I. Сообщения, сигналы и помехи, их математические модели. Энергетические характеристики случайных процессов

Борьба с шумами и помехами является основной задачей во многих областях радиотехники. Обеспечить высокую помехоустойчивость систем передачи информации можно разными путями. Например, создают такие устройства для обработки, которые некоторым наилучшим образом выделяют сигнал, искаженный присутствием помехи. Другой путь заключается в совершенствовании структуры передаваемых сигналов, использовании помехоустойчивых способов кодирования и модуляции. Примерами таких помехоустойчивых сигналов служат коды Баркера и сигналы с линейной частотной модуляцией, изученные в гл. 3, 4.

16.1. Выделение полезного сигнала с помощью линейного частотного фильтра

Чтобы выделить полезный сигнал, искаженный наличием шума, можно прибегнуть к частотной фильтрации. Пусть частотный коэффициент передачи линейного стационарного фильтра выбран так, что значения величины велики в области частот, где сконцентрирована основная доля энергии сигнала, и малы там, где велика спектральная плотность мощности шума. Следует ожидать что, подав на вход такого фильтра сумму сигнала и шума, на выходе можно получить заметное увеличение относительной доли полезного сигнала.

Отношение сигнал/шум.

Придадим данному положению количественную формулировку. Пусть на входе линейного фильтра присутствует входной сигнал

являющийся суммой полезного сигнала и шума Здесь и в дальнейшем предполагается, что оба эти сигнала являются узкополосными с одинаковыми центральными частотами . Считается, что сигналы некоррелированы в том смысле, что среднее значение произведения

Будем также предполагать стационарность этих сигналов на неограниченно протяженном интервале времени.

Интенсивность колебаний на входе фильтра можно характеризовать величиной среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (16.2) есть сумма средних квадратов полезного сигнала и шума:

где - дисперсия входного шума.

Для описания относительного уровня сигнала принято вводить так называемое отношение сигнал/шум на входе фильтра по формуле

или в логарифмических единицах (дБ)

Отметим, что безразмерное число характеризует уровень сигнала по отношению к уровню шума весьма приближенно и неполно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что реализации сигнала и шума в каком-нибудь содержательном смысле «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации данного шума представляют собой квазигармонические колебания. Естественно, что в этом случае можно пользоваться формулой (16.4) для оценки уровня полезных модулированных сигналов вида AM или ЧМ.

Пример 16.1. На входе фильтра присутствует однотональный AM-сигнал и гауссов шум односторонний спектр мощности которого

Найти отношение сигнал/шум на входе фильтра.

Среднюю мощность сигнала получим, усредняя его квадрат по времени:

Здесь первое слагаемое соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать, что

Дисперсия шума на входе фильтра

Отношение сигнал/шум

оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Отношение сигнал/шум на выходе фильтра.

Линейный фильтр подчиняется принципу суперпозиции. Сигнал и шум обрабатываются таким фильтром независимо и создают на выходе сигнал со средним квадратом

Это дает возможность ввести отношение сигнал/шум на выходе фильтра:

Будем называть выигрышем фильтра по отношению сигнал/шум величину

которая также может быть выражена в децибелах:

(16.10)

Ясно, что если то фильтрация суммы сигнала и шума приводит к благоприятному результату в смысле принятого нами критерия - повышению относительного уровня полезного сигнала на выходе.

Ответ на вопрос о том, какое отношение сигнал/шум следует считать достаточным для нормального функционирования радиосистемы, целиком зависит от назначения этой системы и всей совокупности предъявляемых технических требований.

Средняя мощность узкополосного сигнала.

Понятие средней мощности целесообразно вводить только по отношению к узкополосным сигналам, неограниченно протяженным во времени. Удобной и достаточно общей математической моделью такого сигнала является сумма

(16.11)

в которой амплитуды и фазы произвольны, а все частоты сосредоточены в узкой полосе вокруг опорной частоты Мгновенная мощность такого сигнала

Среднюю мощность полезного сигнала можно получить, проведя усреднение по времени:

Очевидно, что вклад в сумму дадут только слагаемые с совпадающими индексами, когда Отсюда следует, что

(16.12)

Влияние частотного коэффициента переда и фильтра на отношение сигнал/шум.

Если сигнал вида (16.11) проходит через линейный фильтр с частотным коэффициентом передачи , то средняя мощность сигнала на выходе

Дисперсия выходного шума

Отсюда находим выражение для отношения сигнал/шум на выходе фильтра:

Данная формула содержит полное решение поставленной задачи и позволяет в принципе, зная спектры сигнала и шума, так подобрать АЧХ фильтра, чтобы получить ощутимый выигрыш. Следует, однако, иметь в виду, что полезный сигнал, как правило, сам претерпевает некоторые, порой значительные искажения.

В случае периодического сигнала целесообразно использовать его накопление в течении ряда периодов. Покажем, как может быть получен существенный выигрыш в отношении сигнал/шум на выходе фильтра. На периодическом сигнале этот выигрыш может быть реализован в статических свойствах сигнала и шума (который по прежнему будем считать«белым»). В частности, может быть использовано различие в корреляционных функциях детерминированного сигнала и шума. При этом мы рассмотрим последовательно два варианта построения «корреляционных фильтров». В первом - будем считать, что сигнал периодический, но период не известен;во-втором - период сигнала известен, но не известна его «фаза».

Рассмотрим первый вариант.

4.1 Выделение периодического сигнала из аддитивной его смеси с шумом, когда период не известен.

Используем алгоритм оценки корреляционной функции

Здесь и автокорреляционные функции сигнала и шума, а и - взаимокорреляционные функции сигнала и шума. Так как сигнал и шум можно считать не зависимыми процессами, то взаимно корреляционные функции и равны нулю.

При вычислении интеграла будем различать два случая: и . Напомним, что - задержка выборочных значений (сдвиг аргумента) второго сомножителя в подынтегральной функции (4.1). Знаменатель подынтегральной функции имеет два корня: .

Вычисляя этот интеграл по формуле разложения , по вычетам, получаем с учетом знания , явный вид:

(4.3)

Полагая , получаем мощность шума на выходе:

(4.4)

Напомним, что этот результат был получен и ранее,формула (3.22).

Значение функции корреляции для периодического сигнала было приведено выше (1.14). Учитывая его, получаем значение искомой корреляционной функции:

Членимеет смысл «шума», обусловлен величиной суммы при конечном времени интегрирования и усреднения,стремится к нулю при увеличении T и t . Обращаясь к (4.5) видим, что при увеличении сдвига-задержки первое слагаемое (сумма) описывает неубывающую осциллирующую функцию, полезный сигнал по аргументу (а не t ) , второе - экспоненциально убывает. Таким образом обеспечивается принципиальная возможность выделить осциллирующий член - полезный сигнал из аддитивной смеси сигнала и шума, имеющейся на входе фильтра. Следует обратить внимание, что для реализации рассмотренного способа необходимо на каждом шаге изменения вычислять соответствующие интегралы по интервалу Т, чтобы обеспечить малую величину приближенных величин взаимокорреляционных функций и . (см. рис. 10)


Рис. 10

. (4.6).

Конечная величина интервала интегрирования приводит к тому, что величина D (t ) 0 будет «шумом».Величину такого рода «шума» достаточно просто оценить для случая, когда период полезного сигнала известен.

4.2 Выделение гармонического сигнала из шума, когда его период известен.

Рассмотрим теперь случай, когда период полезного сигнала известен, но неизвестна его «фаза», да и само наличие под вопросом. В этом варианте целесообразно использовать алгоритм вычисления взаимокорреляционной функции аддитивной смеси полезного сигнала и шума и опорным сигналом, период которого равен периоду полезного сигнала. Возможный выигрыш в отношении сигнал/шум рассмотрим на примере гармонического сигнала. Опорный сигнал тоже положим гармоническим, но с другой амплитудой и фазой . Шум будем считать «белым».

; (4.7)

Таким образом искомая взаимокорреляционная функция будет

Второй член в (4.8) можно рассматривать, как фон при конечном времени интегрирования, тогда, как третий интеграл имеет смысл «шума».

И «фон» и «шум» убывают при увеличении времени интегрирования Т. Очевидно, что «фон» убывает как 1/Т. Характер убывания «шума» при увеличении Т рассмотрим более подробно, отдельно.

Для оценки величины «шума» используем соотношение Хинчина :

Здесь - корреляционная функция случайного процесса, x(t) - детерминированная функция. Примем условия рассмотренного выше примера: шум на входе будем полагать «белым» со спектральной плотностью мощности , на входе корреляционного фильтра включен RC фильтр с коэффициентом передачи.

.

Выше было показано, что корреляционная функция случайного процесса на выходе такого RC фильтре имеет вид:

(4.3)

Подставляя эти функции в (4.9) и вычисляя двойной интеграл, получаем громоздкое выражение (см.приложение), включающее члены, имеющие различное убывание при увеличении интервала интегрирования Т.

Если учесть только наиболее медленно убывающий член 1/T, то приближенно получаем:

(4.10).

Эта формула и описывает мощность «шума» на выходе корреляционного фильтра, обусловленного конечным временем интегрирования Т. «Амплитуда шума» соответственно:

(4.11).

Заметим, что роль частотного интервала здесь играет величина 1/T Величина же просто безрамерный коэффициент.

Обращаясь к (4.8), напомним, что первый член описывает взаимокорреляционную функцию детерминированных сигналов, полезного и опорногои, следовательно, имеет смысл полезного сигнала на выходе корреляционного фильтра:

(4.12).

Очевидно, что отношение сигнал/шум, (предполагая, что выбирается так,чтобы ), будет:

(4.13).

Это важный результат: при накоплении периодического сигнала, которое можно вести на протяжении ряда периодов, отношение амплитуд сигнал/шум на выходе корреляционного фильтра увеличивается пропорционально корню квадратному от времени интегрирования. (). Понятно, что полученная зависимость сигнал/шум от времени интегрирования (как ) сохранится и в случае сложного периодического (импульсного) сигнала. Заметим, что в этом случае и опорный сигнал должен иметь спектр такой же, как и спектр полезного сигнала.

Реализовать описанный алгоритм возможно используя преобразование суммарного входного сигнала в цифровую форму, что позволит далее производить все операции вычисления с помощью программ на ЭВМ. При необходимости иметь выходной сигнал в аналоговой форме нужно использовать цифроаналоговый преобразователь. Кроме того, для ограничения спектра шума по входу необходимо сохранить, аналоговый фильтр, подобный рассмотренному в данном примере .

В заключение этого раздела отметим, что результат здесь был получен на «временном языке», т. е. отношение сигнал/шум на выходе корреляционного фильтра, выражено как функция времени накопления (интегрирования). Но при этом пока неочевидно каков будет коэффициент передачи корреляционного фильтра в частотной области.

Ответ на этот вопрос удобно получить, рассмотрев аналоговый вариант корреляционного фильтра.

4.3 Аналоговый вариант корреляционного фильтра .

В радиотехнических терминах такой корреляционный фильтр реализуется схемой фазового детектора. Действительно, функционально схема фазового детектора реализует алгоритм определения взаимной корреляционной функции.

Эта схема содержит входной фильтр , генератор опорного сигнала, перемножитель входного сигнала с опорным и накопитель- инерционный узкополосный фильтр , выполняющий приближенно операцию интегрирования.

Рассмотрим функционирование этой схемы, обращая внимание на преобразование спектра принимаемого (входного) сигнала.

Пусть есть резонансный RLC фильтр

(4.14)

, (4.15)

Удобно ввести ширину полосы пропускания фильтра при заданной неравномерности , примем . Тогда , -добротность, следовательно,

(4.16)

Заметим, что на резонансной частоте имеем и

(4.17)

Рассмотрим прохождение белого шума через такой резонансный фильтр , считая, что его спектральная плотность мощности- .

Используя (2.3) , имеем выражение для спектральной плотности мощности шума на выходе резонансного фильтра , на входе перемножителя.

В качестве второго сомножителя на перемножитель подается гармонический сигнал. Здесь возможны два варианта: первый - частота опорного сигнала равна частоте полезного сигнала (). В этом случае фильтр должен быть фильтром НЧ. Полезный выходной сигнал будет представлен постоянной составляющей. Второй вариант- частота опорного сигнала . Здесь выходной фильтр должен быть резонансным на частоте .

Рассмотрим первый вариант: , опорный гармонический сигнал

Его спектр

Убедимся, что спектр (4.20) связан преобразованием Фурье с (4.19)

Здесь использовано известное свойство d (x) функции:.

Итак, имеем спектры сомножителей, хотим найти спектр произведения - спектр на входе перемножителя. Используем формулу свертки в частотной области :

(4.22)

Спектры сомножителей (4.19) и (4.20) изображены на рис.13

Подставив значения спектральных функций (4.18) и (4.20) в (4.22) , получим спектральную плотность мощности шума на выходе перемножителя:

Наконец, спектральная плотность мощности шума на выходе узкополосного НЧ фильтра будет содержать только полосу спектра вблизи . Это дает:

(4.24)

Теперь легко найти мощность шума, имеющую такой спектр. Это удобно сделать так:

найти автокорреляционную функцию, соответствующую этому спектру и устремить t -> 0

(4.25)

Полоса фильтра выбирается много меньше, чем у фильтра , то есть , при этом (4.25) приблизительно дает:

(4.26)

Таким образом, мощность шума на выходе фазового детектора -корреляционного фильтра пропорциональна узкой полосе выходного фильтра равной DW Аналогично оценим величину и мощность полезного сигнала. Функция взаимной корреляции полезного гармонического сигнала была определена ранее (4.8),(4.12). Она описывает величину выходного полезного сигнала, в данном случае величину постоянной составляющей как функции задержки опорного сигнала .

(4.12)

Максимум сигнала на выходе фазового детектора получается при значениях

где n- целое число. Следует обратить внимание, что формула (4.12) описывает не мощность сигнала , а его величину («амплитуду»). Множителю следует придать смысл коэффициента усиления. Этот множитель присутствует и в выражении, оценивающем мощность шума. (). Поэтому мощность сигнала (его максимального значения при) будет описываться так

А отношение сигнал/шум по мощности (см 4.26) есть:

соответственно, отношения сигнал/шум по амплитуде на выходе корреляционного фильтра - фазового детектора будет

4.4. Супергетеродинный приёмник - аналоговый корреляционный фильтр

Коротко рассмотрим отмеченный выше второй вариант: частота опорного генератора отлична от частоты полезного сигнала здесь после перемножения полезного сигнала с опорным получим сумму двух гармонических сигналов на суммарной и разностной частотах

Фаза опорного сигнала. Здесь сомножителями участвовали сигналы:

В качестве узкополосного интегрирующего фильтра в этом случае нужно использовать резонансный фильтр - (усилитель), настроенный на суммарную или разностною частоту. Отличием от рассмотренного выше варианта является то, что при изменении фазы опорного сигнала относительно фазы входного (полезного) сигнала амплитуда гармонического сигнала на разностной и суммарной частоте будет оставаться постоянной. Изменяться будет только фаза сигнала на этих частотах. Функционально схема, изображенная на рис.11 ., включающая. в качестве фильтра К2 резонансный фильтр, настроенный на , является типовой схемой супергетеродинного приёмника в высокочастотной её части и работает как аналоговый корреляционный фильтр. Преобразование шума в этом варианте фильтра легко оценить совершенно также, как это было сделано выше, только размещение полос спектра шума по диапазону будет другим.

Не повторяя очевидных выкладок качественно поясним это рисунком (Рис.14), на котором по осям частот указаны частоты сигналов и полосы спектра шума. Соотношение сигнал/шум и в этом случае будут также определятся выражениями (4.28) и (4.29):

Формула (4.28) дает ответ и на вопрос об оптимальном комплексном коэффициенте передачи корреляционного фильтра. Для гармонического сигнала - это коэффициент , описывающий узкополосный выходной (интегрирующий) фильтр. В случае, когда частота опорного сигнала совпадает с частотой полезного это будет низкочастотный фильтр.(3.16) или (3.32). Если частота опорного отлична от частоты сигнала - это будет резонансный фильтр(4.15), настроенный на суммарную или разностную частоту . В этом случае целесообразно совместить функцию фильтрации с усилением, т.е. в качестве интегрирующего элемента использовать резонансный усилитель. Однако на отношение сигнал/шум величина этого усиления влиять не будет: и шум и сигнал усиливаются одинаково.

Отметим, что рассмотренные выше примеры, когда в качестве полезного сигнала рассматривается неограниченный во времени гармонический сигнал не представляет непосредственного интереса: здесь время накопления формально может стремиться к бесконечности, а полоса пропускания фильтра к нулю. (Время установления сигнала в таком фильтре будет стремиться к бесконечности).

Однако полученные результаты являются основой для оценки отношения сигнал/шум при ограниченном времени интегрирования или конечной полосе фильтра. Уместно напомнить, что полоса фильтра и время установления связаны соотношением: .

Так, например, задавшись временем наблюдения, (можно приравнять его времени установления в наиболее узкополосном звене), получаем необходимую ширину полосы узкополосного фильтра (). А при заданных величинах входного сигнала и спектральной плотности мощности шума , определяем и отношение сигнал/шум на выходе. Наоборот, задавшись желаемым соотношением сигнал/шум на выходе (при известных данных входных и ), получаем величину требуемого времени установления (наблюдения) или полосу интегрирующего узкополосного фильтра. Оценка отношения сигнал / шум будет продолжена при рассмотрении конкретной схемы оптимального фильтра в разделе 4.5.2

4.5 Оптимальный прием сложного периодического сигнала

Гораздо более интересным является случай, когда полезный сигнал является сложным периодическим сигналом. Для такого сигнала будут рассмотрены два вопроса:

    Какой вид будет иметь взаимно-корреляционная функция, как функция временного сдвига опорного сигнала относительно входного, полезного?

    Какова будет АЧХ оптимального фильтра для сложного (импульсного) периодического сигнала и как будет зависеть отношение сигнал/шум от параметров фильтра?

Получив ответы на эти вопросы, окажется возможным оценить выигрыш в отношении сигнал/шум при ограниченном времени наблюдения. Например, при приеме "пачки" из n импульсов на заданном временном интервале.

Отдельно надо будет оценить необходимую разрядность аналого-цифрового преобразователя, способного реализовать требуемый выигрыш в отношении сигнал/шум.

4.5.1 Периодическая последовательность прямоугольных импульсов

В качестве первого примера рассмотрим выделение полезного сигнала , представляющего периодическую последовательность прямоугольных импульсов, которая принимается на фоне шума .

В роли приемного устройства, обеспечивающего желаемый выигрыш в отношении сигнал/шум, будем использовать корреляционный аналоговый фильтр, описанный выше. В качестве опорного сигнала будет использоваться аналогичная периодическая последовательность прямоугольных импульсов с той же частотой повторения, но, возможно другой длительности. Работу перемножителя в данном случае можно представлять как действие ключа: во время опорного импульса ключ замкнут, в его отсутствии - разомкнут. Коэффициент передачи перемножающего устройства периодически изменяется от единицы до нуля.

Для нахождения , как и ранее, используем соотношение Фурье (2.1), найдя сначала соответствующую спектральную функцию . Для этого можно вначале определить спектр произведения одиночных импульсов, а затем, используя известную связь спектра одиночного и периодического сигналов, найти искомый спектр произведения периодических сигналов.

Принятые обозначения параметров импульсов изображены на рисунке

Изображения этих одиночных импульсов будут соответственно

, (4.31)

Изображение произведения временных функций определим, используя формулу свертки в частной области

(4.32)

Заметим, что при интегрировании (4.32) точку Х на вещественной оси и комплексную точку Р следует взять настолько далеко вправо, чтобы для точки S, перемещающейся по прямой интегрирования (от до ) соблюдались два условия: во-первых, чтобы S оставалось в полуплоскости сходимости изображения , и во-вторых, чтобы P-S оставалось в полуплоскости изображения [ Дёч ]

Подставляя (4.31) в (4.32) получаем, что необходимо вычислить четыре интеграла

,

, (4.33)

Значения этих интегралов зависят от знака показателя экспоненты. Покажем, как он влияет на примере вычисления , используя формулу разложения , , т. е. считая его по вычетам. Знаменатель в (4.33) имеет два корня S=0 и S=P , второй корень следует считать расположенным правее исходного контура интегрирования, (в правой полуплоскости S). При , в соответствии с леммой Жордана, можем исходный контур замкнуть полуокружностью бесконечно большого радиуса в левой полуплоскости S. При этом в образовавшемся замкнутом контуре окажется только полюс в точке S=0. Что дает:

Если же , то лемма Жордана позволяет замкнуть исходный контур полуокружностью в правой полуплоскости S, теперь в замкнутом контуре окажется полюс S=P. Вычисляя этот вычет (с учетом знака (-)из-за изменения направления обхода по замкнутому контуру L), получаем:

Аналогично вычисляются и остальные интегралы (, и ).

Результаты вычисления представлены в таблице 1.

Таблица 1

Очевидно, что искомое изображение (4.32) на выходе перемножителя-ключа получается суммированием с учетом взаимного положения и во времени. Наглядно этот результат представлен на рисунке (в случаях B,C,D,E не выписаны сокращающиеся слагаемые).

Приведенные данные позволяют построить и функцию взаимной корреляции на выходе узкополосного, интегрирующего звена , выделяющего (в данном примере) постоянную составляющую, величина которой зависит от взаимного положения импульсов во времени. Учитывая, что при изменении сдвига-задержки опорного сигнала на входе звена меняется длительность импульса и учитывая, что постоянная составляющая в спектре пропорциональна , имеем:

(4.35)

Получаем, что при изменении временного положения опорного импульса относительно сигнала взаимокорреляционная функция будет иметь вид или трапеции (при ), или видтреугольника () (см. рис.17). Теперь перейдем к анализу процессов в описанном фильтре при приеме периодической последовательн

ости импульсов. Проведем рассмотрение со спектральной точки зрения. Используем известную связь между спектральной плотностью одиночного импульса и дискретным спектром периодической последовательности таких импульсов, который описывается рядом Фурье. Связь такова:

И (4.36),

где - комплексная амплитуда катой гармоники спектра периодической последовательности, T- период следования импульсов, .

Из формулы следует, что амплитуды гармоник периодической последовательности, умноженные на период Т, равны значениям функции модуля спектра одиночного импульса на частотах .

Для обеспечения оптимального приема периодической последовательности используем опорный сигнал также представляющий периодическую последовательность импульсов с тем же периодом. Таким образом, спектр опорного сигнала будет также дискретным; его гармоники будут иметь те же частоты, что и гармоники спектра входного сигнала.

Каков же будет спектр на выходе умножителя?

Каждая гармоника спектра опорного сигнала в результате перемножения дает суммарную и разностную частоту со всеми гармониками спектра сигнала. Если далее включен фильтр НЧ () с полосой более узкой, чем дистанция между гармониками спектров (), то будет выделена сумма постоянных составляющих, получающихся в результате перемножения гармоник спектров на совпадающих частотах. Все остальные комбинационные частоты не будут пропущены таким узкополосным фильтром. Следовательно, суммарный сигнал (как сумма постоянных составляющих) в результате перемножения и фильтрации одинаковых гармоник спектров входного и опорного сигналов будет

Сравнивая (4.37) с (1.14), видим, что данная сумма описывает взаимокорреляционную функцию периодических сигналов, имеющих одинаковые периоды Т.

Заметим, что данная взаимокорреляционная функция будет описывать периодическое повторение (по переменной t ) полученной выше корреляционной функции для одиночных сигналов (4.34).

Какова же будет амплитудно-частотная характеристика такого фильтра?

В результате простого модельного эксперимента убеждаемся, что рассматриваемый фильтр будет иметь гребенчатую амплитудно-частотную (АЧХ) характеристику. Действительно, представим, что для определения АЧХ подаем на вход испытательный гармонический сигнал с медленно изменяющейся во времени частотой. Так медленно изменяющейся, чтобы успевал устанавливаться переходной процесс в узкополосном усилителе. При этом обеспечим, что ширина полосы пропускания НЧ фильтра будет много меньше, чем частотный интервал между гармониками в спектре опорного периодического импульсного сигнала. Очевидно, что всякий раз, когда разность частоты какой либо гармоники спектра опорного сигнала и изменяющейся частоты испытательного сигнала оказывается в полосе пропускания НЧ фильтра, на его выходе появляется сигнал. Изменение амплитуды этого сигнала во времени приближенно описывает АЧХ этого низкочастотного фильтра. И так будет всякий раз при прохождении изменяющейся частоты испытательного сигнала по интервалам , где - частоты гармоник спектра () опорного сигнала. Таким образом, в целом полученная АЧХ будет иметь вид «гребенки». Максимумы зубцов этой гребенки будут лежать на частотах , ширина же и форма каждого зубца определяются АЧХ узкополосного фильтра, интервалы между зубцами равны интервалам, между гармониками опорного сигнала.

4.5.2 Оптимальный фильтр для периодической последовательности радиоимпульсов

Особенно явно преимущества корреляционного фильтра, использующего импульсный опорный сигнал, проявятся при приеме радиоимпульсов с высокочастотным заполнением. В этом случае в качестве узкополосного элемента целесообразно использовать резонансный усилитель, обеспечивающий и необходимое усиление сигнала. В этом варианте корреляционный фильтр - это известный супергетеродинный приемник, но с импульсным гетеродином и достаточно узкополосным усилителем промежуточной частоты.

Легко убедиться, что если опорный, (гетеродинный) сигнал это радиоимпульс с несущей частотой и частотой повторения , то данный приемник-фильтр будет иметь гребенчатую характеристику.

Действительно, будем снимать АЧХ устройства, опять подавая на вход смесителя испытательный гармонический сигнал с медленно изменяющейся частотой. При этом будем использовать импульсный гетеродин и обеспечим, что ширина полосы пропускания резонансного усилителя будет много меньше, чем частотный интервал между гармониками в спектре опорного сигнала - гетеродина . Тогда всякий раз, когда разность (или сумма) текущей частоты испытательного сигнала с некоторой гармоникой гетеродина оказывается равной (в пределах полосы ) сигнал проходит через узкополосный усилитель. Это будет гармонический сигнал промежуточной частоты с частотой . И так будет повторяться каждый раз, когда разность или сумма частот испытательного сигнала и какой либо изгармоник (n) гетеродина равны . Таким образом, очевидно, что амплитудно-частотная характеристика приемника-фильтра будет иметь вид «гребенки». Ширина и форма «зубца» определяется частотной характеристикой узкополосного резонансного усилителя, а положение «зубцов» на шкале частот - положением гармоник гетеродина и номиналом . Теперь рассмотрим процесс в приемнике-фильтре при включении на его вход периодической последовательности радиоимпульсов. Анализ будем проводить с двух точек зрения: временной и спектральной.

Начнем с временной. Предположим, что последовательность импульсов опорного сигнала-гетеродина медленно смещается относительно последовательности входных радиоимпульсов. Такое предположение означает, что частоты повторения импульсов в этих последовательностях отличаются, но так что бы .

На рисунке 19 изображены три относительных положений импульсов во времени.

Импульсы частично перекрываются во времени, импульсы совпадают, импульсы разнесены. Очевидно, что во втором случае сигнал промежуточной частоты будет иметь максимальное значение, при разносе их во времени , а при частичном перекрытии (||) выходной сигнал будет иметь отличное от нуля значение, но . Зависимость амплитуды гармонического сигнала промежуточной частоты от величины их «задержки» - относительного положения во времени будет описываться корреляционной функцией, как это было показано выше для одиночных сигналов. Только теперь эта корреляционная функция будет периодической функцией с периодом Т.

Рассмотрим теперь этот процесс с частотной, спектральной точки зрения. Так как оба сигнала, и входящий, и опорный являются радиоимпульсами с различной несущей ( и ), но с одинаковыми частотами повторения , то каждому соответствует линейчатый (дискретный) спектр с некоторой эффективной шириной. Их спектры разнесены по шкале частот на номинал промежуточной частоты.

Для определенности будем считать, что . Очевидно, что в результате перемножения входного и опорного каждая из гармоник даст сумму гармонических сигналов на частотах . Так как полоса резонансного фильтра принята меньше, чем интервал между гармониками (), то из богатого спектра комбинационных частот после умножителя узкополосным фильтром будут отфильтрованы только гармонические сигналы с частотами равными промежуточной, т.е.

Результирующий гармонический сигнал промежуточной частоты на выходе резонансного фильтра есть векторная сумма „парциальных“ сигналов, получаемых от взаимодействия каждой гармоники спектра с соответствующей гармоникой спектра опорного гетеродина .

Фазы этих „парциальных“ векторов будут различны и изменяться при изменении относительного положения импульсов сигнала и гетеродина во времени. Здесь нужно различать способы формирования опорного (гетеродинного) радиоимпульса.

Первый способ - ударное возбуждение радиоимпульса: фаза ВЧ заполнения жестко привязана к огибающей. При изменении задержки такой импульс смещается как целое. Фазы гармоник его спектра изменяются так , т. е. все вектора, представляющие парциальные сигналы, вращаются, но разной „скоростью“.

Векторная сумма зависит от взаимного положения „парциальных“ векторов, от их взаимных разностей фаз Качественно картина меняется так: при разносе импульсов во времени эти вектора расположены „веером“ так, что их векторная сумма равна нулю. При частичном перекрытии „веер“ частично „схлопывается“, что дает некоторую отличную от нуля амплитуду суммарного сигнала. Наконец, при совпадении импульсов во времени „веер“ складывается, все „парциальные“ вектора оказываются в фазе, что обеспечивает максимальное значение результирующей амплитуды сигнала промежуточной частоты.

Заметим, что фаза результирующего сигнала промежуточной частоты (положение суммарного вектора) будет изменяться на всем интервале изменения задержки , от начала „перекрытия“ импульсов () во времени, до полного их разноса ().

Сказанное качественно иллюстрируется рис. 21,22.

Рассмотрим другой способ формирования опорных радиоимпульсов, импульсов гетеродина. При этом способе из непрерывного гармонического сигнала на частоте путем импульсной амплитудной модуляции формируется также периодическая последовательность опорных радиоимпульсов. Очевидно, что в этом варианте фаза и огибающая опорных импульсов не будут жестко связаны. Покажем, что при этом фаза сигнала промежуточной частицы на выходе узкополосного резонансного фильтра не будет зависеть от взаимного временного положения периодических последовательностей входного и опорного сигналов. Дело в том, что при формировании опорных импульсов путем модуляции при изменении задержки модулирующего видеоимпульса фаза гармоники на центральной частоте спектра остается постоянной. Гармоники же в верхней и нижней полосах этого спектра будут получать при изменении приращения фаз разных знаков . Это приводит к тому, что после перемножения со входным сигналом и фильтрации узкополосным резонансным фильтром „парциальных“ сигналов на частоте результирующий сигнал на этой частоте не будет изменять своей фазы при изменении задержки. Это утверждение справедливо при условии, что спектры как принимаемого , так и опорного (гетеродинного) сигналов симметричны относительно своих несущих частиц ВЧ заполнения. Качественно зависимость параметров выходного сигнала от задержки так же удобно проиллюстрировать с помощью векторных диаграмм, аналогичных рассмотренным выше.

Различие будет лишь в том, что направление (аргумент) вектора парциального сигнала от взаимодействия центральных частот спектров входного и опорного сигналов остается постоянным при изменении задержки на интервале . Тогда как „парциальные“ вектора, соответствующие верхней и нижней полосам спектров при изменении теперь вращаются в разные стороны, образуя опять „веера“. Понятно, что векторная сумма будет зависеть от степени раскрытия такого»веера «, причем аргумент суммарного вектора будет сохранять свою величину, так как „парциальные“ вектора, соответствующие верхней и нижней полосе спектра, получают симметричные приращения, но разных знаков, „Веер“ остается симметричным с неподвижным центральным вектором. Модуль суммарного вектора будет описываться взаимокорреляционной функцией и , зависящей от .

Рассмотрим теперь возможный вариант, когда значения частот заполнения радиоимпульсов принимаемого и опорного совпадают. В этом случае после перемножителя следует включить узкополосный низкочастотный фильтр, выделяющий „постоянную“ составляющую, величина и знак которой будут изменяться при изменении относительного положения принимаемого и опорного импульсов во времени. Такой выходной сигнал будет описываться взаимокорреляционной функцией. Вид этой функции (при равной длительности импульсов) качественно изображен на рис 23. ,а описывается она формулой (4.34). Выходной сигнал в этом случае описывается осциллирующей функцией по аргументу t - относительному сдвигу этих импульсов во времени. Понятно, что для периодически повторяющихся импульсов их взаимокорреляционная функция будет также периодической по t

Относительно гармоник спектра сигнала выше было показано, что при совмещении во времени радиоимпульсов входной и опорной последовательностей радиоимпульсов все гармоники парциальных составляющих спектра на частоте . суммируются в фазе. („веер“ парциальных векторов схлопывается). Составляющие шума, прошедшие отдельные зубцы гребёнки тоже сложатся, но по мощности! Поэтому можно считать, что эффективная полоса для шума будет определяться суммой полос отдельных полос зубцов гребёнки: (4.30).

Число членов в этой сумме ограничено и определяется эффективной шириной спектра опорных радиоимпульсов (импульсов гетеродина). Кроме того, ширина спектра мощности шума ограничивается входным полосовым фильтром. Поэтому искомое отношение сигнал/шум на выходе оптимального корреляционного фильтра определится так:

По мощности: , а по амплитуде (4.31)

В заключение обратим внимание, что в рассмотренном варианте гребёнчатая АЧХ реализуется за счёт линейчатого спектра (с некоторой эффективной шириной) импульсного опорного сигнала и единственного узкополосного резонансного усилителя промежуточной частоты. При этом, ширина полосы этого усилителя должна быть много меньше, чем интервал между частотами гармоник опорного сигнала (гетеродина).

Такой аналоговый коррелятор был реализован и практически использовался в станции наклонного зондирования ионосферы средневолнового диапазона. Для возможности оценки не только амплитуды и групповой задержки, но и фазы высокочастотного заполнения отраженных от ионосферы радиоимпульсов после узкополосного усилителя сигнал промежуточной частоты подавался на два параллельных фазовых детектора. Опорные гармонические сигналы на фазовых детекторах имели номинал и были сдвинуты по фазе на . Таким образом, на выходах фазовых детекторов получались синусная и косинусная составляющие огибающих суммарного сигнала. Это позволяло оценить соответствующие фазовые сдвиги высокочастотного заполнения „земного“ и отраженного радиоимпульсов, при условии, что эти радиоимпульсы были разделены во времени.

Пример наблюдаемой картинки на экране индикатора станции приведен на рис. Далее этот сигнал оцифровывался с помощью АЦП и поступал в ЭВМ для обработки.

При используемых параметрах зондирующих радиоимпульсов в диапазоне средних волн „земной“ и отраженный от ионосферы сигналы уверенно разделялись во времени. Величина задержки отраженного сигнала в приводимом эксперименте порядка 220 мкс.

Частота ВЧ заполнения радиоимпульсов приблизительно 350 кГц, приём велся на удалении 220 км. Приёмная аппаратура аналогово коррелятора имела узкополосный усилитель с шириной полосы 5 Гц, при частоте повторения излучаемых импульсов 625 Гц. Это позволяло надёжно выделить полезные сигналы на фоне шумов и помех в весьма загруженном СВ диапазоне, обеспечивался выигрыш в отношении сигнал/шум более30-тина выходе приёмного аналогово коррелятора по отношению ко входу. Очевидно, что располагая сигналом в цифровой форме было возможно и дальнейшее повышение отношения сигнал/шум, используя накопление.

4.5.3. Оценка возможного выигрыша в отношении сигнал / шум при дискретной записи сигнала.

Выше было показано, что для периодического сигнала отношение сигнал / шум может быть улучшено накоплением. Возможный выигрыш пропорционален квадратному корню из времени накопления и обратно пропорционален полосе аналогово фильтра. В случае дискретных отсчётов сигнала - аддитивной смеси сигнал + шум, очевидно, что выигрыш будет пропорционален , где n число равноотстоящих отсчётов. Процесс накопления удобно реализовать с помощью алгоритма - программы на ЭВМ. При практической реализации этого способа следует иметь в виду, что число накапливаемых выборок, дающих желаемый выигрыш будет ограничено разрядностью применяемого аналого-цифрового преобразователя (АЦП). Можно задаться вопросом о необходимой разрядности АЦП, если задан требуемый выигрыш С / Ш. Или оценить возможный выигрыш, если АЦП уже выбран. Тот факт, что АЦП присущи собственные шумы в данном пособии рассматриваться не будет. Эти вопросы освещены в специальной литературе. Будут учтены только» шумы дискретизации «.

В этом приближении рассмотрим связь возможного выигрыша С/ Ш при накоплении на АЦП с заданной разрядностью.

Пусть мгновенное значение входной величины есть:

V = U + z и отношение С / Ш ,

Где U -величина сигнала, - среднеквадратичная величина шума.

Интересуемся случаем, когда a соответствует максимальному значению числа., минимальный код 1 (число > 0). Считаем, что шумы распределены по нормальному закону.. Ограничим диапазон АЦП утроенной среднеквадратичной величиной шума (3), что будет соответствовать максимальному коду. Уровень 3 при нормальном законе распределения ограничит значения шума только в 0.1% случаев. Считая, что динамический диапазон преобразователя установлен 3s . Приравнивая эти величины, имеем:

или (4.37).

Таким образом реальная величина «шума оцифровки» оказывается меньше.

1. Вводные замечания

2. Модели сигналов и помех

Библиографический список

1. Вводные замечания

В процессе приема сигналов на вход приемного устройства поступает либо смесь сигнала и помехи, либо помеха. Оптимальное приемное устройство обнаружения на первичном этапе обработки должно наилучшим образом вынести решение о принятом сигнале, т.е. определить, присутствует или отсутствует сигнал, какой тип сигнала присутствует (на втором этапе обработки), оценить значение того или иного параметра (амплитуды, длительности, времени прихода, направление прихода и т.д.). Сформулированная задача может решаться при априорно неизвестных моделях сигналов и помех, при неизвестных (мешающих) параметрах или неизвестных распределениях сигналов и помех. Основная цель заключается в синтезе оптимальной структуры приемного устройства. Синтезированная структура чаще всего практически нереализуема, однако ее эффективность является потенциальной и дает верхнюю границу эффективности любых практически реализуемых структур.

Синтез оптимальных процедур обработки сигналов и помех может производиться с использованием различных методов оптимизации:

1. Использование корреляционной теории:

а) критерий максимума отношения сигнал/помеха;

б) критерий минимума среднеквадратической ошибки.

2. Использование теории информации для максимизации пропускной способности системы. Главное направление – построение наилучших методов кодирования.

Применение теории статистических решений.

Задача оптимизации может быть решена только при наличии критерия, который задается разработчиком системы.

Чтобы воспользоваться теорией статистических решений при синтезе оптимальных приемных устройств, необходимо иметь математические модели сигналов и помех. Эти модели должны включать описание формы сигнала (если она известна). Статистические характеристики и характер взаимодействия сигнала и помехи вплоть до n-мерных плотностей вероятностей.

Теория статистических решений имеет следующие составные части:

1) теорию проверки статистических гипотез:

а) двухальтернативные задачи обнаружения или распознавания сигналов;

б) многоальтернативные задачи при различении многих сигналов на фоне помех;

2) теорию оценки параметров, если эти параметры составляют счетное множество;

3) теорию оценки процесса, который необходимо выделить из входной смеси с минимальной ошибкой.

Постановка задачи синтеза оптимального приемного устройства и ее решение существенным образом зависят от объема априорных (доопытных) сведений о характеристиках сигналов и помех. По объему априорных данных различают задачи с полной априорной определенностью (детерминированный сигнал и помеха с полностью известными вероятностными характеристиками), с частичной априорной определенностью (имеются известные параметры сигнала и помехи) и с априорной неопределенностью (известны лишь некоторые сведения о классах сигналов и помех) . Следует заметить, что эффективность разработанных обнаружителей и измерителей параметров существенно зависит от объема априорной информации.

Следует заметить, что, если о сигналах и помехах ничего неизвестно (полностью отсутствует информация о них), то такая задача не может быть решена.

2. Модели сигналов и помех

Сигнал – это процесс, служащий для передачи информации или сообщения. Остальные процессы, воспринимаемые приемным устройством вместе с сигналом, являются помехами.

Сигналы классифицируются по объему априорных сведений:

а) детерминированные сигналы (неслучайные);

б) детерминированные по форме сигналы со случайными параметрами (квазислучайные);

в) псевдослучайные, шумоподобные сигналы (они близки по свойствам к случайным процессам, но генерируются детерминированным образом и при воспроизведении полностью повторяются);

г) случайные сигналы.

В зависимости от характера изменения во времени сигналы подразделяются на дискретные и непрерывные. Дискретные сигналы используются в цифровых устройствах, в радиолокации. Непрерывные (континуальные) – в телефонии, радиовещании, телевидении и т.д. В последнее время дискретные сигналы используются и в цифровом телевидении и радиовещании.

Каждый сигнал может быть охарактеризован по степени сложности в зависимости от величины, называемой базой сигнала: B = F∙T, где F – эффективная ширина спектра сигнала; Т – эффективная длительность сигнала. Если B » 1, то сигнал называется простым, при B >> 1 – сложным сигналом. Сложные сигналы получают либо из совокупности простых сигналов, либо с помощью модуляции. К сложным сигналам могут быть отнесены шумовые и шумоподобные сигналы. У таких сигналов , где Т – эффективная длительность сигнала (когда сигнал эквивалентен по энергии сигналу с прямоугольной формой); – интервал корреляции процесса.

В различных системах, как правило, излучают радиосигналы, отличающиеся по виду модуляции: амплитудно-модулированные, частотно-модулированные, фазомодулированные, сигналы с импульсными видами модуляции; манипулированные (по амплитуде, частоте, фазе и совмещенные) сигналы.

В радиолокации чаще всего излучается последовательность радиоимпульсов.

Упрощенная структура РЛС представлена на рис. 1, где использованы следующие обозначения: РПУ – радиопередающее устройство; РПрУ – радиоприемное устройство; АП – антенный переключатель; s0(t) – зондирующий сигнал; s(t) – отраженный сигнал; А – антенна; О – обнаруживаемый объект; V – скорость сканирования антенны. Облучение пространства производится периодическим зондирующим сигналом.

Импульс отражается от объекта обнаружения и возвращается с задержкой к антенне РЛС. Задержка определяется расстоянием между РЛС и объектом. Интенсивность отраженного сигнала зависит от эффективной поверхности рассеяния (ЭПР) объекта и условий распространения радиосигнала. В РЛС одна и та же антенная система используется при передаче и приеме сигналов. Интенсивность облучения объекта зависит от формы диаграммы направленности антенны и угла между направлением на объект и направлением максимального коэффициента направленного действия. При сканировании антенной системы (механическом или электронном вращении диаграммы направленности) огибающая пачки импульсов отраженного сигнала повторяет форму диаграммы направленности (рис. 1). В режиме сопровождения объекта огибающая пачки импульсов может иметь прямоугольную форму.


При обзоре время облучения ограничено, и принимаемый сигнал представляет собой ограниченную по времени пачку радиоимпульсов. Модуляция по амплитуде импульсов в пачке определяется не только формой диаграммы направленности, но и скоростью V обзора, от нее зависит и число импульсов в пачке. Обычно огибающая пачки – детерминированная функция, поскольку вид диаграммы направленности и скорость обзора известны.

Запаздывание отраженного сигнала зависит от дальности r до объекта – , где c – скорость распространения радиоволны в пространстве. При распространении сигнал ослабляется относительно излученного в 106 – 1010 раз по напряжению. Кроме того, изменение угла между направлением максимума диаграммы направленности антенны и объектом и поворот объекта за время облучения приводит к случайным изменениям амплитуды импульсов принимаемого сигнала. За счет радиальной скорости объекта Vr изменяется и частота отраженного сигнала (доплеровский эффект), при этом приращение частоты несущего колебания . Изменяются параметры сигнала в канале связи и во входных трактах приемной системы.

При отражении сигнала от объекта происходит изменение поляризации падающей волны. Эти изменения зависят от формы объекта и могут быть использованы при распознавании объектов.

Построить модель сигнала, которая учитывала бы все эти влияния и изменения сложно, поэтому учитывают только часть рассмотренных изменений.

Основные модели сигналов

а) Детерминированный сигнал:

Все параметры сигнала: амплитуда А, закон ее изменения во времени S0(t), частота w0 и закон изменения начальной фазы во времени известны, т.е. огибающая S(t) и фаза являются детерминированными функциями времени.

б) Одиночный сигнал со случайной амплитудой и фазой

где А, j, t – случайные параметры.

Случайные параметры задаются плотностями вероятности. Распределение амплитуд А чаще всего полагают релеевским

,


где s2 – дисперсия флюктуаций амплитуды.

Начальная фаза j и задержка t распределены равномерно, т.е.

где Т – период зондирования, определяемый максимальной однозначной дальностью действия РЛС.

Функции s0(t) и – детерминированные.

Для движущихся объектов локации к несущей частоте w0 добавляется доплеровский сдвиг , где – случайная величина, знак которой зависит от направления перемещения объекта в радиальном направлении относительно РЛС.

в) Нефлюктуирующая пачка радиоимпульсов

где ; функция H2(t) – функция, обусловленная формой диаграммы направленности (рис. 2б); Т0 – период следования импульсов в пачке; К = const.

г) Флюктуирующая пачка импульсов:

– дружно-флюктуирующая пачка – амплитуды радиоимпульсов в пачке неизменны, но изменяются независимо от пачки к пачке, что соответствует медленному изменению ЭПР отражающего объекта во времени или изменению параметров канала распространения электромагнитной волны и т.д. (рис. 2);

– быстро-флюктуирующая пачка – амплитуды радиоимпульсов изменяются в пачке от импульса к импульсу независимо (рис. 3).

В зависимости от характера изменения начальной фазы колебаний от импульса к импульсу в пачке различают когерентные и некогерентные пачки радиоимпульсов. Когерентная пачка может быть образована путем вырезания импульсов из непрерывного стабильного гармонического колебания. Начальные фазы в этом случае или одинаковы во всех радиоимпульсах пачки, или изменяются по известному закону. Некогерентная пачка состоит из радиоимпульсов с независимо-изменяющейся начальной фазой.

Помехи разделяются на естественные (неорганизованные) и искусственные (организованные), внутренние и внешние.

По способу образования помехи могут быть пассивными и активными. Естественные пассивные помехи создаются отражениями от местных предметов (в радиолокации) и земной поверхности, растительности и т.д.; отражениями от метеорных следов и атмосферных неоднородностей (в радиосвязи на УКВ).

Активные помехи имеют самостоятельный источник, в то время как пассивные помехи обусловлены излучением зондирующего сигнала. По характеру изменения во времени помехи бывают флюктуационные (гладкие) и импульсные.

В качестве помех могут быть случайные, шумоподобные или детерминированные процессы. Из всех помех наибольшее воздействие на подавляемую РЛС оказывает белый (широкополосный) шум с нормальным распределением, поскольку он имеет наибольшую информационную емкость.

Чаще всего в качестве моделей помех используется их описание с помощью статистических характеристик. Наиболее полной характеристикой является n-мерная плотность вероятности. Однако в некоторых частных, но очень важных случаях помеха может быть охарактеризована одномерной или двумерной плотностями вероятности.

Сигналы и помехи могут быть представлены в виде некоторых множеств в частотно-временной системе координат (рис. 4).

Каждый сигнал или помехи занимают по осям w и t определенные отрезки, зависящие от полосы частот Dw и длительности t. Чем больше Dw и t, тем эффективнее помеха с точки зрения подавления сигнала. Наилучшей помехой является белый шум, который заполняет всю плоскость w, t, и обладает наибольшими дезинформационными свойствами. Если шум узкополосный, то он занимает ограниченную площадь, поскольку имеет неравномерную спектральную плотность мощности. От такой помехи можно избавиться, перестроив несущую частоту w0 сигнала.

Для пространственно-временных сигналов и помех используются дополнительные координаты: угол места и азимут. И тогда источники помех могут быть точечными по угловым координатам или распределенные в конкретных секторах.


Геометрическое представление сигналов и помех связано с введением многомерного пространства выборок и широко используется в теории сигналов . Пусть имеется реализация x(t) случайного процесса X(t). В соответствии с теоремой Котельникова эта реализация может быть представлена в виде дискретных отсчетов xi = x(iDt). Число этих отсчетов (единичных измерений) – N, совместно они образуют выборку X размером N – , i – номер измерения в выборке X. Если представим n-мерное пространство, в котором на каждой оси координат отложим соответствующие по номеру измерения, то вся выборка будет соответствовать точке этого пространства или вектору, конец которого лежит в этой точке. Длина вектора в данном пространстве может быть представлена так:

.

Эта величина называется нормой вектора в эвклидовом пространстве. В пространстве Хемминга норма выражается иначе:

Если и , то в пределе переходим к бесконечному пространству , в котором норма определяется так

.

Для реальных процессов и имеет размерность величины x.

Все указанные пространства линейны, и для них определены операции сложения элементов множества и умножения элемента на число. Причем обе эти операции удовлетворяют условиям коммутативности, ассоциативности и дистрибутивности.

Среди линейных пространств можно выделить метрические пространства, для которых существует метрика , т.е. норма разности векторов, которая больше или равна нулю. Метрика (расстояние) обладает следующими свойствами:

а) ; б) ; в) ,

где x, y, z – элементы пространства.

Для эвклидова конечно-мерного пространства –

,

для непрерывного пространства аналогично

.

Важным является понятие скалярного произведения. Оно характеризует собой проекцию одного вектора на другой и определяется в так:

,

т.е. сумма произведений одноименных проекций векторов на оси координат. В непрерывном пространстве : , причем скалярное произведение всегда не больше произведения норм векторов (неравенство Шварца).

Угол между векторами определяется так

.

Если определить норму через скалярное произведение, то говорят, что норма порождена скалярным произведением, а пространство, отвечающее такому произведению, называется гильбертовым.

Введем понятие случайного вектора. Случайный вектор – это такой вектор, координаты которого есть случайные величины. Этот вектор в пространстве выборок не занимает какого-либо фиксированного положения. Его конец может оказаться в той или иной области пространства с известной вероятностью, которую можно подсчитать, зная совместное распределение случайных величин . Конец вектора можно представить себе не как определенную точку, а как облако, переменная плотность которого выражает вероятность нахождения конца вектора в данном элементе объема пространства. Геометрически это облако отображается гиперсферой в n-мерном пространстве (рис. 5).

Элементарный объем в пространстве выборок . Вероятность попадания конца вектора в этот объем будет равна

где – плотность вероятности случайного процесса X(t).

Если гиперсфера имеет размеры W, то попаданию точки в эту гиперсферу соответствует вероятность

где – проекции гиперсферы W на оси координат системы.

Это выражением может быть записано в векторной форме

.

Если распределены по нормальному закону с одинаковой дисперсией каждой их независимых компонент, то вероятность попасть в элементарный объем пространства выборок равна

,

где – расстояние от начала системы координат до элемента .

В данном случае облако имеет сферическую форму. При различных дисперсиях облако вытягивается вдоль тех осей, которым соответствуют единичные измерения с большей дисперсией.

Если даны два случайных процесса x и h, то косинус угла между их векторами соответствует нормированному коэффициенту взаимной корреляции. Геометрически он характеризует проекцию единичных векторов одного на другой. Если x = h, то – линейная зависимость, если же они перпендикулярны, то – показывает полное отсутствие коррелированности. В этом случае векторы ортогональны, а процессы некоррелированы.

Для нормальных процессов некоррелированность означает и независимость, поскольку для них иной случайной зависимости, кроме линейной, не существует. Доказывается такое утверждение подстановкой коэффициента корреляции, равного нулю, в двумерную нормальную плотность вероятности. В результате такой подстановки плотность вероятности преобразуется к произведению одномерных плотностей вероятности, что является необходимым и достаточным условием статистической независимости двух случайных величин, входящих в систему.

3. Вероятностные характеристики случайных процессов

1. Наиболее полными вероятностными характеристиками случайных процессов (СП) являются различные виды распределений вероятностей мгновенных значений, среди которых основное применение получили интегральная функция распределения вероятностей и плотность вероятности.

Для ансамбля реализаций СП (рис. 6) одномерная интегральная функция распределения определяется как вероятность того, что мгновенные значения реализаций не превысят некоторый фиксированный уровень x в момент времени t.

Аналогично определяется n-мерная интегральная функция распределения как вероятность совместного выполнения неравенств:

Виды одномерной интегральной функции распределения для различных процессов показаны на рис. 8.

В отличие от интегральных функций распределения случайных величин, эта характеристика СП в общем случае (для нестационарных СП) зависит от времени.

Так же как и для случайных величин, (положительная определенность), при x2 > x1 (интегральная функция является неубывающей), (ограниченность).


Хотя интегральная функция распределения вероятности определена и для непрерывных, и для дискретных процессов, большее распространение получила плотность вероятности, определенная только для непрерывных СП.

Одномерная плотность вероятности определяется как производная от интегральной функции по аргументу x:

.

Для n-мерной плотности в соответствии с (1) имеем:

Из представления производной в виде предела отношения конечных приращений можно сделать вывод, что плотность вероятности характеризует относительную частоту пребывания мгновенных значений в элементарном интервале Dx.

На рис. 7 приведены графики плотности вероятности для реализаций различной формы.

Аналогичное рассмотрение n-мерной плотности вероятности позволяет интерпретировать ее как вероятность того, что значение функции находятся в пределах n коридоров Dx или, иначе, что реализация примет заданную форму (рис. 8).

Свойства плотности вероятности:

– положительная определенность – ;

– свойство симметрии – значения плотности вероятности не меняются при перестановке аргументов;

– свойство нормировки ;

– свойство согласованности (число интегралов в правой части равно n – m)


– плотность вероятности меньшего порядка вычисляется путем интегрирования по «лишним» аргументам;

– размерность плотности вероятности обратна размерности случайной величины.

Наиболее широко в радиотехнике используются следующие распределения.

1. Нормальной (гауссово) распределение (рис. 9):

,

где m – математическое ожидание; s – среднеквадратическое отклонение (СКО).

Для нормального распределения характерна симметрия относительно математического ожидания и большие значения случайной величины встречаются значительно реже малых:

.

2. Равномерное распределение (рис. 10):

Экспоненциальное распределение (рис. 11):

4. Распределение Рэлея (распределение огибающей узкополосного нормального СП):

2. Распределения вероятностей, хотя и является наиболее употребимыми в теории характеристиками, не всегда доступны для экспериментального определения и во многих случаях слишком громоздки в теоретических исследованиях. Более простыми являются числовые характеристики СП, определяемые как некоторые функционалы от плотности вероятности. Наиболее широко из них используются моментные функции, определяемые как среднее значение различных степенных преобразований СП.

Начальные одномерные моменты определяются в виде

. (3)

Особое значение имеют первый начальный момент – математическое ожидание и второй начальный момент

.

сигнал случайный помеха прием

Физический смысл этих характеристик: среднее значение и средняя мощность СП, выделяемая на сопротивлении в 1 Ом, соответственно (если СП есть напряжение, стационарное по постоянной составляющей и мощности). Второй начальный момент характеризует степень разбросанности случайной величины относительно начала координат. Размерность математического ожидания совпадает с размерностью величины x (для x в виде напряжения – вольты), а размерность m2 – с размерностью квадрата величины x.

В случае стационарных СП моменты не зависят от времени, для нестационарных могут быть функциями времени (в зависимости от типа не-стационарности), что поясняется рис. 13.

Центральные моменты определяются аналогично начальным моментам, но для центрированного процесса :

. (4)

Поэтому всегда .

Второй центральный момент – дисперсия СП – определяется в виде

и характеризует степень разбросанности значений относительно математического ожидания или, иначе, среднюю мощность переменной составляющей процесса, выделяемой на сопротивлении в 1 Ом. Очевидна связь между начальными и центральными моментами:


, в частности .

Отметим, что третий центральный момент (p = 3 в (4)) характеризует асимметрию распределения вероятностей (для симметричных плотностей вероятности ), а четвертый (p = 4) – степень остроты вершины плотности вероятности.

Рассмотрим пример вычисления одномерных моментов распределения.

ПРИМЕР 1. Процесс с треугольной симметричной плотностью вероятности виден на экране осциллографа в виде шумовой дорожки с размахом от -2 до +4 В. При выключенной развертке яркость вертикальной линии в центре экрана равномерна. Оценить математическое ожидание и дисперсию процесса.

Решение примера 1. Сведения о форме распределения и его границах позволяет записать аналитическое выражение для плотности вероятности (рис. 14).

При этом максимальное значение плотности вероятности fm, достигаемое при x=1 В, определяется из условия нормировки, т.е. равенства площади треугольника единице:

,


Такое симметричное треугольное распределение называют также законом Симпсона.

В соответствии с определениями математическое ожидание и дисперсия равны

.

Однако удобнее вычислить вначале второй начальный момент


тогда = 6 В2.

Смешанные начальные моменты определяются соотношением

Смешанные центральные моменты определяются аналогично, но с заменой x в формуле (5) на центрированное значение .

Ввиду того, что значения x в смешанных моментах определяются в различные моменты времени, появляется возможность оценки статистической взаимозависимости значений процессов, разделенных заданными интервалами. Наиболее важным является простейший из смешанных моментов, отображающий линейную статистическую взаимозависимость и называется корреляционной и ковариационной функцией:

Как видно из определения, размерность корреляционной функции определяется размерностью квадрата величины x (для напряжения – В2).

Для стационарного СП корреляционная функция зависит только от разности :

.

Следует заметить, что при t = 0 максимальное значение K(0) = s2.

На рис. 15 приведены примеры реализаций процессов с разными корреляционными функциями.

Кроме функционалов на основе степенных функций (моментов) возможны и другие типы функционалов в качестве статистических характеристик СП. Важнейшим среди них является функционал, основанный на экспоненциальном преобразовании и называемый характеристической функцией

. (7)

Нетрудно заметить, что данное выражение представляет преобразование Фурье от плотности вероятности, отличающееся от обычного лишь знаком в показателе экспоненты.

Поэтому можно записать и обратное преобразование, позволяющее по характеристической функции восстановить плотность вероятности:

.

Соответственно для n-мерного случая имеем

Основные свойства характеристической функции состоят в следующем:

– свойство нормировки ;

– свойство симметрии ;

– свойство согласованности

– определение характеристической функции суммы независимых случайных величин

Как видно из анализа перечисленных свойств, различные преобразования характеристической функции проще плотности вероятности. Простая связь также между характеристической функцией и моментами плотности вероятности.

Пользуясь определением характеристической функции (7), продифференцируем ее k раз по аргументу u:

.

Можно заметить, что операция дифференцирования намного проще, операция интегрирования при определении моментов плотности вероятности.

ПРИМЕР 2. Может ли существовать процесс с характеристической функцией прямоугольной формы?

Решение примера 2. На рис. 16 представлена характеристическая функция прямоугольной формы (а) и соответствующая ей плотность вероятности (б).


Так как характеристическая функция является преобразованием Фурье от плотности вероятности, то ее обратное преобразование Фурье должно обладать всеми свойствами плотности вероятности. В данном случае

График плотности вероятности представлен на рис. 16б.

Как видно из выражения для f(x) и рисунка, полученная плотность вероятности не удовлетворяет условию положительной определенности (), следовательно, процесс с заданной характеристической функцией не может существовать.

4. Энергетические характеристики случайных процессов

К энергетическим характеристикам СП относят корреляционную функцию, спектральную плотность мощности и непосредственно связанные с ними параметры СП.

В разделе 2 было дано определение корреляционных функций как смешанных центральных моментов второго порядка соответственно автокорреляционной и взаимнокорреляционной функций, т.е.

.

Основные свойства автокорреляционной функции:

– свойство симметрии , для стационарных процессов – четность ;

– свойство ограниченности , для стационарных процессов ;

– свойство неограниченного убывания с ростом аргумента (для эргодических процессов) ;

– свойство положительной определенности интеграла

;

– размерность соответствует квадрату размерности случайного процесса.

Это свойство следует из определения спектральной плотности мощности (для случайных напряжений и тока через сопротивление 1 Ом), которое будет приведено ниже.

Для взаимнокорреляционной функции аналогично можно записать:

; ;

; .

Ввиду ограниченности корреляционной функции частот используют нормированные корреляционные функции


; ,

причем ; .

Для более компактного описания свойств случайного процесса вводят понятие интервала корреляции, определяющего интервал времени, на котором существует связь между значениями процесса.

Основные определения интервала корреляции:

– интегральный (для положительно определенных корреляционных функций) . Геометрически он характеризует ширину основания прямоугольника, равновеликого по площади функции k(t) при t > 0 (рис. 17а);

– абсолютный интервал корреляции (в отличие от предыдущего может использоваться для знакопеременных функций ) (рис. 17б);

– квадратичный интервал корреляции ;

– максимальный интервал корреляции (на уровне a) (рис. 18)

.


Обычно уровень a выбирается исходя из рассматриваемой задачи и имеет значения 1/e; 0,1; 9,05; 0,01 и т.д.

Последнее определение не является более произвольным, чем предыдущие, так как выбор конкретного вида функционала протяженности произволен и определяется удобством математического решения конкретной задачи. Практически этот интервал корреляции используется в радиоизмерениях для определения интервала, вне которого случайные величины в сечениях случайного процесса можно считать некоррелированными. Достоверность такого предположения определяется выбором уровня a.

Большое значение в статистической радиотехнике имеют спектральные характеристики СП. При этом используются различные интегральные преобразования процесса вида

.

При исследовании линейных систем с постоянными параметрами особое значение имеет ядро преобразования вида , так как отклик линейных систем на гармоническое воздействие также является гармоническим.

Преобразование Фурье от k-й реализации СП дает также случайную функцию частоты, зависящую от номера реализации:

.

В условиях реального наблюдения можно получить лишь текущий спектр реализации за интервал наблюдения T

.

Приведенные выражения в существенной степени формальны, так как для многих СП условия применимости преобразования Фурье не выполняются, и интеграл не сходится к какому-либо определенному пределу.

Определим квадрат модуля спектральной плотности k-й реализации

Предполагая процесс стационарным и центрированным, заменяя и производя статистическое усреднение по множеству реализаций, определим:

.

Разделив обе части полученного равенства на T и беря предел , получим

.

Поясним физический смысл этой характеристики. Учитывая теорему Релея

,

определим ; ;

;

; .

Таким образом, спектральная плотность мощности или энергетический спектр – это усредненная по всем реализациям функция распределения мощности по частотам.

Следовательно, спектральная плотность мощности и корреляционная функция связаны преобразованием Фурье (теорема Винера – Хинчина):

(9)

Полагая t = 0, получим

.

Учитывая свойство четности корреляционной функции, запишем

,

.

В полученных формулах G(w) определялась для положительных значений круговой частоты w, причем G(w) = G(–w). В отличие от такого «двухстороннего» математического спектра, введем односторонний физический спектр:

Тогда формулы теоремы Винера – Хинчина примут вид:

(10)

Часто используется нормированная спектральная плотность мощности

.

Из определения G(w) следуют методы его экспериментального определения (рис. 19). А именно: измеряется квадратичным прибором среднеквадратическое отклонение процесса в узкой полосе (с помощью полосового фильтры с прямоугольной АЧХ), возводится в квадрат, а затем делится на эту полосу Dfэ (полоса такая, что S(f0) » const в пределах Dfэ) (рис. 20).

Рис. 19 Рис. 20

Для одиночного колебательного контура , где Q – добротность контура, следовательно


.

Спектральная плотность мощности не отражает фазовой структуры сигнала. Две совершенно разные зависимости могут иметь одинаковую спектральную плотность мощности.

Поскольку G(w) и K(t) связаны преобразованием Фурье, для них справедливы основные теоремы о спектрах.

Ширина спектра определяется так же, как и интервал корреляции.

Эффективная (или неудачное название – энергетическая) ширина спектра

.

Определяют также ширину спектра на уровне a: .

Рассмотрим связь интервала корреляции и ширины спектра.

Так как , а , то

. (11)

Таким образом, произведение – порядка единицы.

Различают широкополосные и узкополосные процессы (рис. 22а и б).


Для узкополосных процессов . Поскольку для узкополосных случайных процессов значение спектральной плотности мощности при нулевой частоте всегда равно нулю (или очень близко к нему), то корреляционная функция является всегда знакопеременной и ее площадь равна нулю (из теоремы Винера – Хинчина).

Один из широко распространенных в теории широкополосных процессов – белый шум с равномерным спектром . Его корреляционная функция равна

.

Противоположный случай – узкополосный процесс – квазидетерминированный СП с дискретным спектром

где x1, x2 – случайные величины, не зависящие от t, .

Функция X(t) представляет собой гармоническое колебание со случайной амплитудой и фазой , распределение которого не зависит от времени. Этот процесс будет стационарным лишь при и при . Тогда зависит только от t, причем x1 и x2 некоррелированы.

В этом случае ;

. (рис. 23)

Для стационарных СП X(t) и Y(t) вводят также взаимную спектральную плотность мощности

;

; ;

; .

Взаимная спектральная плотность мощности двух процессов комплексная, если взаимная корреляционная функция нечетная, действительная часть такой спектральной плотности четная, а мнимая – нечетная функция: .

Для суммы стационарных и стационарно-связанных процессов существует соотношение

.

5. Узкополосные случайные процессы

Важность этих процессов для статистической радиотехники требуют более подробного их рассмотрения.

Для более подробного анализа определим огибающую и фазу узкополосного случайного процесса (УСП). Часто огибающую определяют по формуле

, (12)

где – сопряженный с по Гильберту процесс. Применяя преобразование Гильберта к исходному выражению для УСП, получаем . Точность выражения иногда может вызывать сомнение, поскольку только для гармонических колебаний равенство (12) несомненно. Определим, насколько параметры УСП влияют на точность этой формулы.

Используя известные соотношения для комплексной амплитуды аналитического сигнала , получим


И . (13)

Применяя преобразование Гильберта к исходному выражению для УСП и используя составляющие (13) комплексной огибающей, можно записать

Разложим функции и в подынтегральных выражениях в ряд Тейлора в окрестности точки x=t и почленно проинтегрируем. Получим

где Q(t) – остаточное слагаемое, характеризующее отброшенную часть суммы. Подставив в выражение (14) и , получим

Из формулы (15) видно, что если можно пренебречь функцией Q(t), то сопряженный по Гильберту УСП имеет такую же огибающую, что и исходный УСП.

Из таблиц определенных интегралов известно:


С учетом этих выражений формулу для Q(t) можно записать:

Считаем, что полоса огибающей равна , поэтому вторые производные по своим значениям не превосходят . Поэтому можно полагать, что

.

Следовательно:

.

Отсюда видно, что для УСП функции u(t) и u1(t) имеют одинаковую огибающую с погрешностью, зависящей от отношения ширины спектра к его средней частоте. Для узкополосных случайных процессов обязательным является выражение , следовательно, огибающая удовлетворяет требованиям, которые к ней предъявляются в соответствии с определением УСП, т.е. является касательной в точках, соответствующих максимальным значениям УСП (или вблизи от них), и имеет общие значения с ним в точках касания. Степень «близости» точки касания к максимальному значению зависит от того же отношения .

Фаза однозначно определяется известными соотношениями для представления комплексного числа в показательной форме.

Графически УСП можно представить в виде вектора, вращающегося с угловой скоростью , длина вектора медленно меняется во времени так же, как и фазовый угол . Исходный УСП является проекцией вектора на горизонтальную ось. Если всю систему координат заставить вращаться с той же угловой скоростью, но в противоположном направлении, то та же проекция будет огибающей .

Если исходный УСП является нормальным, то и также являются нормальными случайными процессами. Если УСП u(t) нормален, стационарен, имеет нулевое среднее значение и функцию корреляции , то и также имеют нулевые средние значения и корреляционную функцию . В то же время и взаимно некоррелированы, а так как они нормальны, то и взаимно независимы. Сомножитель является огибающей корреляционной функции .

Огибающая и фаза узкополосного случайного процесса. Плотности вероятности огибающей и фазы УСП можно получить, совершая преобразования, которые были использованы для их получения. Эти преобразования показывают, что огибающая и фаза являются независимыми. СВ как в совпадающие, так и в несовпадающие моменты времени. Одномерная плотность вероятности огибающей (в один момент времени) подчиняется закону Рэлея, а плотность вероятности фазы равномерна в пределах от до .

Сложные преобразования показывают, что центрированная корреляционная функция огибающей приближенно равна квадрату огибающей корреляционной функции исходного УСП. Спектральная плотность мощности огибающей имеет два слагаемых: дельта-функцию, соответствующую постоянной составляющей огибающей, и спектральную плотность флюктуационной составляющей, которая является преобразованием Фурье от квадрата огибающей корреляционной функции исходного УСП.

Если СП является суммой узкополосного нормального процесса и синусоиды со случайной начальной фазой, то мгновенные значения синусоиды распределены по закону арксинуса, сумма – по бимодальному закону, соответствующему свертке нормального закона и закона арксинуса. После применения тех же преобразований, что и для узкополосного нормального СП, получим для огибающей распределение Райса

,

где , А0 – амплитуда синусоидального сигнала; – среднеквадратическое отклонение шума.

При распределение Райса переходит в распределение Рэлея.

При больших отношениях , т.е. при А0 >> 1 (отношение сигнал/шум), распределение Райса может быть аппроксимировано нормальным распределением с математическим ожиданием, равным А0.

6. Временные характеристики случайных процессов

Во многих случаях, особенно при экспериментальных исследованиях, вместо ансамбля есть лишь одна реализация. Тогда усреднение производится по времени и при некоторых условиях дает результаты, близкие к усреднению по множеству.

Простейший вариант усреднения состоит в определении среднего арифметического значения. Выделим в отрезке реализации СП длительностью T n дискретных отсчетов с интервалом между ними Dt,

Среднее арифметическое значение определим известным образом:

Умножим числитель и знаменатель этого выражения на Dt:

.

При Dt ® 0 и n ® ¥ сумма перейдет в интеграл, описывающий временное усреднение реализации (обозначается чертой сверху или в данном пособии: ) или функции от нее:

. (16)

В общем виде можно записать операцию (16) с помощью оператора временного усреднения ST:

.

Для того чтобы результат не зависел от длительности отрезка T, возьмем предел при T ® ¥:

.

При экспериментальных исследованиях выполнение условия T ® ¥ невозможно, но достаточно выполнения условия .

Часто начало реализации и начало времени интегрирования не совпадают, поэтому оператор правильнее записать в виде оператора текущего среднего:

. (17)

Используется также симметричная форма этого оператора:

. (18)

Частотные характеристики операторов (4.17) и (4.18) равны соответственно:

, ,

т.е. отличаются лишь фазовым множителем .

Практически часто используется оператор экспоненциального сглаживания, реализуемый с помощью интегрирующей RC-цепи в форме

и имеющий характеристику

.

Производя временное усреднение некоторой функции g, лежащей в основе какой-либо вероятностной характеристики, получим соответствующую временную характеристику. В частности, дисперсия, полученная временным усреднением, равна

;


Временная корреляционная функция –

.

Аналогами распределений вероятностей являются величины относительного времени пребывания реализации ниже некоторого уровня и в интервале уровней (рис. 25).

Аналог интегральной функции распределения вероятностей – относительное время пребывания реализации ниже некоторого уровня (рис. 25а):

; .

Аналог плотности вероятности – относительное время пребывания реализации в интервале Dx на уровне x (рис. 25б):

;

.


Процессы, для которых временные характеристики сходятся в некотором смысле к вероятностным при T ® ¥, называются эргодическими. Различают два вида сходимости.

Последовательность случайных величин сходится по вероятности к случайной величине x, если для любого e > 0

.

Сходимость с вероятностью 1 (или почти всюду) определяется следующим образом:

.


Сходимость в среднем определяется из условия:

,

в частности, сходимость в среднеквадратическом –

.

Из сходимости почти всюду следует сходимость по вероятности, а из сходимости в среднеквадратическом также следует сходимость по вероятности.

Часто имеет место не эргодичность процесса, а эргодичность по отношению к математическому ожиданию, корреляционной функции или иной вероятностной характеристике.

7. Особенности нестационарных случайных процессов

Нестационарные СП, в отличие от стационарных, составляют столь широкий класс, что в нем трудно выделить свойства, относящиеся ко всему классу. Одним из таких свойств, лежащих в основе определения нестационарности, является зависимость вероятностных характеристик этих процессов от времени.

В частности,

,

.

Пример процесса, существенно нестационарного по математическому ожиданию, приведен на рис. 26а, по дисперсии – на рис. 26б.

Нестационарность по математическому ожиданию хорошо описывается моделью аддитивного нестационарного процесса:

X(t) = Y(t) + j(t),

где Y(t) – стационарный СП; j(t) – детерминированная функция.

Нестационарность по дисперсии описывается моделью мультипликативного нестационарного процесса: X(t) = Y(t)·j(t).

Простейшие примеры нестационарности по моментным функциям в более общем виде описываются зависимостями вероятностных распределений от времени.

Более сложным является отображение нестационарности в рамках многомерных (и даже двумерных) вероятностных характеристик. Наиболее широко используются корреляционные и спектральные характеристики. Поскольку корреляционная функция нестационарного СП зависит от двух моментов времени, спектр нестационарного процесса не может быть определен столь однозначно, как в стационарном случае. Существует несколько определений спектра нестационарных процессов:

а) двойной по частоте спектр или биспектр:

. (19)

В случае стационарного процесса и соотношение (19) переходит в теорему Винера – Хинчина. Биспектр (19) трудно физически интерпретировать и использовать при анализе цепей, хотя он отображает всю информацию о частотных свойствах процесса;

б) мгновенный частотно-временной спектр.

Заменим в переменные следующим образом: , t = t1 – t2 и выполним преобразование Фурье от корреляционной функции по аргументу t:

. (20)

Мгновенный спектр (20) зависит как от частоты, так и от времени и при медленной нестационарности имеет наглядную физическую интерпретацию как изменение «обычной» спектральной плотности мощности во времени (рис. 27);

в) усредненная спектральная плотность мощности

,

где .

Этот спектр не отображает динамики процесса, но дает представление о среднем распределении дисперсии процесса по частоте;

г) аппаратурный спектр определяется как среднее значение дисперсии процесса на выходе узкополосного фильтра с импульсной реакцией h(t):

Этот спектр допускает аппаратурное определение, но использование его в теории достаточно трудоемко.

Решение примера Рассмотрим пример нестационарного СП, имеющего плотность вероятности, выраженную функцией

где ; a0 = 1 1/В; k = 2 1/Вс.

Необходимо найти математическое ожидание процесса и нарисовать ориентировочно возможный вид реализации процесса.

Для решения задачи прежде всего определим незаданную функцию А(t) из условия нормировки:

Отсюда A(t) = a(t).

Поскольку процесс нестационарный, его математическое ожидание может зависеть от времени и в данном случае равно

Учитывая известное значение определенного интеграла

при

где – гамма-функция, , получим

.

Возможный вид реализаций процесса, не противоречащий виду распределения, приведен на рис. 28.


На рис. 28 штриховой линией показано изменение математического ожидания процесса.

8. Классификация случайных процессов

Классификация в любой науке служит для упорядочения объектов исследования, а значит, и используемых методов анализа и синтеза. В ряде случаев удачная, логически оправданная и естественная классификация процесса помогает вскрыть новые закономерности (например, периодическая система Менделеева, классификация звезд на основе диаграммы Герцшпрунга – Рассела в астрономии и т.д.).

Классификация производится по каким-либо признакам. Наиболее существенными признаками для СП являются зависимости их вероятностных характеристик от времени и номера реализации.

Обозначим через q(l) произвольную вероятностную характеристику;

– оператор усреднения по множеству;

– оператор усреднения по времени.

Если одновременно используется усреднение и по множеству, и по времени, то получаемая при этом оценка вероятностной характеристики (l) имеет такой вид:

,

где l – аргумент вероятностной характеристики (частота в спектральной плотности мощности; интервал в корреляционной функции).

Истинное значение оценки вероятностной характеристики получается с помощью предельного перехода при неограниченном возрастании числа реализаций N и их длительностей T, т.е.

.

Характеристику, полученную усреднением и по множеству, и по времени, будем называть средней вероятностной характеристикой. Если же усреднение производится только по множеству, то получается t – текущая вероятностная характеристика:

только по времени – k-текущая вероятностная характеристика:

В зависимости от видов получаемых характеристик СП можно классифицировать таким образом:

– (k, l) = (l) – однородный процесс, т.е. получаемая характеристика не зависит от номера реализации;

– (t, l) = (l) – стационарный процесс, т.е. получаемая характеристика не зависит от начала отсчета времени;

– (t, l) = (k, l) = (l) – эргодический случайный процесс.

Схематично процессы могут быть представлены в виде множеств, изображенных на рис. 29.

Приведенная укрупненная классификация, конечно, не является исчерпывающей, поэтому используется классификация по многим другим признакам.

По виду областей существования и значений случайной функции СП делятся на непрерывные (непрерывные области существования и значений – рис. 30а), дискретные (непрерывное множество значений аргумента и дискретное множество значений – рис. 30б), непрерывные случайные последовательности (дискретная область существования и непрерывная область значений – рис. 30в) и дискретные случайные последовательности (дискретная функция дискретного аргумента – рис. 30г).

По виду распределений вероятностей различают процессы с конечной и бесконечной областями значений, с симметричной и несимметричной плотностью вероятности, гауссовы (нормальные) и негауссовы.


По корреляционной связи значений различают коррелированные и некоррелированные СП, по виду спектра – широкополосные и узкополосные СП, по характеру временной связи – периодические, непериодические и почти периодические.

По виду нестационарности процессы делятся на аддитивные, мультипликативные, стационарные на интервале (квазистационарные), со стационарными приращениями, периодически нестационарные, с быстрой и медленной нестационарностью и т.д.

Выбор признаков классификации определяется характером решаемой задачи.

Рассмотрим пример классификации СП.

Решение примера 4. Охарактеризовать процесс X(t) в отношении стационарности, однородности и эргодичности, если процесс представлен моделью:


где А – случайная амплитуда с рэлеевским распределением; – случайная величина с равномерным распределением на интервале [–p, p]; 0 = const.

Выборочные реализации процесса X(t) представлены на рис. 31.

Из рис. 31 и аналитического представления квазидетерминированного процесса X(t) очевидно, что его вероятностные характеристики (например, математическое ожидание, дисперсия, плотность вероятности и т.д.) не зависят от времени, т.е. процесс является стационарным. В то же время каждая из реализаций характеризуется своей дисперсией, поэтому процесс неоднороден и не является эргодическим, т.е. его характеристики нельзя оценить по одной реализации.

ПРИМЕР 5. По заданной графически функции распределения стационарного случайного колебания (рис. 32) определить плотность вероятности и изобразить возможный вид реализации этого процесса.


Решение примера 5. Плотность вероятности связана с функцией распределения через производную, поэтому на первом участке u от -6 до -3 В производная, характеризующая тангенс угла наклона к оси u равна 0,4/3 = 0,13 1/В. При u = 1 В имеет скачок на 0,3, поэтому в плотности вероятности есть d-функция с площадью, равной величине скачка. На участке от 3 до 7 В также имеет постоянный наклон, равный 0,3/6 = 0,05 1/В. Полученная плотность вероятности представлена на рис. 3 Для проверки вычислений необходимо найти площадь, ограниченную плотностью вероятности (условие нормировки): .

mu = == –0,325 В.

Второй начальный момент – m2u = 48,9 В2.

Дисперсия – = 48,5 – 0,105625 » 48,4 В2.

Реализация длительностью Т, судя по виду плотности вероятности на разных интервалах времени, должна иметь горизонтальные участки на уровне +1 В, суммарная длительность которых должна составлять Т/ На участках от -6 до -3 В и от +1 до +7 В в реализации имеются наклонные прямые линии со случайным наклоном, что соответствует неизменным значениям плотности вероятности. На первом участке мгновенные значения реализации находятся 0,4Т, а на втором – 0,3Т.

Возможный вид реализации представлен на рис. 34.

ПРИМЕР 6. На рис. 35 представлена реализация случайного процесса. Изобразить приближенно плотность вероятности и функцию распределения. Рассчитать (также приближенно) математическое ожидание, среднеквадратическое значение (СКЗ) и среднеквадратическое отклонение (СКО).

Решение примера 6. Для определения плотности вероятности необходимо в соответствии с ее определением рассчитать вероятности следующих событий:

Соответствия мгновенных значений уровню -10 мА (вероятность р1);

Нахождения мгновенных значений реализации в интервале от -10 до -4 мА (вероятность р2);

Соответствия мгновенных значений уровню -4 мА (вероятность р3);

Нахождения мгновенных значений реализации в интервале от -4 до + 8 мА (вероятность р4);

Соответствия мгновенных значений уровню + мА В (вероятность р5);

Нахождения мгновенных значений реализации в интервале от +8 до +10 мА (вероятность р6).

Для нахождения перечисленных вероятностей необходимо посчитать интервал времени, в течение которого происходили эти события, а затем поделить найденные интервалы на длительность реализации, составляющую 25 мс (см. рис. 35). В результате получим частоты событий (оценку вероятностей). Результаты расчетов представлены в табл. 1.

Таблица 1

Вероятность

вероятности

Для расчета значений плотности вероятности в интервалах (-10, -4) мА, (-4, + 8) мА и (+8, +12) мА необходимо полученные вероятности разделить на соответствующие интервалы, предполагая на этих участках постоянную плотность вероятности, так как мгновенные значения в их пределах меняются по линейному закону (рис. 35). Результаты расчетов представлены на рис. 36.

Математическое ожидание равно:

мА

(в предположении стационарности заданного реализацией СП по математическому ожиданию).

Второй начальный момент –

m2i = 36,08 мА2

(в предположении стационарности заданного реализацией СП по второму начальному моменту).

Дисперсия –

= 36,08 – 0,1024 » 35,98 мА2

(в предположении стационарности заданного реализацией СП по дисперсии).

Следовательно, СКЗ = » 6,01 мА; СКО = » 6,0 мА.


Библиографический список

1. Гоноровский, И.С. Радиотехнические цепи и сигналы [Текст] / И.С. Гоноровский. – М. : Радио и связь, 2006. – 608 с.

1. Манжос, В.Н. Теория и техника обработки радиолокационной информа-ции на фоне помех [Текст] / Я.Д. Ширман, В.Н. Манжос. – М. : Радио и связь, 2011. – 416 с.

2. Жовинский, В.Н. Инженерный экспресс-анализ случайных процессов [Текст] / А.Н. Жовинский, В.Н. Жовинский. – М. : Энергия, 2009. – 112 с.

3. Царьков, Н.М. Многоканальные радиолокационные измерители [Текст] / Н.М. Царьков. – М. : Сов. радио, 2010. – 192 с.

2. Математические основы современной радиоэлектроники [Текст] / И.А. Большаков [и др.]. – М. : Сов. радио, 2009. – 208 с.

3. Федосов, В.П. Статистическая радиотехника [Текст] : конспект лекций / В.П. Федосов, В.П. Рыжов. – Таганрог: Изд-во ТРТИ, 2008. – 76 с.

4. Фомичев, К.И. Моноимпульсная радиолокация [Текст] / А.И. Леонов, К.И. Фомичев. – М. : Сов. радио, 2010. – 370 с.

5. Гнеденко, Б.Н. Курс теории вероятности [Текст] / Б.Н. Гнеденко. – М. : Физматгиз, 2011. – 203 с.

Обработка сигналов в условиях воздействия импульсных помех

2.6.1. Обработка сигналов в условиях воздействия
несинхронных импульсных помех

При работе РЛС могут заметно сказываться взаимные импульсные помехи. Различают несинхронные и синхронные взаимные импульсные помехи. Несинхронные помехи образуются, если периоды повторения импульсов мешающего источника не совпадают с периодом повторения полезных сигналов. На индикаторах с большим послесвечением несинхронная помеха при большой разнице в периодах повторения создает эффект наличия большого числа целей. По мере сближения частот повторения, изображение несинхронной помехи на экране индикатора принимает вид спирали. При полностью синхронном излучении спирали вырождаются в окружности. В этом случае говорят о синхронной помехе.

Признаком, по которому несинхронную помеху можно отличить от цели, является иной, чем у цели, интервал между соседними импульсами. Существует ряд способов, позволяющих исключить из обработки помеховые сигналы. Наиболее употребительны два способа, базирующиеся на регулярности отраженных сигналов от ВС и случайным временным положением сигналов несинхронных импульсных помех (НИП). Первый способ основан на рециркуляции задержки сигналов, второй - на эффекте «движущееся окно». Рассмотрим оба
способа обработки.

Несинхронные помехи образуются, если периоды повторения мешающего источника не совпадают с периодом повторения сигналов от ВС. Следовательно, различительным признаком сигнала и помехи является интервал между соседними импульсами. Для ослабления НИП может быть использовано перемножение незадержанных и задержанных на период следования сигналов в схеме селекции по периоду следования (рис. 2.146). Если перемножение осуще-

Рис. 2.146. Схема селекции по периоду следования.

ствляется на видеочастоте, через схему пройдут сигналы, имеющие известный период повторения Т n , и не пройдут сигналы, для которых период следования отличается от Т n . В таких схемах могут быть применены потенциалоскопы.

Разновидностью устройства селекции по периоду следования может являться следующее (рис. 2.147).

Рис. 2.147. Простейший подавитель НИП

В течении первого периода зондирования на выход электронного ключа обрабатываемый сигнал не походит, поскольку нет разрешающего сигнала со схемы совпадений. Входной сигнал первого зондирования запоминается устройством задержки на время периода повторения Т n . В момент излучения следующего зондирующего импульса вновь поступает принятый сигнал, который непосредственно приходит на схему совпадений одновременно с сигналом от устройства задержки. В моменты прихода полезных сигналов, повторяющихся в соседних периодах зондирования, на выходе схемы совпадений появляется
разрешающий импульс, благодаря чему открывается электронный ключ и пропускает на выход схемы импульс цели.

В данной схеме реализован алгоритм 2/2, то есть, если имеется 2 сигнала в одном и том же дискрете дальности на текущем и предшествующем периодах зондирования, то принимается решение о том, что это сигнал цели. Значительно большей эффективностью обладают подавители, реализующие алгоритм 4/4.

Еще один вариант схемы селекции по периоду повторения - рециркуля-
тор, который осуществляет и функцию накопления сигнала. Схема такого устройства изображена на рис. 2.148.

На вход рециркулятора поступают нормированные сигналы полезные и
НИП. Цепь обратной связи образована линией задержки на время Т n и усилителем b(K ус. < 1).

Суммарный сигнал на выходе накопителя

Рис. 2.3. Рециркулятор и графики, поясняющие его работу.

Сигналы от ВС регулярны, следуют через Т n и будут накапливаться на
выходе накопителя. Период следования сигналов НИП отличается от Т n и такие сигналы накапливаться не будут. Дальнейшая пороговая обработка исключает сигналы НИП и выделяет накопленные сигналы от ВС.

Метод "скользящего окна" заключается в следующем. Зона обнаружения первичной РЛС разбита по дальности на отдельные дискреты DД (рис.2.149).

Рис. 2.149. Скользящее окно.

На рисунке показана только часть обзора, причем увеличены для наглядности временные промежутки между соседними зондированиями (они обозначены цифрами 1, 2, ...). При наличии сигналов в каком-либо дискрете дальности они будут обнаружены в соответствующих ячейках (сигналы обозначены +). Дальнейшая обработка предполагает проверку критерия "k/m". Если в данном дискрете дальности в окне, включающем т соседних зондирований, находится l ³ k: входных сигналов, делается вывод о том, что это не случайный набор, а упорядоченная группа сигналов (пачка импульсов от ВС). Если l становится меньше k (сигналы НИП), то критерий не выполняется и сигналы исключаются из обработки.

2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех

2.6.2.1. Понятие о динамическом диапазоне сигналов и помех
и необходимости их нормирования

Системы обработки сигналов на фоне шума и помех должны обеспечить заданный уровень вероятности правильного обнаружения при фиксированной вероятности ложных тревог. Последние вызываются как выбросами шума, так и импульсными и иными помехами. Импульсные помехи очень распространены и часто по своему уровню значительно превосходят полезные сигналы, что затрудняет их надежное выделение. Поэтому приходится использовать нелинейные и иные методы обработки сигналов на фоне шумов и помех. Простейшим и весьма эффективным из них является амплитудное ограничение. Обычно ограничитель выбирается жестким, т. е. уровень ограничения выбирается меньше среднеквадратического значения s шума. При его применении уровни сигнала, шума и помехи становятся одинаковыми. Чтобы уменьшить искажения сигналов, после амплитудного ограничителя ставят фильтр, выделяющий его первую гармонику.

Поскольку ограничитель устраняет все амплитудные различия между
сигналом, шумом и помехами, последующая обработка должна использовать
иные различия между сигналом, с одной стороны, и шумом и помехами, с другой. Если применяются простые сигналы, то такими различиями могут быть или длительности их импульсов, или ширина их спектров, определяемая этими длительностями, а в случае сложных сигналов - их фазовая структура, т. е. законы фазовой модуляции или манипуляции.

Очевидно, требуемые характеристики работы радиосистемы будут гарантированы, если обеспечить высокое отношение сигнал-шум и малое отношение помеха-шум. Поскольку импульсные помехи могут быть очень сильными, их уровень необходимо нормировать к среднеквадратическому уровню шума. Иначе говоря, необходимо обеспечить высокий динамический диапазон сигналов и нормирование динамического диапазона помех.



Под динамическим диапазоном сигналов понимается отношение уровней максимального и минимально различимого сигналов. Последний определяется уровнем шума, характером сигнала и применяемым алгоритмом его обработки. Поэтому динамический диапазон сигналов можно характеризовать отношением амплитуды максимального сигнала к среднеквадратическому уровню шума.

Аналогично динамический диапазон помехи описывается отношением
амплитуды максимальной помехи к среднеквадратическому уровню шума. Поэтому нормирование динамического диапазона помех сводится к нормированию уровня этих помех. В дальнейшем под помехой будем понимать немодулированную импульсную помеху, частота которой совпадает с частотой сигнала. При этом будет рассматриваться самый неблагоприятный с точки зрения подавления помехи случай, поскольку спектры сигнала и помех полностью перекрываются, что исключает применение частотной фильтрации. Амплитуды помехи и сигнала будем считать столь большими относительно среднеквадратического уровня шума, что в течение их действия на ограничитель влиянием шума можно пренебречь.

Заметим, что в данной главе, как это и следует из ее названия, рассматривается только внутрипериодная обработка сигналов на фоне шума и сильных импульсных помех. Дальнейшее подавление импульсных помех возможно путем череспериодного накопления сигналов в процессе их межпериодной обработки на фоне шума и указанных помех и достигается вследствие несинхронного характера импульсных помех.

2.6.2.2. Нормирование уровня длинных импульсных помех
с помощью схемы ШОУ

Схема ШОУ (рис. 2.150,а) состоит из широкополосного фильтра Ш, ограничителя О, узкополосного фильтра У. Рассмотрим воздействие на нее радиоимпульсного сигнала длительностью t 1 шума и помехи длительностью t п1 . Пренебрегаем искажениями сигнала и помехи в широкополосном фильтре, что вполне допустимо при его большой полосе. Узкополосный фильтр будем считать оптимальным для сигнала. Тогда отношение сигнал-шум на его выходе

,

где Ез - энергия сигнала на входе этого фильтра;

N 03 - спектральная интенсивность шума на его входе.

Рис. 2.150. Схема ШОУ (широкая полоса - ограничитель-узкая полоса)

При идеальном ограничении входного колебания (рис. 2.151) выходное
колебание имеет вид меандра, принимающего значения ±Uо. При этом энергия сигнала на выходе этого ограничителя (т.е. на входе узкополосного фильтра) Ез= 1/2 V 2 з t 1 =1/2(a 1 U 0) 2 t 1 , а спектральная интенсивность шума N 03 =W ш3 /DF ш =1/DF ш х 1/2(a 1 U 0) 2 , где a 1 = 4/p - коэффициент первой гармоники образовавшегося при ограничении колебания в виде меандра, а W ш3 - мощность шума на входе узкополосного фильтра. Подставляя два последних выражения в им предшествующее, получаем

где n = DF ш t 1 @ DF ш / DF у - отношение полос пропускания широкопо-
лосного и узкополосного фильтров.

Чем больше это отношение, тем больше отношение сигнал-шум на выходе рассматриваемой схемы. Физически это объясняется тем, что с расширением полосы широкополосного фильтра уменьшается спектральная интенсивность шума после ограничения и мощность после узкополосной фильтрации.

Рис. 2.152. Прохождение сигнала,
короткой и длинной помех через схему
ШОУ

Рассмотрим прохождение радиоимпульсов сигнала, короткой и длинной помех (различающихся тем, что длительности короткой помехи t¢ п1 меньше, а длинной помехи t" п1 больше длительности сигнала t 1 через систему ШОУ, в качестве узкополосного фильтра которой применяется оптимальный фильтр для импульсного сигнала указанной длительности.

Анализ временных диаграмм амплитуд напряжений (рис.2.152) в различных точках структурной схемы (рис. 2.150, б) показывает, что сигнал,
короткая и длинная помехи имеют соответственно амплитуды напряжений на выходе системы

V 4 =1/b V 3 t 1,

U¢ п4 =1/b U п3 t п1,

U" п4 =1/b U п3 t 1,

где (b - постоянная времени контура ВИРУ, связанная, с его полосой
пропускания DF соотношением b = (pDF) -1 , причем b » t 1 и b » t п1 , а V 3 и U п3
- амплитуды сигнала и помех на выходе ограничителя. Ввиду равенства последних (V 3 = U п3) амплитуды сигнала и длинной помехи совпадают:

V 4 = U" п4 , а амплитуда короткой помехи U¢ п4 = V 4 (t¢ п1 /t 1).

рис. 2.153. Зависимость отношения помеха-шум на выходе схемы ШОУ от длительности входной помехи

Все это - следствие того, что совокупность задерживающего и вычитающего устройств в оптимальном фильтре ограничивает время интегрирования любого входного колебания длительностью t 1 сигнала на входе.

Следовательно, если длительность помехи равна или больше длительности сигнала, то ее амплитуда на выходе узкополосного фильтра совпадает с амплитудой сигнала. Если же длительность помехи меньше длительности сигнала, то ее амплитуда и отношение помеха-шум пропорциональны длительности помехи.

Таким образом, отношение помеха-шум на выходе (рис. 2.153)

При t п1 ≤t 1

При t п1 >t 1

Важно отметить, что уровень помехи на выходе совершенно не зависит
от ее амплитуды на входе (если она, конечно, достаточно велика). Схема ШОУ осуществляет селекцию импульсных помех по длительности. Помеха нормируется к уровню шума (r 4 £1), если ее длительность удовлетворяет условию

Следовательно, схема ШОУ защищает только от достаточно коротких настроенных импульсных помех.

С точки зрения лучшего нормирования помех, а также уменьшения числа взаимных помех, создаваемых радиосистемами с близкими несущими частотами, которые попадают в полосу пропускания предограничительного
фильтра, отношение n следует выбирать меньше. Но при этом уменьшается отношение сигнал-шум, а следовательно, и вероятность обнаружения сигнала. Кроме того, при уменьшении n увеличиваются потери из-за нелинейности обработки, обусловленные уменьшением степени нормализации шумов в узкополосном фильтре после ограничения. Расчеты показывают, что если при n =100 они составляют 1,5 дБ, то при n=10 возрастают до 5 дБ. На практике динамический диапазон сигналов выбирают q = 5 ¸ 10 из условия нормальной работы индикатора кругового обзора, что соответствует n = 12,5 ¸ 50.

2.6.2.3. Нормирование уровня длинных импульсных помех
с помощью схемы РОС

Схема РОС (расширяющий фильтр - ограничитель - сжимающий фильтр) работает по принципу: расширение сигнала Р - ограничение О- сжатие сигнала С и представляет собой последовательное соединение двух
дисперсионных линий задержки ДЛЗ с сопряженными (т. е. различающимися знаками) фазо-частотными характеристиками и ограничителем между ними (рис. 2.154). Полосы пропускания ДЛЗ DF 1 выбираются равными ширине спектра полезного сигнала (на уровне 2/p): DF 1 = П=1/t 1 , а длительность Т p импульсной характеристики значительно больше длительности сигнала, т. е.

Сигнал, действуя на первую ДЛЗ, расширяется по длительности до Т p и приобретает ЛЧМ с девиацией DF= П. Он становится сложным, ибо произведение его ширины спектра на длительность

D p =П Т p = Т p /t 1 »1,

где D p - коэффициент растяжения сигнала в ДЛЗ. После прохождения
ограничителя он, будучи сложным, сжимается во второй ДЛЗ до прежней длительности 1/DF = t 1), а его амплитуда увеличивается в раза по сравнению с амплитудой на выходе ограничителя, которая совпадает с амплитудой окружающего шума. Поэтому отношение сигнал-шум.

Прохождение помехи через рассматриваемую систему существенно зависит от ее длительности t п1 . Ее спектр на уровне 2/p имеет ширину П 1 =1/t п1 (см.рис. 2.155,а). Так как полоса пропускания ДЛЗ составляет лишь DF 1 =1/t 1 , то ширина П 2 спектра короткой помехи на ее выходе ограничивается этой величиной (см. рис. 2.155,6):

П 2 =DF 1 = 1/t 1 , При t п1 П 2 = 1/t п1 При t п1 ³t 1

При t п1 >t 1 весь спектр помехи (на уровне 2/p) попадает в полосу пропускания ДЛЗ, которая вследствие своей дисперсионности задерживает различные гармонические составляющие на разное время, определяемое дисперсионной характеристикой этой ДЛЗ. Время задержки наиболее сильно различается на крайних (максимальной и минимальной) частотах спектра помехи. Разность этих временных задержек определяет длительность импульса помехи t п2 на выходе, которая, как это следует из подобия треугольников abc и deg на дисперсионной характеристике ДЛЗ (рис. 2.156), составляет

t п2 = Т p П2/DF 1 = Т p t 1 /t п1

и уменьшается с увеличением t п1 (рис. 2.15 5,в). Последние физически объясняется сужением спектра помехи. Но длительность импульса на выходе

растягивающего фильтра не может быть меньше длительности импульса на

Минимальную величину определим из условия
из которого следует

При действии более длительной помехи последняя не меняет
своей длительности.

Итак, величина Тщ является минимально возможной длительностью импульсной помехи на выходе ДЛЗ. Кроме того, она представляет собой
длительность основного переходного процесса на выходе ДЛЗ (т. е. оптимального фильтра для ЛЧМ сигнала с длительностью Тр и девиацией частоты ар]), вызванного действием достаточно длинной немодулированной настроенной импульсной помехи.

Из предыдущего следует, что коэффициент сложности D2 помехи на выходе первой ДЛЗ, т. е. произведение ее ширины спектра П2 на длительность , зависит от длительности помехи следующим образом (рис. 2.15 5,г):

Поэтому после прохождения ограничителя, который сделает равными

т < т
уровни помехи и шума, помеха во второй ДЛЗ при сожмется по длительности в D2 раз, увеличится по амплитуде в раз и при этом в раз превысит среднеквадратическое значение шума. При иной длительности помеха пройдет через ДЛЗ, не меняя амплитуды и длительности. Таким образом, отношение помеха-шум на выходе составляет (рис. 2.155, д).

Следовательно, помехи, длительность которых превосходит
нормируются рассматриваемой схемой к уровню шума. Физически это объясняется тем, что столь длительные помехи, обладая сравнительно узким спектром, проходят через обе ДЛЗ, не подвергаясь растяжению и сжатию. Поэтому после ограничения они становятся на уровне шума. Таким образом, схема РОС осуществляет селекцию импульсных помех по ширине спектра.

Итак, если схема ШОУ нормирует уровень коротких импульсных помех, то схема РОС - уровень длинных импульсных помех. Возникает естественное стремление совместить достоинства обеих схем в единой системе обработки.
Эта возможность и рассматривается ниже.

2.6.2.4. Нормирование уровня коротких и длинных помех
с помощью схемы ШОУ-РОС

Для нормирования уровня как коротких, так и длинных импульсных помех целесообразно применить систему ШОУ-

РОС - совокупность последовательно соединенных схем ШОУ и РОС (рис. 2.157). Комбинацию РОС-ШОУ, образованную в результате другой последовательности соединения указанных схем, использовать не имеет смысла, так как в схеме РОС полоса пропускания равняется ширине спектра полезного сигнала и использование широкополосного фильтра последнее будет бесполезным.

Приближенный анализ прохождения сигнала, шума и импульсных помех , выполненный для случая, когда отношение п полос пропускания фильтров схемы ШОУ совпадает с коэффициентом Dр растяжения сигнала в первой ДЛЗ схемы РОС (п-Dр), позволяет получить следующую зависимость отношения помеха-шум на выходе системы ШОУ-РОС от длительности помехи на ее входе:

Анализ этой зависимости (рис. 11.9) показывает, что указанная система
нормирует уровень как коротких, так и длинных импульсных помех к уровню шума.

2.6.2.5. Нормирование уровня импульсных помех
при обработке сложных сигналов

В качестве сложного сигнала возьмем сначала ЛЧМ импульс. Оптимальный фильтр для такого сигнала состоит из полосового фильтра ПФ и дисперсионной линии задержки ДЛЗ, которая фактически выполняет функции фазового компенсатора ФК. Пусть этот фильтр располагается после ограничителя, которому предшествует лишь широкополосный фильтр (рис. 2.159, а).

Поскольку полосовой фильтр можно рассматривать в качестве узкополосного, то схема до фазового компенсатора представляет собой схему ШОУ с шириной полосы «узкополосного» фильтра -девиация частоты ЛЧМ сигнала. Поэтому на ее выходе, т. е. на входе фазового компенсатора, отношение сигнал-шум составляет , а отношение помеха-шум

Амплитуда ЛЧМ сигнала увеличивается в ДУЛЗ фазовом компенсаторе в
раз, а мощность шума не претерпевает изменений. Поэтому на выходе фазового компенсатора отношение сигнал-шум составляет При длительности помехи меньшей длительности сжатого в ДЛЗ ЛЧМ

импульса, длительность ее на выходе полосового фильтра равна . На выходе ДЛЗ помеха в этом случае расширяется до длительности ЛЧМ импульса а ее амплитуда уменьшается в раз. Поэтому

При длительности помехи, меньшей длительности переходного процесса

в ДЛЗ , помеха расширяется в ДЛЗ до и амплитуда ее на

выходе уменьшается в раз. В этом случае (при ) отношение помеха-шум составляет

При помеха проходит через ДЛЗ, не изменяя своей длительности и амплитуды. Поэтому отношение помеха-шум на выходе ДЛЗ совпадает с этим отношением на выходе полосового фильтра, которое равно

Следовательно, отношение помеха-шум на выходе

Поскольку , отношение помеха-шум будет меньше единицы, если ее
длительность удовлетворяет условию

Это условие нормирования помехи к уровню шума.

Далее пусть сложным сигналом является рассмотренный ФМ сигнал общей длительности Ть составленный из радиоимпульсов длительностью , которые различаются временным положением и могут различаться начальной фазой Последняя принимает одно из двух значений: 0 и π. Тогда полосовой фильтр ПФ на схеме (см. рис. 2.159, а), который будем считать «узкополосным», представляет собой оптимальный фильтр для радиоимпульса длительностью , а фазовый компенсатор ФК -
совокупность линии задержки на время равномерно расположенными отводами, N фазовращателей на угол и сумматора (рис. 2.160). Тогда на входе фазового компенсатора, как_на выходе схемы ШОУ,отношение сигнал-шум составит , а отношение помеха-шум

где в данном случае

Шум после прохождения полосового фильтра, являющегося оптимальным фильтром для радиоимпульса длительностью , будет иметь треугольную АКФ с шириной основания 2 . Поэтому шумы на входах сумматора не коррелированы и суммируются в нем по мощности, ввиду чего .
Поскольку сигнал возрастает в фазовом компенсаторе в N раз по амплитуде и в
раз по мощности, то отношение сигнал-шум на его выходе составит

Помеха малой длительности растягивается полосовым фильтром
до длительности То элементарного импульса, а если длительность помехи превышает указанное значение, то фильтр оставит ее без изменения.

Поэтому при помехи на.входах сумматора могут накладываются друг на друга только фронтами, что не приведет к увеличению амплитуды помехи на выходе. Вследствие этого и того, что мощность шумов возрастает, отношение помеха-шум на выходе фазового компенсатора уменьшится в раз:

Если длительность помехи не менее длительности сигнала
то помехи на входах сумматора будут перекрываться, вследствие чего амплитуда помехи на выходе будет больше в раз, чем на входе. Суммирование помех по мощности, а не по напряжению объясняется квазислучайным законом изменения коэффициентов передачи фазовращателей, который обусловлен псевдослучайным характером используемого кода. Вследствие того, что в данном случае и помеха, и шум возрастают в одинаковой степени, их отношения
не меняются:

По-видимому, в промежуточном случае имеем

Отношение помеха-шум на выходе

Поскольку при отношение помеха-шум не больше
единицы, если длительность этой помехи удовлетворяет условию

Это условие нормирования помех к уровню шума. Оно выполняется только для
достаточно коротких помех.

Таким образом, рассматриваемая система обработки (см. рис.
2.159,а) с оптимальной фильтрацией после ограничения нормирует к уровню
шума только достаточно короткие импульсные помехи. В этом и заключается
ее существенный недостаток, который объясняется тем, что помехи, ограниченные до уровня шума в ограничителе, накапливаются в узкополосном поло-
совом фильтре. Поэтому устранить указанный недостаток можно только путем
ликвидации этого накопления (интегрирования) помех.

Поскольку совсем убрать полосовой фильтр ПФ невозможно, ибо
он осуществляет абсолютно необходимую оптимальную частотную фильтрацию сигналов от шумов, то поставим его перед ограничителем

(см. рис. 2.159, б). При таком построении схемы необходимость в применении широкополосного фильтра отпадает. Указанный полосовой фильтр осуществляет первую основную операцию оптимальной фильтрации - частотную фильтрацию. Вторая операция - компенсация фазовых сдвигов между спектральными составляющими сигнала - производится фазовым компенсатором. Полоса пропускания последнего может быть неограниченно большой.
Поэтому накопление помех (и сигналов) в нем можно полностью устранить, ввиду чего его вполне можно поставить после ограничителя.

Рассмотрим действие сигнала, помех и шумов на систему, в которой полосовой фильтр предшествует ограничителю, а фазовый компенсатор стоит после него (см. рис. 2.159,6).

Так как уровни сигнала, шума и помехи на выходе ограничителя
одинаковы, то отношение сигнал-шум и отношение помеха-шум составляют

В случае ЛЧМ сигнала его амплитуда увеличивается фазовым компенсатором в раз, а уровень шума остается неизменным. Поэтому отношение
сигнал-шум на выходе В случае ФМ_сигнала его амплитуда возрастает в фазовом компенсаторе в раз, а среднеквадратическое значение шума

В N раз, ввиду чего отношение сигнал-шум на выходе .

Как следует из предыдущего, фазовый компенсатор может только оставить без изменения или даже уменьшить отношение помеха-шум

Следовательно, система обработки сложного сигнала, состоящая из узкополосного полосового фильтра, ограничителя и широкополосного фазового компенсатора, позволяет нормировать к уровню шума импульсные помехи любой длительности. В этом и заключается ее несомненное достоинство. Она реализует одно из основных преимуществ системы со сложными сигналами ее помехозащищенность, обусловленную сложной фазовой структурой этих сигналов.

В реальных каналах связи наряду с флуктуационными гаусовскими помехами типа белого шума действуют сосредоточенные по времени (импульсные) помехи и сосредоточенные по спектру помехи.

7.4.1. Общая характеристика сосредоточенных по спектру и импульсных помех

Во многих случаях помеха состоит из отдельных импульсов, длительность которых существенно меньше длительности элемента сигнала , а спектр помехи значительно шире спектра сигнала. Такие помехи называются импульсными (рис. 7.18).

К сосредоточенным по времени (импульсным) помехам относятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих через случайные, достаточно большие промежутки времени. Причинами импульсных помех являются грозовые разряды, радиостанции, работающие в импульсном режиме, линии электропередачи и другие энергоустановки, системы энергообеспечения транспорта и др.

Кроме импульсных помех, могут существовать протяженные по времени помехи, спектр которых занимает такую же полосу частот, как и сигнал, или даже более узкую. Эти помехи называют сосредоточенными по спектру (рис. 7.19).

К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высокой частоты различного назначения (медицинские, промышленные, бытовые и др.), переходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с шириной спектра меньшей или соизмеримой с шириной спектра полезного сигнала. В диапазоне декаметровых волн такие колебания являются основным видом помех.

Воздействие сосредоточенной по спектру помехи

Поскольку далеко не всякий элемент сигнала принимается в присутствии сосредоточенной помехи, то вероятность ошибки можно выразить произведением:

где – вероятность того, что на вход решающей схемы поступила сосредоточенная помеха, а – условная вероятность того, что произойдет ошибка символа при воздействии сосредоточенной помехи, которая зависит от мощности сигнала, мощности сосредоточенной помехи, вида сигнала, частоты сигнала, частоты помехи и т.д. Для различных систем связи определены аналитические зависимости условной вероятности ошибок от названных факторов, эти зависимости можно найти в специальной литературе .

Теоретические и экспериментальные исследования показывают, что в любых системах связи существует некоторое отношение , называемое порогом или коэффициентом помехоустойчивости, такое, что при условная вероятность ошибки . Если же отношение выше , то условная вероятность ошибки может быть велика. Экспериментальные исследования реальных приемников ЧМ показывают, что при ошибки не возникают, а при вероятность ошибки практически равна . Коэффициент различен для разных систем связи. Так, для когерентной системы с фазовой манипуляцией , для системы с амплитудной манипуляцией . Коэффициент может быть и значительно выше единицы, если используются широкополосные сигналы, занимающие полосу частот .

Воздействие импульсной помехи

Для вероятности ошибки, вызываемой импульсной помехой, также справедливо выражение (7.9), где под следует теперь понимать вероятность того, что за время существования элемента сигнала на вход решающей схемы поступил импульс помехи, а под – условную вероятность ошибочного приема символа, при условии прихода импульса помехи. Воздействие импульсной помехи на прием дискретных сигналов тоже носит пороговый характер. Если интенсивность импульсной помехи (на входе решающей схемы) меньше некоторой величины, то она не вызывает ошибок, т. е. . При увеличении интенсивности сверх этой величины условная вероятность ошибок быстро возрастает.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: