Компьютерное моделирование физических процессов. Компьютерное моделирование"

Начнем с определения слова моделирование.

Моделирование – процесс построения и использования модели. Под моделью понимают такой материальный или абстрактный объект, который в процессе изучения заменяет объект-оригинал, сохраняя его свойства, важные для данного исследования.

Компьютерное моделирование как метод познания основано на математическом моделировании. Математическая модель – это система математических соотношений (формул, уравнений, неравенств и знаковых логических выражений) отображающих существенные свойства изучаемого объекта или явления.

Очень редко удается использовать математическую модель для конкретных расчетов без использования вычислительной техники, что с неизбежностью требует создания некоторой компьютерной модели.

Рассмотрим процесс компьютерного моделирования более подробно.

2.2. Представление о компьютерном моделировании

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование как новый метод научных исследований основывается на:

1. Построении математических моделей для описания изучаемых процессов;

2. Использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

2.3. Построение компьютерной модели

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов – сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Итак, к основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования:

на данном этапе происходит сбор информации, формулировка вопроса, определение целей, формы представления результатов, описание данных.

2. Анализ и исследование системы:

анализ системы, содержательное описание объекта, разработка информационной модели, анализ технических и программных средств, разработка структур данных, разработка математической модели.

3. Формализация, то есть переход к математической модели, создание алгоритма:

выбор метода проектирования алгоритма, выбор формы записи алгоритма, выбор метода тестирования, проектирование алгоритма.

4. Программирование:

выбор языка программирования или прикладной среды для моделирования, уточнение способов организации данных, запись алгоритма на выбранном языке программирования (или в прикладной среде).

5. Проведение серии вычислительных экспериментов:

отладка синтаксиса, семантики и логической структуры, тестовые расчеты и анализ результатов тестирования, доработка программы.

6. Анализ и интерпретация результатов:

доработка программы или модели в случае необходимости.

Существует множество программных комплексов и сред, которые позволяют проводить построение и исследование моделей:

Графические среды

Текстовые редакторы

Среды программирования

Электронные таблицы

Математические пакеты

HTML-редакторы

2.4. Вычислительный эксперимент

Эксперимент – это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий, чтобы определить, как реагирует экспериментальный образец на эти действия. Вычислительный эксперимент предполагает проведение расчетов с использованием формализованный модели.

Использование компьютерной модели, реализующей математическую, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объектом проводится вычислительный эксперимент с его моделью. Задавая конкретный набор значений исходных параметров модели, в результате вычислительного эксперимента получают конкретный набор значений искомых параметров, исследуют свойства объектов или процессов, находят их оптимальные параметры и режимы работы, уточняют модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно, изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях. Для исследований поведения объекта при новом наборе исходных данных необходимо проведение нового вычислительного эксперимента.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

2.5. Моделирование в различных средах

2.5.1. Моделирование в среде программирования

Моделирование в среде программирование включает в себя основные этапы компьютерного моделирования. На этапе построения информационной модели и алгоритма необходимо определить, какие величины являются входными параметрами, а какие – результатами, а также определить тип этих величин. При необходимости составляется алгоритм в виде блок-схемы, который записывается на выбранном языке программирования. После этого проводится вычислительный эксперимент. Для этого необходимо загрузить программу в оперативную память компьютера и запустить на выполнение. Компьютерный эксперимент обязательно включает в себя анализ полученных результатов, на основании которого могут корректироваться все этапы решения задачи (математическая модель, алгоритм, программа). Одним из важнейших этапов является тестирование алгоритма и программы.

Отладка программы (английский термин debugging (отладка) означает «вылавливание жучков» появился в 1945 году, когда в электрические цепи одного из первых компьютеров «Марк-1» попал мотылек и заблокировал одно из тысяч реле) – это процесс поиска и устранения ошибок в программе, производимы по результатам вычислительного эксперимента. При отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования.

В современных программных системах отладка осуществляется с использованием специальных программных средств, называемыми отладчиками.

Тестирование – это проверка правильности работы программы в целом, либо составных её частей. В процессе тестирования проверяется работоспособность программы, не содержащей явных ошибок.

Как бы тщательно ни была отлажена программа, решающим этапом, устанавливающим её пригодность для работы, является контроль программы по результатам её выполнения на системе тестов. Программу можно считать правильной, если для выбранной системы тестовых исходных данных во всех случаях получаются правильные результаты.

2.5.2. Моделирование в электронных таблицах

Моделирование в электронных таблицах охватывает очень широкий класс задач в разных предметных областях. Электронные таблицы – универсальный инструмент, позволяющий быстро выполнить трудоемкую работу по расчету и пересчету количественных характеристик объекта. При моделировании с использованием электронных таблиц алгоритм решения задачи несколько трансформируется, скрываясь за необходимостью разработки вычислительного интерфейса. Сохраняется этап отладки, включающий устранение ошибок данных, в связях между ячейками, в вычислительных формулах. Возникают также дополнительные задачи: работа над удобством представления на экране и, если необходим вывод полученных данных на бумажные носители, над их размещением на листах.

Процесс моделирования в электронных таблицах выполняется по общей схеме: определяются цели, выявляются характеристики и взаимосвязи и составляется математическая модель. Характеристики модели обязательно определяются по назначению: исходные (влияющие на поведение модели), промежуточные и то, что требуется получить в результате. Иногда представление объекта дополняется схемами, чертежами.

Моделирование является одним из способов познания мира.

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

Моделирование проходит три этапа:

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Видов моделирования огромное количество. Вот некоторые примеры типов моделей:

Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.

Графические модели . Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели . Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Особенности компьютерного моделирования

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

Для компьютерного моделирования важно наличие определенного программного обеспечения.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Язык - это знаковая система, используемая для целей коммуникации и познания.

Языки можно разделить на естественные и искусственные.

Естественные (обычные, разговорные) языки складываются стихийно и в течение долгого времени. Искусственные языки создаются людьми для специальных целей или для определенных групп людей (язык математики, морской язык, языки программирования и т. д.). Характерной их особенностью является однозначная определенность их словаря, правил образования выражений и конструкций (строго формализованы). В естественных языках они частично формализованы. Каждый язык характеризуется: набором используемых знаков;

Правилом образования из этих знаков языковых конструкций;

Набором синтаксических, семантических и прагматических правил использования языковых конструкций.

Алфавит - это упорядоченный набор знаков, используемых в языке.

В информатике нас прежде всего интересуют модели, которые можно создавать и исследовать с помощью компьютера. С помощью компьютера можно создавать и исследовать множество объектов: тексты, графики, таблицы, диаграммы и пр. Компьютерные технологии накладывают все больший отпечаток на процесс моделирования, поэтому компьютерное моделирование можно рассматривать как особый вид информационного моделирования.

В последние годы благодаря развитию графического интерфейса и графических пакетов широкое развитие получило компьютерное, структурно-функциональное моделирование. Суть имитационного компьютерного моделирования заключена в получении количественных и качественных результатов функционирования моделируемой системы по имеющейся модели. Качественные выводы, получаемые по результатам анализа модели, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и пр. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснение прошлых значений параметров, характеризующих систему.

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, процесс инфляции и т. д.

Цели компьютерного моделирования могут быть различными, но чаще всего это получение данных, которые могут быть использованы для подготовки и принятия решений экономического, социального, организационного или технического характера. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта. Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.


Начнем с термина «компьютерная модель». В настоящее время под компьютерной моделью чаще всего понимают:

§ условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

§ отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных (как правило, случайных) факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризующих систему.

Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Процесс исследования поведения какого-либо объекта или системы объектов на компьютере можно разбить на следующие этапы:

Построение содержательной модели;

Построение математической модели;

Построение информационной модели и алгоритма;

Кодирование алгоритма на языке программирования;

Компьютерный эксперимент.

Контрольные вопросы

1. Что такое модель?

2. Для чего используются модели?

3. Что такое моделирование?

4. Как классифицируются модели?

5. Какие этапы проходит процесс создания модели?

6. Какие виды моделирования различают?

7. Какие модели характеризуют информационное моделирование?

8. Что такое формализация?

9. Какими чертами должен обладать знак?

10.В чем заключается цель компьютерного моделирования?

11.Что понимается под компьютерной моделью?

12.Каковы основные функции и этапы компьютерного моделирования?

Метод моделирования в качестве научного исследования стал применяться еще в глубокой древности и постепенно захватывал все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, информационные технологии. Методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента:

1) субъект (исследователь),

2) объект исследования,

3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала .

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Рис. 1 – Этапы компьютерного моделирования

Этапы компьютерного моделирования можно представить в виде схемы (рис. 1).

Моделирование начинается с объекта изучения. На первом этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В то же время постановка задачи уточняется по мере изучения объекта. Таким образом, на первом этапе процессы целенаправленного изучения объекта и уточнения задачи происходят параллельно и независимо друг от друга. Также на этом этапе информация об объекте подготавливается к обработке на компьютере. Строится так называемая формальная модель явления, которая содержит:

    набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части, называемые статистическими или постоянными параметрами модели;

    набор переменных величин, меняя значение которых можно управлять поведением модели, называемых динамическим или управляющими параметрами;

    формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;

    формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.

На втором этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства для этого, строиться алгоритм решения проблемы, пишется программа, реализующая этот алгоритм, затем написанная программа отлаживается и тестируется на специально подготовленных тестовых моделях . Тестирование - это процесс исполнения программы с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования. Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.

На третьем этапе, работая с компьютерной моделью, мы осуществляем непосредственно вычислительный эксперимент. Исследуем, как поведет себя наша модель в том или ином случае, при тех или иных наборах динамических параметров, пытаемся прогнозировать или оптимизировать что-либо в зависимости от поставленной задачи.

Результатом компьютерного эксперимента будет являться информационная модель явления, в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сегодня невозможно решение крупных научных задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом. Вычислительный эксперимент применяется практически во всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в таких сугубо гуманитарных науках как психология, лингвистика и филология. Проведение вычислительного эксперимента имеет ряд преимуществ перед так называемым натурным экспериментом:

    для вычислительного эксперимента не требуется сложного лабораторного оборудования;

    существенное сокращение временных затрат на эксперимент;

    возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им нереальных, неправдоподобных значений;

    возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен из-за удаленности исследуемого явления в пространстве (астрономия) либо из-за его значительной растянутости во времени (биология), либо из-за возможности внесения необратимых изменений в изучаемый процесс.

В этих случаях и используется компьютерное моделирование. Также широко используется компьютерное моделирование в образовательных и учебных целях. Компьютерное моделирование - наиболее адекватный подход при изучении предметов естественнонаучного цикла, изучение компьютерного моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными. Учитель может использовать на уроке готовые компьютерные модели для демонстрации изучаемого явления, будь это движение астрономических объектов или движение атомов или модель молекулы или рост микробов и т.д.. Также учитель может озадачить учащихся разработкой конкретных моделей, моделируя конкретное явление, студент не только освоит конкретный учебный материал, но и приобретет умение ставить проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, использовать компьютер для решения задач, проводить анализ вычислительных экспериментов. Таким образом, применение компьютерного моделирования в образовании позволяет сблизить методологию учебной деятельности с методологией научно-исследовательской работы.

Понятие моделирования - это очень широкое понятие, оно не ограничивается только математическим моделированием. Истоки моделирования обнаруживаются в далеком прошлом. Наскальные изображения мамонта, пронзенного копьем, на стене пещеры можно рассматривать как модель удачной охоты, созданную древним художником.

Элементы моделирования часто присутствуют в детских играх, любимое занятие детей - моделировать подручными средствами предметы и отношения из жизни взрослых. Взрослеют дети, взрослеет человечество. Человечество познает окружающий мир, модели становятся более абстрактными, теряют внешнее сходство с реальными объектами. В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Если мы заменяем реальный объект математическими формулами - допустим, согласно Второму закону Ньютона, опишем движение некоторого тела системой нелинейных уравнений, или, согласно закону теплопроводности опишем процесс распространения тепла дифференциальным уравнение второго порядка, - то говорят о математическом моделировании, если реальный объект заменяем компьютерной программой - о компьютерном моделировании.

Но что бы ни выступало в роли модели, постоянно прослеживается процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Это процесс и называется моделированием. Замещаемый объект называется оригиналом, замещающий – моделью (рис. 2).

Рис. 2 – Элементы моделирования

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).
В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

Свойство 1. Целостность и членимость.

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаи-модействующих между собой элементов.
У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

Свойство 2. Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней сре-дой).
Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

Свойство 3. Организация.

Свойство характеризуется наличием определенной организации – формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

  • сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;
  • наличие управления, разветвленной информационной сети и интенсивных потоков информации;
  • наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

Свойство 4. Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, кото-рые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства систе-мы хотя и зависят от свойств элементов, но не определяются ими полностью.
Примеры СС в экономической сфере многочисленны: организационно – производственная система, предприятие; социально – экономическая система, например регион; и др.
Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа – компьютерное моделирование .
Имитационное моделирование является наиболее эффективным и универ-сальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель , которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Исследование современных СС предполагает различные классы моделей . Развитие информационных технологий можно интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения, например, информационные системы, системы распознавания образов, системы искусственного интеллекта, системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования :

  • концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;
  • физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических процессов и явлений;
  • структурно – функциональное моделирование – моделями являются схемы (графы, блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
  • математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;
  • имитационное (программное) моделирование – в этом случае логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все перечисленные виды моделирования или отдельные приемы). Так, например, имитационное моделирование включает в себя концептуальное (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) моделирование для описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (экспериментального натурного или лабораторного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования трактуется шире традиционного понятия “моделирование на ЭВМ” . Приведем его.

Компьютерное моделирование – это метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерное моделирование можно рассматривать как:

  • математическое моделирование;
  • имитационное моделирование;
  • стохастическое моделирование.

Под термином “компьютерная модель” понимают условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели, описанные с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, будем называть математическими. Компьютерные модели, описанные с помощью взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта, будем называть структурно-функциональными ;

Компьютерные модели (отдельную программу, совокупность программ, программный комплекс), позволяющие, с помощью последовательности вычислений и графического отображения результатов ее работы, воспроизводить (имитировать) процессы функционирования объекта (системы объектов) при условии воздействия на объект различных, как правило, случайных факторов, будем называть имитационными .

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального . Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем), в котором доминирующая роль отводится системным аналитикам. В отличие от математического моделирования на ЭВМ, где методологической основой являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и др.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы . Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование предлагает совокупность методологических подходов и технологических средств, используемых для подготовки и принятия решений в различных областях исследования.

Выбор метода моделирования для решения постановленной задачи или исследования системы является актуальной задачей, с которой системный аналитик должен уметь справляться.

С этой целью уточним место имитационных моделей и их специфику среди моделей других классов. Кроме того, уточним некоторые понятия и определения, с которыми имеет дело системный аналитик в процессе моделирования. С этой целью рассмотрим процедурно-технологическую схему построения и исследования моделей сложных систем . Эта схема (приведенная на стр.6) включает, характерные для любого метода моделирования, следующие этапы определения:

  1. Системы (предметная, проблемная область);
  2. Объекта моделирования;
  3. Целевого назначения моделей;
  4. Требований к моделям;
  5. Формы представления;
  6. Вида описания модели;
  7. Характера реализации модели;
  8. Метода исследования модели.

Первые три этапа характеризуют объект и цель исследования и практически определяют следующие этапы моделирования. При этом большое значение приобретает корректное описание объекта и формулировка цели моделирования из предметной области исследования.

Предметная (проблемная) область . Исследование различных систем: математических, экономических, производственных, социальных, систем массового обслуживания, вычислительных, информационных и многих других.

Модель должна строиться целенаправленно. Целенаправленная модель представляет собой замену действительности с той степенью абстракции, которая необходима для поставленной цели. То есть, модель, прежде всего, должна отражать те существенные свойства и те стороны моделируемого объекта, которые определены задачей. При этом важно правильно обозначить и сформулировать проблему, четко определить цельисследования, проводимого с помощью моделирования.

Требования к моделям . Моделирование связано с решением реальных задач и необходимо быть уверенным, что результаты моделирования с достаточной степенью точности отражают истинное положение вещей, т.е. модель адекватна реальной действительности.

Хорошая модель должна удовлетворять некоторым общепринятым требованиям. Такая модель должна быть:

  • адекватной;
  • надежной;
  • простой и понятной пользователю;
  • целенаправленной;
  • удобной в управлении и обращении;
  • функционально полной с точки зрения возможностей решения главных задач;
  • адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные;
  • допускающей изменения (в процессе эксплуатации она может усложняться).

В зависимости от целевой направленности модели, для нее задаются специальные требования. Наиболее характерными являются: целостность, отражение информационных свойств, многоуровневость, множественность (многомодельность), расширяемость, универсальность, осуществимость (реальная возможность построения самой модели и ее исследования), реализуемость (например, на ЭВМ, возможность материализации модели в виде реальной системы в задачах проектирования), эффективность (затраты временных, трудовых, материальных и других видов ресурсов на построение моделей и проведение экспериментов находятся в допустимых пределах или оправданы). Значимость или приоритетность требований к модели непосредственно вытекают из назначения модели. Например, в исследовательских задачах, задачах управления, планирования и описания важным требованием является адекватность модели объективной реальности. В задачах проектирования и синтеза уникальных систем важным требованием является реализуемость модели, например в САПР или систему поддержки принятия решений (СППР).

Цель моделирования и задание требований к модели определяют форму представления модели.

Любая модель (прежде чем стать объективно существующим предметом) должна существовать в мысленной форме, быть конструктивно разработанной, переведена в знаковую форму и материализована. Таким образом, можно выделить три формы представления моделей:

  • мысленные (образы);
  • знаковые (структурные схемы, описания в виде устного и письменного изложения, логические, математические, логико-математические конструкции);
  • материальные (лабораторные и действующие макеты, опытные образцы).

Особое место в моделировании занимают знаковые , в частности логические, математические, логико-математические модели, а также модели, воссозданные на основе описания, составленного экспертами. Знаковые модели используются для моделирования разнообразных систем. Это направление связано с развитием вычислительных систем. Ограничимся ими в дальнейшем рассмотрении.

Следующий этап процедурной схемы – это выбор вида описания и
построения модели.
Для знаковых форм такими описаниями могут быть:

  • отношение и исчисление предикатов, семантические сети, фреймы, методы искусственного интеллекта и др. - для логических форм .
  • алгебраические, дифференциальные, интегральные, интегрально-дифференциальные уравнения и др. - для математических форм .

Характер реализации знаковых моделей бывает :

  • аналитический (например, система дифференциальных уравнений может быть решена математиком на листе бумаги);
  • машинный (аналоговый или цифровой);
  • физический (автоматный).

В каждом из них, в зависимости от сложности модели, цели моделирования, степени неопределенности характеристик модели, могут иметь место различные по характеру способы проведения исследований (экспериментов), т.е., методы исследования. Например, при аналитическом исследовании применяются различные математические методы. При физическом или натурном моделировании применяется экспериментальный метод исследования.

Анализ применяемых и перспективных методов машинного экспериментирования позволяет выделить расчетный, статистический, имитационный и самоорганизующийся методы исследований.

Расчетное (математическое) моделирование применяется при исследовании математических моделей и сводится к их машинной реализации при различных числовых исходных данных. Результаты этих реализаций (расчетов) выдаются в графической или табличной формах. Например, классической схемой является машинная реализация математической модели, представленной в виде системы дифференциальных уравнений, основанная на применении численных методов, с помощью которых математическая модель приводится к алгоритмическому виду, программно реализуется на ЭВМ, для получения результатов проводится расчет.

Имитационное моделирование отличается высокой степенью общности, создает предпосылки к созданию унифицированной модели, легко адаптируемой к широкому классу задач, выступает средством для интеграции моделей различных классов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: