на сложности факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA - модуль системы N, по которому проводятся все вычисления в системе, а N = P*Q (P и Q - секретные случайные простые большие числа, обычно одинаковой размерности).

Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям:

1

где НОД - наибольший общий делитель, т. е. k1 должен быть взаимно простым со значением функции Эйлера F(N), причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (P - 1)*(Q - 1) .

Открытый ключ k1 вычисляется из соотношения (k2*k1) = 1 mod F(N) , и для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифрование блока данных M по алгоритму RSA выполняется следующим образом: C = M[в степени k1] mod N . Заметим, что, поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление M[в степени k1] нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов.

Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и k1. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров P и Q. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2.

Какое шифрование лучше?

Основной недостаток симметричного шифрования - необходимость передачи ключей "из рук в руки". Недостаток этот весьма серьезен, поскольку делает невозможным использование симметричного шифрования в системах с неограниченным числом участников. Однако в остальном симметричное шифрование имеет одни достоинства, которые хорошо видны на фоне серьезных недостатков шифрования асимметричного.

Первый из них - низкая скорость выполнения операций зашифрования и расшифрования, обусловленная наличием ресурсоемких операций. Другой недостаток "теоретический" - математически криптостойкость алгоритмов асимметричного шифрования не доказана. Это связано прежде всего с задачей дискретного логарифма - пока не удалось доказать, что ее решение за приемлемое время невозможно. Излишние трудности создает и необходимость защиты открытых ключей от подмены - подменив открытый ключ легального пользователя, злоумышленник сможет обеспечить зашифрование важного сообщения на своем открытом ключе и впоследствии легко расшифровать его своим секретным ключом.

Тем не менее эти недостатки не препятствуют широкому применению алгоритмов асимметричного шифрования. Сегодня существуют криптосистемы, поддерживающие сертификацию открытых ключей, а также сочетающие алгоритмы симметричного и асимметричного шифрования. Но это уже тема для отдельной статьи.

Дополнительные источники информации

Тем читателям, которые непраздно интересуются шифрованием, автор рекомендует расширить свой кругозор с помощью следующих книг.

  1. Брассар Ж. "Современная криптология".
  2. Петров А. А. "Компьютерная безопасность: криптографические методы защиты".
  3. Романец Ю. В., Тимофеев П. А., Шаньгин В. Ф. "Защита информации в современных компьютерных системах".
  4. Соколов А. В., Шаньгин В. Ф. "Защита информации в распределенных корпоративных сетях и системах".

Полное описание алгоритмов шифрования можно найти в следующих документах:

  1. ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. - М.: Госстандарт СССР, 1989.
  2. Алгоритм AES: http://www.nist.gov/ae .
  3. Алгоритм RSA: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1 .

Криптографическое шифрование данных

Преподаватель _________________ Чубаров А.В.

подпись, дата

Студент УБ15-11б; 431512413 _________________ Репневская Е.В.

подпись, дата

Красноярск 2017

Введение. 3

1. История криптографии. 5

1.1 Появление шифров. 6

1.2 Эволюция криптографии. 7

2. Шифры, их виды и свойства. 9

2.1 Симметрическое шифрование. 9

2.2 Асимметричные криптографические системы.. 11

Заключение. 16

Список литературы.. 17

Введение

Разные люди понимают под шифрованием разные вещи. Дети играют в игрушечные шифры и секретные языки. Это, однако, не имеет ничего общего с настоящей криптографией. Настоящая криптография (strong cryptography) должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями --- такими как мафия, транснациональные корпорации и крупные государства. Настоящая криптография в прошлом использовалась лишь в военных целях. Однако сейчас, с становлением информационного общества, она становится центральным инструментом для обеспечения конфиденциальности.

По мере образования информационного общества, крупным государствам становятся доступны технологические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и бесчисленное множество других важных вещей.

Криптография не является более придумкой военных, с которой не стоит связываться. Настала пора снять с криптографии покровы таинственности и использовать все ее возможности на пользу современному обществу. Широкое распространение криптографии является одним из немногих способов защитить человека от ситуации, когда он вдруг обнаруживает, что живет в тоталитарном государстве, которое может контролировать каждый его шаг.

Представьте, что вам надо отправить сообщение адресату. Вы хотите, чтобы никто кроме адресата не смог прочитать отправленную информацию. Однако всегда есть вероятность, что кто-либо вскроет конверт или перехватит электронное послание.

В криптографической терминологии исходное послание именуют открытым текстом (plaintext или cleartext). Изменение исходного текста так, чтобы скрыть от прочих его содержание, называют шифрованием (encryption). Зашифрованное сообщение называют шифротекстом (ciphertext). Процесс, при котором из шифротекста извлекается открытый текст называют дешифровкой (decryption). Обычно в процессе шифровки и дешифровки используется некий ключ (key) и алгоритм обеспечивает, что дешифрование можно сделать лишь зная этот ключ.

Криптография – это наука о том, как обеспечить секретность сообщения. Криптоанализ – это наука о том, как вскрыть шифрованное сообщение, то есть как извлечь открытый текст не зная ключа. Криптографией занимаются криптографы, а криптоанализом занимаются криптоаналитики.

Криптография покрывает все практические аспекты секретного обмена сообщениями, включая аутенфикацию, цифровые подписи, электронные деньги и многое другое. Криптология – это раздел математики, изучающий математические основы криптографических методов.

Целью данной работы является знакомство с криптографией; шифрами, их видами и свойствами.

Ознакомиться с криптографией

Рассмотреть шифры, их виды и свойства

История криптографии

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип - замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) - до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период (с середины до 70-х годов XX века) период перехода к математической криптографии. В работе Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам - линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления - криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается - от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики - работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества - её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

Появление шифров

Некоторые из криптографических систем дошли до нас из дремучей древности. Вероятнее всего они родились одновременно с письменностью в IV тысячелетии до нашей эры. Способы тайной переписки были придуманы независимо во многих древних государствах, таких как Египет, Греция и Япония, но детальный состав криптологии в них сейчас неизвестен. Криптограммы находятся даже в древнее время, хотя из-за применявшейся в древнем мире идеографической письменности в виде стилизованных пиктограмм они были довольно примитивны. Шумеры, судя по всему, пользовались искусством тайнописи.

Археологами был найден ряд глиняных клинописных табличек, в которых первая запись часто замазывалась толстым слоем глины, на котором и производилась вторая запись. Появление подобных странных табличек вполне могло быть обосновано и тайнописью, и утилизацией. Поскольку количество знаков идеографического письма насчитывало более тысячи, их запоминание представляло собой довольно таки трудную задачу - тут становилось не до шифрования. Однако, коды, появившиеся в одно время со словарями, были очень хорошо знакомы в Вавилоне и Ассирийском государстве, а древние египтяне пользовались по крайней мере тремя системами шифрования. С происхождением фонетического письма письменность сразу же упростилась. В древнесемитском алфавите во II тысячелетии до нашей эры существовало всего лишь около 30 знаков. Ими обозначались согласные, а также некоторые гласные звуки и слоги. Упрощение письменности вызвало развитие криптографии и шифрования.

Даже в книгах Библии мы можем найти примеры шифровок, хотя почти никто их не замечает. В книге пророка Иеремии (22,23) мы читаем: "...а царь Сессаха выпьет после них." Этого царя и такого царства не существовало - неужели ошибка автора? Нет, просто иногда священные иудейские манускрипты шифровались обычной заменой. Вместо первой буквы алфавита писали последнюю, вместо второй - предпоследнюю и так далее. Этот старый способ криптографии называется атбаш. Читая с его помощью слово СЕССАХ, на языке оригинала мы имеем слово ВАВИЛОН, и весь смысл библейского манускрипта может быть понят даже теми, кто не верит слепо в истинность писания.

Эволюция криптографии

Развитие шифрования в двадцатом веке было очень стремительным, но совершенно неравномерным. Взглянув на историю его развития как специфической области человеческой жизнедеятельности, можно выделить три основополагающих периода.

Начальный. Имел дело только с ручными шифрами. Начался в дремучей древности и закончился только в самом конце тридцатых годов двадцатого века. Тайнопись за это время преодолела длительный путь от магического искусства доисторических жрецов до повседневной прикладной профессии работников секретных агентств.

Дальнейший период можно отметить созданием и повсеместным внедрением в практику механических, затем электромеханических и, в самом конце, электронных приборов криптографии, созданием целых сетей зашифрованной связи.

Рождением третьего периода развития шифрования обычно принято считать 1976 год, в котором американские математики Диффи и Хеллман изобрели принципиально новый способ организации шифрованной связи, не требующий предварительного обеспечения абонентов тайными ключами - так называемое кодирование с использованием открытого ключа. В результате этого начали возникать шифровальные системы, основанные на базе способа, изобретенного еще в 40-х годах Шенноном. Он предложил создавать шифр таким образом, чтобы его расшифровка была эквивалентна решению сложной математической задачи, требующей выполнения вычислений, которые превосходили бы возможности современных компьютерных систем. Этот период развития шифрования характеризуется возникновением абсолютно автоматизированных систем кодированной связи, в которых любой пользователь владеет своим персональным паролем для верификации, хранит его, например, на магнитной карте или где-либо еще, и предъявляет при авторизации в системе, а все остальное происходит автоматически.


Шифры, их виды и свойства

В криптографии криптографические системы (шифры) классифицируются следующим образом:

– симметричные криптосистемы;

– асимметричные криптосистемы.

2.1 Симметрическое шифрование

Симметричные криптосистемы (также симметричное шифрование, симметричные шифры) - способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.

В настоящее время симметричные шифры - это:

Блочные шифры. Обрабатывают информацию блоками определённой длины (обычно 64, 128 бит), применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами. Результатом повторения раундов является лавинный эффект - нарастающая потеря соответствия битов между блоками открытых и зашифрованных данных.

Поточные шифры, в которых шифрование проводится над каждым битом либо байтом исходного (открытого) текста с использованием гаммирования. Поточный шифр может быть легко создан на основе блочного (например, ГОСТ 28147-89 в режиме гаммирования), запущенного в специальном режиме.

Большинство симметричных шифров используют сложную комбинацию большого количества подстановок и перестановок. Многие такие шифры исполняются в несколько (иногда до 80) проходов, используя на каждом проходе «ключ прохода». Множество «ключей прохода» для всех проходов называется «расписанием ключей» (key schedule). Как правило, оно создается из ключа выполнением над ним неких операций, в том числе перестановок и подстановок.

Типичным способом построения алгоритмов симметричного шифрования является сеть Фейстеля. Алгоритм строит схему шифрования на основе функции F(D, K), где D - порция данных, размером вдвое меньше блока шифрования, а K - «ключ прохода» для данного прохода. От функции не требуется обратимость - обратная ей функция может быть неизвестна. Достоинства сети Фейстеля - почти полное совпадение дешифровки с шифрованием (единственное отличие - обратный порядок «ключей прохода» в расписании), что сильно облегчает аппаратную реализацию.

Операция перестановки перемешивает биты сообщения по некоему закону. В аппаратных реализациях она тривиально реализуется как перепутывание проводников. Именно операции перестановки дают возможность достижения «эффекта лавины». Операция перестановки линейна - f(a) xor f(b) == f(a xor b).

Операции подстановки выполняются как замена значения некоей части сообщения (часто в 4, 6 или 8 бит) на стандартное, жестко встроенное в алгоритм иное число путем обращения к константному массиву. Операция подстановки привносит в алгоритм нелинейность.

Зачастую стойкость алгоритма, особенно к дифференциальному криптоанализу, зависит от выбора значений в таблицах подстановки (S-блоках). Как минимум считается нежелательным наличие неподвижных элементов S(x) = x, а также отсутствие влияния какого-то бита входного байта на какой-то бит результата - то есть случаи, когда бит результата одинаков для всех пар входных слов, отличающихся только в данном бите (Рисунок 1).

Рисунок 1 – Виды ключей

Таким образом, симметричными криптографическими системами являются криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ. Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования. Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

Основные понятия криптографии

Проблема защиты информации от несанкционированного (самовольного) доступа (НСД) заметно обострилась в связи с широким распространением локальных и особенно глобальных компьютерных сетей.

Защита информации необходима для уменьшения вероятности утечки (разглашения), модификации (умышленного искажения) или утраты (уничтожения) информации, представляющей определенную ценность для ее владельца.

Проблема защиты информации волнует людей несколько столетий.

По свидетельству Геродота, уже в V в. до н. э. использовалось преобразование информации методом кодирования.

Одним из самых первых шифровальных приспособлений была скитала, которая применялась в V в. до н.э. во время войны Спарты против Афин. Скитала - это цилиндр, на который виток к витку наматывалась узкая папирусная лента (без пробелов и нахлестов). Затем на этой ленте вдоль оси цилиндра (столбцами) записывался необходимый для передачи текст. Лента сматывалась с цилиндра и отправлялась получателю. Получив такое сообщение, получатель наматывал ленту на цилиндр такого же диаметра, как и диаметр скиталы отправителя. В результате можно было прочитать зашифрованное сообщение.

Аристотелю принадлежит идея взлома такого шифра. Он предложил изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, постепенно сдвигая ее к вершине. На каком-то участке конуса начнут просматриваться участки читаемого текста. Так определяется секретный размер цилиндра.

Шифры появились в глубокой древности в виде криптограмм (по-гречески - тайнопись). Порой священные иудейские тексты шифровались методом замены. Вместо первой буквы алфавита записывалась последняя буква, вместо второй- предпоследняя и т. д. Этот древний шифр назывался атбаш. Известен факт шифрования переписки Юлия Цезаря (100-44 до н. э.) с Цицероном (106-43 до н. э.).

Шифр Цезаря реализуется заменой каждой буквы в сообщении другой буквой этого же алфавита, отстоящей от нее в алфавите на фиксированное число букв. В своих шифровках Цезарь заменял букву исходного открытого текста буквой, отстоящей от исходной буквы впереди на три позиции.

В Древней Греции (II в. до н.э.) был известен шифр, который создавался с помощью квадрата Полибия. Таблица для шифрования представляла собой квадрат с пятью столбцами и пятью строками, которые нумеровались цифрами от 1 до 5. В каждую клетку такой таблицы записывалась одна буква. В результате каждой букве соответствовала пара цифр, и шифрование сводилось к замене буквы парой цифр.

Идею квадрата Полибия проиллюстрируем таблицей с русскими буквами. Число букв в русском алфавите отличается от числа букв в греческом алфавите, поэтому и размер таблицы выбран иным (квадрат 6 х 6). Заметим, что порядок расположения символов в квадрате Полибия является секретной информацией (ключом).

Зашифруем с помощью квадрата Полибия слово КРИПТОГРАФИЯ:

26 36 24 35 42 34 14 36 11 44 24 63

Из примера видно, что в шифрограмме первым указывается номер строки, а вторым - номер столбца. В квадрате Полибия столбцы и строки можно маркировать не только цифрами, но и буквами.

В настоящее время проблемами защиты информации занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих двух направлений криптологии прямо противоположны.

Криптография - наука о защите информации от несанкционированного получения ее посторонними лицами. Сфера интересов криптографии - разработка и исследование методов шифрования информации.

Под шифрованием понимается такое преобразование информации, которое делает исходные данные нечитаемыми и трудно раскрываемыми без знания специальной секретной информации - ключа. В результате шифрования открытый текст превращается в шифрограмму и становится нечитаемым без использования дешифрирующего преобразования. Шифрограмма Может называться иначе: зашифрованный текст, криптограмма, шифровка или шифротекст. Шифрограмма позволяет скрыть смысл передаваемого сообщения.

Сфера интересов криптоанализа противоположная - разработка и исследование методов дешифрования (раскрытия) шифрограммы даже без знания секретного ключа.

Под ключом понимается секретная информация, определяющая, какое преобразование из множества возможных шифрующих преобразований выполняется в данном случае над открытым текстом. При использовании скиталы ключом является диаметр цилиндра.

Дешифрование - обратный шифрованию процесс. При дешифрировании с использованием ключа зашифрованный текст (шифрограмма, шифровка) преобразуется в исходный открытый текст.

Процесс получения криптоаналитиками открытого сообщения из криптограммы без заранее известного ключа называется вскрытием или взломом шифра.

Существует несколько классификаций шифров.

По характеру использования ключа алгоритмы шифрования делятся на два типа: симметричные (с одним ключом, по-другому - с секретным ключом) и несимметричные (с двумя ключами или с открытым ключом). Несимметричные алгоритмы шифрования и дешифрования порой называют асимметричными.

В первом случае в шифраторе отправителя и дешифраторе получателя используется один и тот же ключ (Ключ 1, см. рис). Шифратор образует шифрограмму, которая является функцией открытого текста. Конкретный вид функции преобразования (шифрования) определяется секретным ключом. Дешифратор получателя сообщения выполняет обратное преобразование по отношению к преобразованию, сделанному в шифраторе. Секретный ключ хранится в тайне и передается по каналу, исключающему перехват ключа криптоаналитиком противника или коммерческого конкурента.

Во втором случае (при использовании асимметричного алгоритма) получатель вначале по открытому каналу передает отправителю открытый ключ (Ключ 1), с помощью которого отправитель шифрует информацию. При получении информации получатель дешифрирует ее с помощью второго секретного ключа (Ключ 2). Перехват открытого ключа (Ключ 1) криптоаналитиком противника не позволяет дешифровать закрытое сообщение, так как оно рассекречивается лишь вторым секретным ключом (Ключ 2). При этом секретный Ключ 2 практически невозможно вычислить с помощью открытого Ключа 1.

При оценке эффективности шифра обычно руководствуются правилом голландца Огюста Керкхоффа (1835-1903), согласно которому стойкость шифра определяется только секретностью ключа, т. е. криптоаналитику известны все детали процесса (алгоритма) шифрования и дешифрования, но неизвестно, какой ключ использован для шифрования данного текста.

Криптостойкостью называется характеристика шифра, определяющая его устойчивость к дешифрованию без знания ключа (т. е. устойчивость к криптоанализу). Имеется несколько показателей криптостойкости, среди которых количество всех возможных ключей и среднее время, необходимое для криптоанализа.

Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно просто вычислить значение функции f(x). Однако если известно значение Функции у =f(x), то нет простого пути для вычисления значения аргумента х.

Все используемые в настоящее время криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований.

1. Разложение больших чисел на простые множители (алгоритм RSA, авторы - Райвест, Шамир и Адлеман - Rivest, Shamir, Adleman).

2. Вычисление логарифма или возведение в степень (алгоритм DH, авторы - Диффи и Хелман).

3. Вычисление корней алгебраических уравнений.

Рассмотрим простейший пример «необратимых» функций. Легко в уме найти произведение двух простых чисел 11 и 13. Но попробуйте быстро в уме найти два простых числа, произведение которых равно 437. Подобные трудности возникают и при использовании вычислительной техники для отыскания двух простых сомножителей для очень большого числа: найти сомножители можно, но потребуется много времени.

Таким образом, в системе кодирования RSA, основанной на разложении на множители, используются два разных ключа: один для шифрования сообщения, а второй - отличный от первого, но связанный с ним - для дешифрования. Ключ шифрования (открытый, несекретный ключ) основан на произведении двух огромных простых чисел, а ключ дешифрования (закрытый, секретный ключ) - на самих простых числах.

Заметим, что по операцию разложения простого числа на множители порой называют факторизацией.

Термин «необратимые» функции неудачен. Правильнее было бы их назвать быстро (или просто) необратимые функции. Однако этот термин устоявшийся, и с неточностью приходится мириться.

В 40-х годах XX в. американский инженер и математик Клод Шеннон предложил разрабатывать шифр таким образом, чтобы его раскрытие было эквивалентно решению сложной математической задачи. Причем, сложность задачи должна быть такой, чтобы объем необходимых вычислений превосходил бы возможности современных ЭВМ.

В асимметричных системах приходится применять длинные ключи (2048 бита и больше). Длинный ключ увеличивает время шифрования открытого сообщения. Кроме того, генерация ключей становится весьма длительной. Зато пересылать открытые ключи можно по незащищенным (незасекреченным, открытым) каналам связи. Это особенно удобно, например, для коммерческих партнеров, разделенных большими расстояниями. Открытый ключ удобно передавать от банкира сразу нескольким вкладчикам.

В симметричных алгоритмах используют более короткие ключи, поэтому шифрование и дешифрование происходят быстрее. Но в таких системах рассылка ключей -является сложной процедурой. Передавать ключи нужно по закрытым (секретным) каналам. Использование курьеров для рассылки секретных ключей дорогая, сложная и медленная процедура.

В США для передачи секретных сообщений наибольшее распространение получил стандарт DES (Data Encryption Standard).

Стандарт DES является блочным шифром. Он шифрует данные блоками по 64 бита. При шифровании используется ключ длиной 56 битов. Данный стандарт подвергался многократному детальному криптоанализу. Для его взлома были разработаны специализированные ЭВМ стоимостью, достигавшей 20 миллионов долларов. Были разработаны способы силового взлома стандарта DES на основании распределенных вычислений с использованием множества ЭВМ. Для увеличения криптостойкости впоследствии был разработан способ DES-шифрования с использованием трех ключей - так называемый «тройной DES».

Можно утверждать, что на протяжении многих лет дешифрованию криптограмм помогает частотный анализ появления отдельных символов и их сочетаний. Вероятности появления отдельных букв в тексте сильно различаются. Для русского языка, например, буква «о» появляется в 45 раз чаще буквы «ф» и в 30 раз чаще буквы «э». Анализируя достаточно длинный текст, зашифрованный методом замены, можно по частотам появления символов произвести обратную замену и восстановить исходный открытый текст. В таблице приведены относительные частоты появления русских букв.

Буква Частота Буква Частота Буква Частота Буква Частота
о 0.09 в 0.038 з 0.016 ж 0.007
е, ё 0.072 л 0.035 ы 0.016 ш 0.006
а 0.062 к 0.028 б 0.014 ю 0.006
и 0.062 м 0.026 ь, ъ 0.014 ц 0.004
н 0.053 д 0.025 г 0.013 щ 0.003
т 0.053 п 0.023 ч 0.012 э 0.003
с 0.045 у 0.021 и 0.01 ф 0.002
р 0.04 я 0.018 х 0.009

Относительная частота появления пробела или знака препинания в русском языке составляет 0,174. Приведенные цифры означают следующее: среди 1000 букв текста в среднем будет 174 пробелов и знаков препинания, 90 букв «о», 72 буквы «е» и т. д.

При проведении криптоанализа требуется по небольшому отрезку текста решить, что собой представляет дешифрованный текст: осмысленное сообщение или набор случайных символов. Часто криптоаналитики вскрывают шифры на ЭВМ методом перебора ключей. Вручную выполнить анализ множества фрагментов дешифрированных текстов невозможно. Поэтому задачу выделения осмысленного текста (т. е. обнаружение правильно дешифрированного текста) решают с помощью ЭВМ. В этом случае используют теоретические положения, разработанные в конце XIX в. петербургским Математиком А.А. Марковым, так называемые цепи Маркова.

Следует заметить, что, по мнению некоторых специалистов, нет нераскрываемых шифров. Рассекретить (взломать) любую шифрограмму можно либо за большое время, либо за большие деньги. Во втором случае для дешифрования потребуется использование нескольких суперкомпьютеров, что приведет к существенным материальным затратам. Все чаще для взлома секретных сообщений используют распределенные ресурсы Интернета, распараллеливая вычисления и привлекая к расчетам сотни и даже тысячи рабочих станций.

Есть и другое мнение. Если длина ключа равна длине сообщения, а ключ генерируется из случайных чисел с равновероятным распределением и меняется с каждым новым сообщением, то шифр невозможно взломать даже теоретически. Подобный подход впервые описал Г. Вернам в начале XX в., предложив алгоритм одноразовых шифроблокнотов.

Рассмотрим еще одну классификацию шифров.

Множество современных методов шифрования можно разделить на четыре большие группы: методы замены (подстановки), перестановок, аддитивные (гаммирования) и комбинированные методы.

В шифре перестановок все буквы открытого текста остаются без изменений, но перемещаются с их исходных позиций на другие места (примером является шифрование с помощью скиталы).

Следующая простейшая «шифровка» получена методом перестановки двух соседних букв РКПИОТРГФАЯИ.

В этом «секретном» сообщении легко узнать слово КРИПТОГРАФИЯ.

Более сложный алгоритм перестановок сводится к разбиению сообщения на группы по три буквы. В каждой группе первую букву ставят на третье место, а вторую и третью буквы смещают на одну позицию влево. В результате получится криптограмма: РИКТОПРАГИЯФ.

Перестановки получаются в результате записи исходного текста и чтения шифрованного текста по разным путям некоторой геометрической фигуры.

В шифре замены позиции букв в шифровке остаются теми же, что и у открытого текста, но символы открытого текста заменяются символами другого алфавита. В качестве примера можно назвать квадрат Полибия. Здесь буквы заменяются соответствующими цифрами.

Метод замены часто реализуется многими пользователями случайно при работе на ЭВМ. Если по забывчивости не переключить на клавиатуре регистр с латиницы на кириллицу, то вместо букв русского алфавита при вводе текста будут печататься буквы латинского алфавита. В результате исходное сообщение будет «зашифровано» латинскими буквами. Например, rhbgnjuhfabz - так зашифровано слово криптография.

В аддитивном методе буквы алфавита вначале заменяются числами, к которым затем добавляются числа секретной псевдослучайной числовой последовательности (гаммы). Состав гаммы меняется в зависимости от использованного ключа. Обычно для шифрования используется логическая операция «Исключающее ИЛИ». При дешифровании та же гамма накладывается на зашифрованные данные. Метод гаммирования широко используется в военных криптографических системах. Шифры, получаемые аддитивным методом, порой называют поточными шифрами.

Комбинированные методы предполагают использование для шифрования сообщения сразу нескольких методов (например, сначала замена символов, а затем их перестановка).

Существует еще один подход к передаче секретных сообщений. Он сводится к сокрытию самого факта передачи информации. Такими способами шифрования занимается наука стеганография.

Если криптография делает открытое сообщение нечитаемым без знания секретного ключа, то стеганография разрабатывает такие методы шифрования, при которых сложно заметить сам факт передачи информации.

Стеганография использует специальные контейнеры, в которых прячется передаваемое сообщение. Например, секретный текст внедряется в безобидный рисунок какого-то цветка на поздравительной открытке.


Шифрование сообщений различными методами

Вместо хвоста - нога, А на ноге - рога.

Л. Дербенеёв.

Рассмотрим, как зашифровать сообщение методом замены (другими словами методом подстановки). Вначале используем шифр Цезаря. Предположим, что требуется зашифровать сообщение «ГДЕ АББА».

Как известно, циклический шифр Цезаря получается заменой каждой буквы открытого текста буквами этого же алфавита, расположенными впереди через определенное число позиций, например через три позиции. Циклическим он называется потому, что при выполнении замены вслед за последней буквой алфавита вновь следует первая буква алфавита. Запишем фрагменты русского алфавита и покажем, как выполняется шифрование (порядок замены):

В результате проведенного преобразования получится шифрограмма:

ЁЖЗ ГДДГ.

В данном случае ключом является величина сдвига (число позиций между буквами). Число ключей этого шифра невелико (оно равно числу букв алфавита). Не представляет труда вскрыть такую шифрограмму перебором всех возможных ключей. Недостатком шифра Цезаря является невысокая криптостойкость. Объясняется это тем, что в зашифрованном тексте буквы по-прежнему располагаются в алфавитном порядке, лишь начало отсчета смещено на несколько позиций.

Замена может осуществляться на символы другого алфавита и с более сложным ключом (алгоритмом замены). Для простоты опять приведем лишь начальные части алфавитов. Линии показывают порядок замены букв русского алфавита на буквы латинского алфавита. Зашифруем фразу «ГДЕ АББА»

В результате такого шифрования получится криптограмма:

Рациональнее использованный в последнем случае ключ записать в виде таблицы:

А Б В Г Д Е
Е F А С D В

При шифровании буквы могут быть заменены числами (в простейшем случае порядковыми номерами букв в алфавите). Тогда наша шифровка будет выглядеть так:

Замена символов открытого текста может происходить на специальные символы, например, на «пляшущих человечков», как в рассказе К. Дойла или с помощью флажков, как это делается моряками.

Более высокую криптостойкость по сравнению с шифром Цезаря имеют аффинные криптосистемы.

В аффинных криптосистемах, за счет математических преобразований, буквы, заменяющие открытый текст, хаотично перемешаны. В аффинных криптосистемах буквы открытого текста нумеруются числами, например, для кириллицы от 0 до 32. Затем каждая буква открытого текста заменяется буквой, порядковый номер которой вычисляется с помощью линейного уравнения и вычисления остатка от целочисленного деления.

Аффинные криптосистемы задаются при помощи двух чисел а и b. Для русского алфавита эти числа выбираются из условия а ≥ 0, b ≤ 32. Максимальное число символов в используемом алфавите обозначаются символом γ. Причем числа а и γ = 33 должны быть взаимно простыми. Если это условие не будет выполняться, то две разные буквы могут отображаться (превращаться) в одну. Каждый код буквы открытого текста μ заменяется кодом буквы криптограммы по следующему правилу. Вначале вычисляется число α= a∙μ + b, a затем выполняется операция целочисленного деления числа αна число γ = 33, то есть α= β(mod (γ)). В качестве кода символа Шифрограммы используется остаток от целочисленного деления. Для определенности выберем такие числа: а = 5 и b =3. Фрагмент процедуры, иллюстрирующей порядок шифрования, приведен в таблице.

В ранее рассмотренных нами шифрах каждой букве открытого текста соответствовала одна определенная буква криптограммы. Подобные шифры называются шифрами одноалфавитной замены.

Длинные сообщения, полученные методом одноалфавитной замены (другое название - шифр простой однобуквенной замены), раскрываются с помощью таблиц относительных частот. Для этого подсчитывается частота появления каждого символа, делится на общее число символов в шифрограмме. Затем с помощью таблицы относительных частот определяется, какая была сделана замена при шифровании.

Повысить криптостойкость позволяют шифры многоалфавитной замены (или шифры многозначной замены). При этом каждому символу открытого алфавита ставят в соответствие не один, а несколько символов шифровки.

Ниже приведен фрагмент ключа многоалфавитной замены:

А Б В Г Д Е

С помощью многоалфавитного шифра сообщение «ГДЕ АББА» можно зашифровать несколькими способами:

19-83-32-48-4-7-12,

10-99-15-12-4-14-12 и т. д.

Для каждой буквы исходного алфавита создается некоторое множество символов шифрограммы так, что множества каждой буквы не содержат одинаковых элементов. Многоалфавитные шифры изменяют картину статистических частот появления букв и этим затрудняют вскрытие шифра без знания ключа.

Рассмотрим еще один шифр многоалфавитной замены, который был описан в 1585 г. французским дипломатом Блезом де Виженером. Шифрование производится с помощью так называемой таблицы Виженера. Здесь, как и прежде, показана лишь часть таблицы для того, чтобы изложить лишь идею метода.

Каждая строка в этой таблице соответствует одному шифру простой замены (типа шифра Цезаря). При шифровании открытое сообщение записывают в строчку, а под ним помещают ключ. Если ключ оказывается короче сообщения, то ключ циклически повторяют. Шифровку получают, находя символ в матрице букв шифрограммы. Символ шифрограммы находится на пересечении столбца с буквой открытого текста и строки с соответствующей буквой ключа.

Предположим, что нужно зашифровать сообщение «ГДЕ АББА». В качестве ключа выберем слово «ДЕВА». В результате получим:

ЯЯГ АЭЬЮ.

Система Плейфейра создает многоалфавитные шифры. Рассмотрим основную идею этой системы.

Шифрование производится с помощью квадрата (или прямоугольника), в который занесены буквы соответствующего национального алфавита. Буквы записываются в квадрат или прямоугольник в произвольном порядке. Этот порядок записи букв и конфигурация таблицы являются секретным ключом. Для определенности возьмем прямоугольную таблицу размером 8x4, в качестве букв алфавита - кириллицу, а буквы расположим в алфавитном порядке. Так как число русских букв 33, а число клеток - 32, исключим из таблицы букву Ё.

Предположим, что требуется зашифровать слово КРИПТОГРАФИЯ. Рассмотрим правила шифрования.

1. Открытый текст делится на блоки по две буквы. Буквы в одном блоке не должны быть одинаковыми. Произведем разделение исходного слова на блоки по две буквы КР-ИП-ТО-ГР-АФ-ИЯ.

2. Если буквы шифруемого блока находятся в разных строках и столбцах, то в качестве заменяющих букв используются буквы, расположенные в углах прямоугольника, охватывающего буквы открытого текста. На пример, блок КР заменяется символами ИТ.

3. Если буквы открытого текста попадают в одну строку, то шифрограмма получается путем циклического сдвига вправо на одну клетку. Например, блок ИП будет преобразован в ЙИ. Еще один пример к этому правилу. Если, предположим, требуется преобразовать блок КН, то получится ЛО.

4. Если обе буквы открытого текста попадают в один столбец, то для шифрования осуществляют циклический сдвиг на одну клетку вниз.

Блок ЖЦ будет преобразован в символы ОЮ, а блок ТЪ в символы ЪВ.

В соответствии с описанными правилами слово КРИПТОГРАФИЯ будет преобразовано в криптограмму ИТЙИЦКАУДРПШ.

Заметим, что если блоки открытого текста состоят из одинаковых букв, то криптограмма тоже будет содержать одинаковые пары символов. По этой причине рассмотренный шифр относится к одноалфавитным. Однако модификация этого шифра превращает его в многоалфавитную систему. Для этого используется несколько таблиц Плейфейера и производится многократное шифрование.

Здесь уместно рассмотреть криптографическую систему Хилла, в которой шифрование осуществляется с использованием математических преобразований: вычислений с помощью приемов линейной алгебры.

Данный шифр для отдельно взятой буквы можно считать многоалфавитным. Однако пары букв шифруются везде одинаково. Поэтому в широком смысле понятия криптографическую систему Хилла следует отнести к одноалфавитным шифрам.

Первоначально открытый текст методом замены следует преобразовать в совокупность чисел. Предположим, что шифруется текст, написанный с использованием 26-ти латинских букв. Выберем следующий алгоритм замены букв на числа: латинские буквы А, В, С, D, ..., Z будем заменять соответственно числами 1, 2, 3, 4,..., 26. Другими словами: пронумеруем буквы в порядке их расположения в алфавите, и при замене будем использовать их порядковые номера. В данном случае выбран такой алгоритм замены, но понятно, что он может быть любым.

Предположим, что нужно зашифровать немецкое слово ZEIT. Заменим буквы в соответствии с их порядковыми номерами в алфавите четырьмя числами: 26 - 5 - 9 - 20.

Далее следует выбрать некоторое число d > 2. Это число показывает, порядок разбиения открытого текста на группы символов (определяет, сколько букв будет в каждой группе). С математической точки зрения число d показывает, сколько строк должно быть в векторах-столбцах. Примем d = 2. Это означает, что числа 26 - 5 - 9 - 20 нужно разбить на группы по два числа в каждой группе и записать их в виде векторов-столбцов:

Рассмотрим примеры шифрования сообщения методом перестановок.

Идея этого метода криптографии заключается в том, что запись открытого текста и последующее считывание шифровки производится по разным путям некоторой геометрической фигуры (например, квадрата).

Для пояснения идеи возьмем квадратную таблицу (матрицу) 8x8. Будем записывать текст последовательно по строкам сверху вниз, а считывать по столбцам последовательно слева направо.

Предположим, что требуется зашифровать сообщение:

НА ПЕРВОМ КУРСЕ ТЯЖЕЛО УЧИТЬСЯ ТОЛЬКО ПЕРВЫЕ ЧЕТЫРЕ ГОДА ДЕКАНАТ.

н А _ П Е Р в О
м к У Р С Е _
т Я ж Е Л О _ У
ч И т Ь С Я _ т
О Л ь К О _ П Е
р в ы Е _ Ч Е Т
ы р Е _ г О д А
_ д Е К А н А Т

В таблице символом «_» обозначен пробел.

В результате преобразований получится шифровка

НМТЧОРЫ_А_ЯИЛВРД_КЖТЬЫЕЕПУЕЬКЕ_КЕРЛСО_ГАРСОЯ_ЧОНВЕ_

ПЕДАО_УТЕТАТ.

Как видно из примера, шифровка и открытый текст содержат одинаковые символы, но они располагаются на разных местах.

Ключом в данном случае является размер матрицы, порядок записи открытого текста и считывания шифрограммы. Естественно, что ключ может быть другим. Например, запись открытого текста по строкам может производиться в таком порядке: 48127653, а считывание криптограммы может происходить по столбцам в следующем порядке: 81357642.

Будем называть порядок записи в строки матрицы ключом записи, а порядок считывания шифрограммы по столбцам - ключом считывания.

Тогда правило дешифрирования криптограммы, полученной методом перестановок, можно записать так.

Чтобы дешифровать криптограмму, полученную с помощью матрицы п х п, нужно криптограмму разбить на группы символов по п символов в каждой группе. Крайнюю левую группу записать сверху вниз в столбец, номер которого совпадает с первой цифрой ключа считывания. Вторую группу символов записать в столбец, номер которого совпадает со второй цифрой ключа считывания и т.д. Открытый текст считывать из матрицы по строкам в соответствии с цифрами ключа записи.

Рассмотрим пример дешифрации криптограммы, полученной методом перестановок. Известно, что при шифровании использованы матрица 6x6, ключ записи 352146 и ключ считывания 425316. Текст шифрограммы таков:

ДКАГЧЬОВА_РУААКОЕБЗЕРЕ_ДСОХТЕСЕ_Т_ЛУ

Разобьем шифрограмму на группы по 6 символов:

ДКАГЧЬ ОВА_РУ ААКОЕБ ЗЕРЕ_Д СОХТЕС Е_Т_ЛУ

Затем первую группу символов запишем в столбец 4 матрицы 6x6, так как первая цифра ключа считывания - 4 (см. рисунок а). Вторую группу из 6 символов запишем в столбец 2 (см. рисунок б), третью группу символов - в столбец 5 (см. рисунок в), пропустив две фазы заполнения матрицы, изобразим полностью заполненную матрицу (см. рисунок г).

Считывание открытого текста в соответствии с ключом записи начинаем со строки 3, затем используем строку 5 и т.д. В результате дешифрования получаем открытый текст:

ХАРАКТЕР ЧЕЛОВЕКА СОЗДАЕТ ЕГО СУДЬБУ

Естественно, что описанная процедура дешифрования криптограммы производится компьютером автоматически с помощью заранее разработанных программ.


Д
К
А
Г
ч
ь
О д
В к
А А
Г
Р ч
У ь

О Д А
В К А
А А К
Г О
Р ч Е
У ь Б
С О д А Е
О В Е к А
X А Р А К Т
т Е Г О
Е Р ч Е Л
С У д ь Б У

Для повышения криптостойкости методы замены и перестановки нередко используют в сочетании с аддитивным методом.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: