Эффективное использование GNU Make. Смотреть что такое "Make" в других словарях

Написание makefile иногда становится головной болью. Однако, если разобраться, все становится на свои места, и написать мощнейший makefile длиной в 40 строк для сколь угодно большого проекта получается быстро и элегантно.

Внимание! Предполагаются базовые знания утилиты GNU make.

Имеем некий типичный абстрактный проект со следующей структурой каталогов:

Пусть для включения заголовочных файлов в исходниках используется что-то типа #include , то есть каталог project/include делается стандартным при компиляции.

После сборки надо, чтобы получилось так:

То есть, в каталоге bin лежат рабочая (application) и отладочная (application_debug) версии, в подкаталогах Release и Debug каталога project/obj повторяется структура каталога project/src с соответствующими исходниками объектных файлов, из которых и компонуется содержимое каталога bin.

Чтобы достичь данного эффекта, создаем в каталоге project файл Makefile следующего содержания:

  1. root_include_dir:= include
  2. root_source_dir:= src
  3. source_subdirs:= . dir1 dir2
  4. compile_flags:= -Wall -MD -pipe
  5. link_flags:= -s -pipe
  6. libraries:= -ldl
  7. relative_include_dirs:= $(addprefix ../ ../ , $(root_include_dir) )
  8. relative_source_dirs:= $(addprefix ../ ../ $(root_source_dir) / , $(source_subdirs) )
  9. objects_dirs:= $(addprefix $(root_source_dir) / , $(source_subdirs) )
  10. objects:= $(patsubst ../ ../% , % , $(wildcard $(addsuffix /* .c* , $(relative_source_dirs) ) ) )
  11. objects:= $(objects:.cpp=.o)
  12. objects:= $(objects:.c=.o)
  13. all: $(program_name)
  14. $(program_name) : obj_dirs $(objects)
  15. g++ -o $@ $(objects) $(link_flags) $(libraries)
  16. obj_dirs:
  17. mkdir -p $(objects_dirs)
  18. VPATH:= ../ ../
  19. % .o: % .cpp
  20. g++ -o $@ -c $< $(compile_flags) $(build_flags) $(addprefix -I, $(relative_include_dirs) )
  21. % .o: % .c
  22. g++ -o $@ -c $< $(compile_flags) $(build_flags) $(addprefix -I, $(relative_include_dirs) )
  23. .PHONY: clean
  24. clean:
  25. rm -rf bin obj
  26. include $(wildcard $(addsuffix /* .d, $(objects_dirs) ) )

В чистом виде такой makefile полезен только для достижения цели clean, что приведет к удалению каталогов bin и obj.
Добавим еще один сценарий с именем Release для сборки рабочей версии:

Mkdir -p bin mkdir -p obj mkdir -p obj/Release make --directory=./obj/Release --makefile=../../Makefile build_flags="-O2 -fomit-frame-pointer" program_name=../../bin/application

И еще один сценарий Debug для сборки отладочной версии:

Mkdir -p bin mkdir -p obj mkdir -p obj/Debug make --directory=./obj/Debug --makefile=../../Makefile build_flags="-O0 -g3 -D_DEBUG" program_name=../../bin/application_debug

Именно вызов одного из них соберет наш проект в рабочем, либо отладочном варианте. А теперь, обо всем по-порядку.

Допустим, надо собрать отладочную версию. Переходим в каталог project и вызываем./Debug. В первых трех строках создаются каталоги. В четвертой строке утилите make сообщается, что текущим каталогом при запуске надо сделать project/obj/Debug, относительно этого далее передается путь к makefile и задаются две константы: build_flags (тут перечисляются важные для отладочной версии флаги компиляции) и program_name (для отладочной версии – это application_debug).

1: Объявляется переменная с именем корневого каталога заголовочных файлов.

2: Объявляется переменная с именем корневого каталога исходников.

3: Объявляются переменная с именами подкаталогов корневого каталога исходников.

4: Объявляется переменная с общими флагами компиляции. -MD заставляет компилятор сгенерировать к каждому исходнику одноименный файл зависимостей с расширением.d. Каждый такой файл выглядит как правило, где целью является имя исходника, а зависимостями – все исходники и заголовочные файлы, которые он включает директивой #include. Флаг -pipe заставляет компилятор пользоваться IPC вместо файловой системы, что несколько ускоряет компиляцию.

5: Объявляется переменная с общими флагами компоновки. -s заставляет компоновщик удалить из результирующего ELF файла секции.symtab, .strtab и еще кучу секций с именами типа.debug*, что значительно уменшает его размер. В целях более качественно отладки этот ключ можно убрать.

6: Объявляется переменная с именами используемых библиотек в виде ключей компоновки.

8: Объявляется переменная, содержащая относительные имена каталогов со стандартными заголовочными файлами. Потом такие имена напрямую передаются компилятору, предваряемые ключем -I. Для нашего случая получится../../include, потому что такой каталог у нас один. Функция addprefix добавляет свой первый аргумент ко всем целям, которые задает второй аргумент.

9: Объявляется переменная, содержащая относительные имена всех подкаталогов корневого каталога исходников. В итоге получим: ../../src/. ../../src/dir1 ../../src/dir1.

10: Объявляется переменная, содержащая имена подкаталогов каталога project/obj/Debug/src относительно текущего project/obj/Debug. То есть, этим мы перечисляем копию структуры каталога project/src. В итоге получим: /src/dir1 src/dir2.

11: Объявляется переменная, содержащая имена исходников, найденных на основе одноименных файлов *.c* (.cpp\.c), безотносительно текущего каталога. Смотрим поэтапно: результатом addsuffix будет../../src/./*.с* ../../src/dir1/*.с* ../../src/dir2/*.с*. Функция wildcard развернет шаблоны со звездочками до реальных имен файлов: ../../src/./main.сpp ../../src/dir1/file1.с../../src/dir1/file2.сpp ../../src/dir2/file3.с../../src/dir2/file4.с. Функция patsubsb уберет префикс../../ у имен файлов (она заменяет шаблон, заданный первым аргументом на шаблон во втором аргументе, а % обозначает любое количество символов). В итоге получим: src/./main.сpp src/dir1/file1.с src/dir1/file2.сpp src/dir2/file3.с src/dir2/file4.с.

12: В переменной с именами исходников расширения.cpp заменяется на.o.

13: В переменной с именами исходников расширения.c заменяется на.o.

15: Первое объявленное правило – его цель становится целью всего проекта. Зависимостью является константа, содержащая имя программы (../../bin/application_debug мы ее передали при запуске make из сценария).

17: Описание ключевой цели. Зависимоcти тоже очевидны: наличие созданных подкаталого в project/obj/Debug, повторяющих структуру каталога project/src и множество объектных файлов в них.

18: Описано действие по компоновке объектных файлов в целевой.

20: Правило, в котором цель – каталог project/obj/Debug/src и его подкаталоги.

21: Действие по достижению цели – создать соответствующие каталоги src/., src/dir1 и src/dir2. Ключ -p утилиты mkdir игнорирует ошибку, если при создании какого-либо каталога, таковой уже существуют.

23: Переменная VPATH принимает значение../../. Это необходимо для шаблонов нижеследующих правил.

25: Описывается множество правил, для которых целями являются любые цели, соответствующие шаблону %.o (то есть имена которых оканчиваются на.o), а зависимостями для этих целей являются одноименные цели, соответствующие шаблону %.cpp (то есть имена которых оканчиваются на.cpp). При этом под одноименностью понимается не только точное совпадение, но также если имя зависимости предварено содержимым переменной VPATH. Например, имена src/dir1/file2 и../../src/dir1/file2 совпадут, так как VPATH содержит../../.

26: Вызов компилятора для превращения исходника на языке С++ в объектный файл.

28: Описывается множество правил, для которых целями являются любые цели, соответствующие шаблону %.o (то есть имена которых оканчиваются на.o), а зависимостями для этих целей являются одноименные цели, соответствующие шаблону %.c (то есть имена которых оканчиваются на.c). Одноименность как в строке 23.

29: Вызов компилятора для превращения исходника на языке С в объектный файл.

31: Некоторая цель clean объявлена абстрактной. Достижение абстрактной цели происходит всегда и не зависит от существования одноименного файла.

32: Объявление абстрактной цели clean.

33: Действие по ее достижению заключается в уничтожении каталогов project/bin и project/obj со всем их содержимым.

36: Включение содержимого всех файлов зависимостей (с расширением.d), находящихся в подкаталогах текущего каталога. Данное действие утилита make делает в начале разбора makefile. Однако, файлы зависимостей создаются только послекомпиляции. Значит, при первой сборке ни один такой файл включен не будет. Но это не страшно. Цель включения этих файлов – вызвать перекомпиляцию исходников, зависящих от модифицированного заголовочного файла. При второй и последующих сборках утилита make будет включать правила, описанные во всех файлах зависимостей, и, при необходимости, достигать все цели, зависимые от модифицированного заголовочного файла.

Утилита автоматически определяет, какие части большой программы должны быть перекомпилированы и команды для их перекомпиляции. Наиболее часто make используется для компиляции C-программ и содержит особенности ориентированные именно на такие задачи, но можно использовать make с любым языком программирования. Более того, применение утилиты make не ограничивается программами. Можно использовать еe для описания любой задачи, где некоторые файлы должны автоматически порождаться из других всегда, когда те изменяются.

make-file

Прежде чем использовать make , необходимо создать файл, называемый make-файлом , который описывает отношения между файлами Вашей программы и содержит команды для обновления каждого файла. Обычно исполняемый файл зависит от объектных файлов, которые, в свою очередь, зависят от исходных файлов и файлов заголовков. Для имени make-файла рекомендуется название GNUmakefile , makefile или Makefile , причем поиск идет именно в указанном порядке. Если необходимо использовать нестандартное имя, то его можно передать явно через опцию -f .
Когда make-файл уже написан, достаточно выполнить в каталоге в котором он находится команду make . Простой make-файл состоит из правил(инструкций) следующего вида:


ПЕРЕМЕННАЯ = ЗНАЧЕНИЕ...
ЦЕЛЬ... : ЗАВИСИМОСТЬ...
КОМАНДА 1
КОМАНДА 2
ПЕРЕМЕННАЯ = ЗНАЧЕНИЕ...
ЦЕЛЬ... : ЗАВИСИМОСТЬ...
КОМАНДА 1
КОМАНДА 2

и т.д.

ЦЕЛЬ обычно представляет собой имя файла, генерируемого программой make ; примерами целей являются исполняемые или объектные файлы. Цель может также быть именем выполняемого действия, как, например, "clean ".
ЗАВИСИМОСТЬ - это файл, изменение которого служит признаком необходимости цели. Часто цель зависит от нескольких файлов.
КОМАНДА - это действие, которое выполняет make . Правило может иметь более чем одну команду - каждую на своей собственной строке. Важное замечание: необходимо начинать каждую строку, содержащую команды, с символа табуляции. Длинные строки разбиваются на несколько с использованием обратного слэша, за которым следует перевод строки. Знак диез # является началом комментария. Строка с # до конца игнорируется. Комментарии могут переноситься на несколько строк с помощью обратного слэша в конце строки.

Пример makefile

Использование действий по умолчанию


#default target - file edit
edit: main.o kbd.o command.o display.o \
cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Main.o: main.c defs.h
cc -c main.c
kbd.o: kbd.c defs.h command.h
cc -c kbd.c
command.o: command.c defs.h command.h
cc -c command.c
display.o: display.c defs.h buffer.h
cc -c display.c
insert.o: insert.c defs.h buffer.h
cc -c insert.c
search.o: search.c defs.h buffer.h
cc -c search.c
files.o: files.c defs.h buffer.h command.h
cc -c files.c
utils.o: utils.c defs.h
cc -c utils.c
clean:
rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

По умолчанию, make начинает с первого правила (не считая правил, имена целей у которых начинаются с ". "). Это называется главной целью по умолчанию. В нашем случае это правило edit . Если файл edit новее чем объектные файлы от которых он зависит, то ничего не произойдет. В противном случае, прежде чем make сможет полностью обработать это правило, он должен рекурсивно обработать правила для файлов, от которых зависит "edit ". Каждый из этих файлов обрабатывается в соответствии со своими собственным правилом. Перекомпиляция должна быть проведена, если исходный файл или любой из заголовочных файлов, упомянутых среди зависимостей, обновлен позднее, чем объектный файл, или если объектный файл не существует.
Правилу clean не соответствует никакого создаваемого файла и, соответственно, clean ни от чего не зависит и само не входит в список зависимостей. При запуске по умолчанию clean вызываться не будет. Для его выполнения необходимо явно указать цель при запуске make - make clean.
Для сокращения записи можно использовать переменные и действия по умолчанию (неявные правила)

Специальная цель .PHONY является встроенной в make и определяет свои зависимости как цели-имена, которым нет соответствия в виде файлов. Если данное правило пропустить, то создание в текущем каталоге файла с именем clean заблокирует выполнение make clean .
Использование правил по умолчанию позволяет изменить стиль записей зависимостей:

Квадратные скобки означают необязательность присутствия данной части.
Цель - имя цели, которую надо выполнить.
Переменная ="abc" -переопределение переменных. Значения переменных введенных в командной строке имеют больший приоритет, чем определения в make-файле.
Опции:
-f file - явное задание имени make-файла , если задание опущено, то ищются файлы GNUmakefile , makefile или Makefile
-n ; - имитация действий без реального выполнения, служит для отладки
-t - изменение времени модификации цели без реального выполнения
-q - проверка на необходимость обновления цели без реального выполнения

Чаще всего сборка проекта в ОС Linux, с учётом зависимостей и обновлений, выполняется утилитой make , которая использует для этого заранее оформленный сценарий сборки. Мы уже неоднократно прибегали к помощи этой утилиты в предыдущих статьях, и эта статья будет посвящена исключительно вопросам использования утилиты make .

Утилита make

Утилита make автоматически определяет, какие части крупного проекта были изменены и должны быть перекомпилированы, а также выполняет действия, необходимые для этого. Но, на самом деле, область применения make не ограничивается только сборкой программ, так её можно использовать и для решения других задач, где одни файлы должны автоматически обновляться при изменении других файлов.

Утилита make доступна для разных ОС, и из-за особенностей выполнения наряду с «родной» реализацией во многих ОС присутствует GNU реализация gmake , и поведение этих реализаций в некоторых ОС, например, Solaris может существенно отличаться. Поэтому в сценариях сборки рекомендуется указывать имя конкретной утилиты. В ОС Linux эти два имени являются синонимами, реализованными через символическую ссылку, как показано ниже:

$ ls -l /usr/bin/*make lrwxrwxrwx 1 root root 4 Окт 28 2008 /usr/bin/gmake -> make -rwxr-xr-x 1 root root 162652 Май 25 2008 /usr/bin/make ... $ make --version GNU Make 3.81 ...

По умолчанию имя файла сценария сборки - Makefile . Утилита make обеспечивает полную сборку указанной цели , присутствующей в сценарии, например:

$ make $ make clean

Если цель не указана явно, то выполняется первая последовательная цель в файле сценария. Также можно указать и любой другой сценарный файл, который будет использоваться для сборки:

$ make -f Makefile.my

Простейший файл Makefile состоит из синтаксических конструкций двух типов: целей и макроопределений. Описание цели состоит из трех частей: имени цели, списка зависимостей и списка команд интерпретатора оболочки, требуемых для построения цели. Имя цели - непустой список файлов, которые предполагается создать. Список зависимостей - список файлов, в зависимости от которых строится цель. Имя цели и список зависимостей составляют заголовок цели, записываются в одну строку и разделяются двоеточием (":"). Список команд записывается со следующей строки, причем все команды начинаются с обязательного символа табуляции . Многие текстовые редакторы могут быть настроены таким образом, чтобы заменять символы табуляции пробелами. Этот факт стоит учесть и проверить, что редактор, в котором редактируется Makefile , не замещает табуляции пробелами, так как подобная проблема встречается довольно часто. Любая строка в последовательности списка команд, не начинающаяся с табуляции (ещё одна команда) или символа "# " (комментарий) - считается завершением текущей цели и началом новой.

Утилита make имеет много внутренних параметров со значениями по умолчанию, важнейшими из которых являются правила обработки суффиксов, а также определения внутренних переменных окружения. Эти данные называются базой данных make и могут быть просмотрены следующим образом:

$ make -p >make.suffix make: *** Не заданы цели и не найден make-файл. Останов. $ cat make.suffix # GNU Make 3.81 # Copyright (C) 2006 Free Software Foundation, Inc. ... # База данных Make, напечатана Thu Apr 14 14:48:51 2011 ... CC = cc LD = ld AR = ar CXX = g++ COMPILE.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c COMPILE.C = $(COMPILE.cc) ... SUFFIXES:= .out .a .ln .o .c .cc .C .cpp .p .f .F .r .y .l .s .S .mod .sym \ .def .h .info .dvi .tex .texinfo .texi .txinfo .w .ch... # Implicit Rules ... %.o: %.c # команды, которые следует выполнить (встроенные): $(COMPILE.c) $(OUTPUT_OPTION) $< ...

Значения всех этих переменных: CC , LD , AR , EXTRA_CFLAGS , ... могут использоваться файлом сценария как неявные определения со значениями по умолчанию. Кроме этого, можно определить и собственные правила обработки по умолчанию для выбранных суффиксов (расширений файловых имён), как это показано на примере выше для исходных файлов кода на языке С: %.c.

Большинство интегрированных сред разработки (IDE) или пакетов для создания переносимых инсталляций (например, automake или autoconf) ставят своей задачей создание файла Makefile для утилиты make .

Как ускорить сборку make

Сборка простых проектов происходит достаточно быстро, но с учётом роста проекта по ходу его развития, время сборки, основная часть которого затрачивается на компиляцию, может значительно вырасти. Хорошо известным примером такого рода является сборка ядра Linux, которая, в зависимости от типа оборудования, может занимать от нескольких десятков минут до часов процессорного времени. Усугубляет ситуацию и то, что при работе над проектом (доработка кода, отладка, поиск ошибок, тестирование, и т.д.) может понадобиться выполнять пересборку проекта по несколько десятков раз в день. Поэтому возможности, позволяющие ускорить этот процесс, приобретают действительную актуальность.

Так как сегодня однопроцессорные (одноядерные) системы уже практически вытеснены многоядерными конфигурациями, сборку многих проектов можно значительно (в разы) ускорить, используя возможность make запускать несколько заданий сборки в параллель с помощью ключа –j , как показано ниже:

$ man make ... -j , --jobs[=jobs] Specifies the number of jobs (commands) to run simultaneously. ...

Проверим преимущества, предоставляемые этой возможностью на практическом примере. В качестве эталона для сборки возьмём проект NTP-сервера, который собирается не очень долго, но и не слишком быстро:

$ pwd /usr/src/ntp-4.2.6p3

Сначала запустим сборку на 4-х ядерном процессоре Atom (не очень быстрая модель с частотой 1.66Ghz) но с очень быстрым твердотельным диском SSD:

$ cat /proc/cpuinfo | head -n10 processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 28 model name: Intel(R) Atom(TM) CPU 330 @ 1.60GHz stepping: 2 cpu MHz: 1596.331 cache size: 512 KB $ make clean # запускаем сборку в четыре потока $ time make -j4 ... real 1m5.023s user 2m40.270s sys 0m16.809s $ make clean # запускаем сборку в стандартном режиме без параллелизма $ time make ... real 2m6.534s user 1m56.119s sys 0m12.193s $ make clean # запускаем сборку с автоматическим выбранным уровнем параллелизма $ time make -j ... real 1m5.708s user 2m43.230s sys 0m16.301s

Как можно заметить, использование параллелизма (явное или не явное) позволяет ускорить сборку почти в два раза – 1 минута против 2-ух. Выполним сборку этого же проекта на более быстром 2-х ядерном процессоре, но с достаточно медленным обычным диском HDD:

$ cat /proc/cpuinfo | head -n10 processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 23 model name: Pentium(R) Dual-Core CPU E6600 @ 3.06GHz stepping: 10 cpu MHz: 3066.000 cache size: 2048 KB ... $ time make ... real 0m31.591s user 0m21.794s sys 0m4.303s $ time make -j2 ... real 0m23.629s user 0m21.013s sys 0m3.278s

Хотя итоговая скорость сборки и выросла в 3-4 раза, но улучшение от числа процессоров составляет только порядка 20%, так как «слабым звеном» здесь является медленный накопитель, допускающий задержку при записи большого числа мелких.obj файлов проекта.

Примечание : Хотелось бы напомнить, что не всякая сборка make , которая успешно выполняется на одном процессоре (как это имеет место по умолчанию или при указании -j1 ), будет также успешно выполняться при большем числе задействованных процессоров. Это связано с нарушениями синхронизации операций в случаях сложных сборок. Самым наглядным примером такой сборки, завершающейся с ошибкой в случае параллельного исполнения, является сборка ядра Linux для некоторых версий ядра. Возможность параллельного выполнения make нужно экспериментально проверять для собираемого проекта. Но в большинстве случаев это возможность может использоваться и позволяет в разы ускорить процесс сборки!

Если данный способ ускорения процесса сборки основан на том, что сейчас подавляющее большинство систем являются многопроцессорными (многоядерными), то следующий способ использует тот факт, что объём памяти RAM современных компьютеров (2-4-8 ГБ) значительно превышает объём памяти, необходимый для компиляции программного кода. В таком случае, компиляцию, основным сдерживающим фактором для которой является создание множества объектных файлов, можно перенести в область специального созданного диска (RAM диск, tmpfs ), расположенного в памяти:

$ free total used free shared buffers cached Mem: 4124164 1516980 2607184 0 248060 715964 -/+ buffers/cache: 552956 3571208 Swap: 4606972 0 4606972 $ df -m | grep tmp tmpfs 2014 1 2014 1% /dev/shm

Теперь можно временно перенести файлы собираемого проекта в tmpfs (мы по-прежнему используем NTP-сервер из предыдущего примера), в каталог /dev/shm :

$ pwd /dev/shm/ntp-4.2.6p3 $ make -j ... real 0m4.081s user 0m1.710s sys 0m1.149s

В данном случае одновременно используются оба способа повышения производительности, и улучшение относительно исходной компиляции достигает почти порядка. Правда, этот пример запускался на системе с медленным HDD, где параллельная сборка практически не давала выигрыша и требовала порядка 30 секунд.

Этот способ ускорения можно применить к сборке ядра Linux, для которого, как уже было сказано, параллельная сборка не работает. Чтобы воспользоваться преимуществами RAM-памяти, скопируем дерево исходных кодов ядра в каталог /dev/shm :

$ pwd /dev/shm/linux-2.6.35.i686 $ time make bzImage ... HOSTCC arch/x86/boot/tools/build BUILD arch/x86/boot/bzImage Root device is (8, 1) Setup is 13052 bytes (padded to 13312 bytes). System is 3604 kB CRC 418921f4 Kernel: arch/x86/boot/bzImage is ready (#1) real 9m23.986s user 7m4.826s sys 1m18.529s

Как видно, сборка ядра Linux заняла менее 10 минут, что является необычайно хорошим результатом.

В качестве вывода, можно посоветовать тщательно оптимизировать условия сборки проекта под используемое для этого оборудование, и, учитывая, что в процессе отладки сборка выполняется сотни раз, то можно сэкономить множество времени!

Сборка модулей ядра

Частным случаем сборки приложений является сборка модулей ядра Linux (драйверов). Начиная с версий ядра 2.6, для сборки модуля составляется Makefile , построенный на использовании макросов, и нам остаётся только записать (для файла собственного кода с именем mod_params.c ), следующий шаблон для сборки модулей:

Листинг 1. Makefile для сборки модулей ядра
CURRENT = $(shell uname -r) KDIR = /lib/modules/$(CURRENT)/build PWD = $(shell pwd) TARGET = mod_params obj-m:= $(TARGET).o default: $(MAKE) -C $(KDIR) M=$(PWD) modules ... $ make make -C /lib/modules/2.6.18-92.el5/build \ M=examples/modules-done_1/hello_printk modules make: Entering directory `/usr/src/kernels/2.6.18-92.el5-i686" CC [M] /examples/modules-done_1/hello_printk/hello_printk.o Building modules, stage 2. MODPOST CC /examples/modules-done_1/hello_printk/hello_printk.mod.o LD [M] examples/modules-done_1/hello_printk/hello_printk.ko make: Leaving directory `/usr/src/kernels/2.6.18-92.el5-i686" $ ls -l *.o *.ko -rw-rw-r-- 1 olej olej 74391 Мар 19 15:58 hello_printk.ko -rw-rw-r-- 1 olej olej 42180 Мар 19 15:58 hello_printk.mod.o -rw-rw-r-- 1 olej olej 33388 Мар 19 15:58 hello_printk.o $ file hello_printk.ko hello_printk.ko: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not stripped $ /sbin/modinfo hello_printk.ko filename: hello_printk.ko author: Oleg Tsiliuric license: GPL srcversion: 83915F228EC39FFCBAF99FD depends: vermagic: 2.6.18-92.el5 SMP mod_unload 686 REGPARM 4KSTACKS gcc-4.1

Заключение

В статье были рассмотрены аспекты работы с утилитой make, которые не часто описываются в литературе, но могут оказаться крайне полезными в практической работе. Также мы завершили обсуждение вопросов, связанных с поставкой и сборкой программного обеспечения в ОС Linux.

В следующей статье мы начнём знакомство с библиотеками API, присутствующими в POSIX системах.

Эта статья представляет собой небольшое руководство по созданию Makefile-ов. В ней объясняется для чего нужен Makefile и дается несколько правил, которых следует придерживаться при его создании.

Введение

Допустим, вы разрабатываете некую программу под названием foo , состоящую из пяти заголовочных файлов -- 1.h , 2.h , 3.h , 4.h и -- 5.h , и шести файлов с исходным текстом программы на языке С - 1.cpp , 2.cpp , 3.cpp , 4.cpp , 5.cpp и main.cpp . (Хочу заметить, что в реальных проектах следует избегать подобного стиля именования файлов).

Теперь представим себе, что вы обнаружили ошибку в файле 2.cpp и исправили ее. Далее, чтобы получить исправленную версию программы вы компилируете все файлы, входящие в состав проекта, хотя изменения коснулись только одного файла. Это приводит к нерациональной потере времени, особенно если компьютер не слишком быстрый.

Существует ли решение проблемы?

Не стоит беспокоиться, друзья мои! Эта проблема уже давно решена. Опытными программистами была разработана утилита make . Вместо того, чтобы производить повторную компиляцию всех файлов с исходными текстами, она обрабатывает только те файлы, которые претерпели изменения. В нашем случае будет скомпилирован только один файл - 2.cpp . Разве это не здорово!?

  • Утилита make значительно упрощает жизнь, когда для сборки проекта необходимо выполнение длинных и сложных команд.
  • Проект иногда требует задания редко используемых, а потому сложных для запоминания опций компилятора. make избавит вас от необходимости удерживать их в памяти.
  • Единообразие, т.к. работа с этой утилитой поддерживается многими средами разработки.
  • Процесс сборки можно автоматизировать, поскольку make может быть вызвана из сценариев или из cron.

Для чего нужен Makefile?

Несмотря на все свои достоинства, утилита make ничего не знает о нашем проекте, поэтому необходимо создать простой текстовый файл, который будет содержать все необходимые инструкции по сборке. Файл с инструкциями по сборке проекта называется makefile (произносится как "мэйкфайл". прим. перев. ) .

Как правило этим файлам дается имя makefile или Makefile , в соответствии с соглашениями по именованию таких файлов. Если же вы дадите файлу инструкций другое имя, то вам потребуется вызывать утилиту make с ключом -f .

Например, если свой makefile вы назвали bejo , то команда на сборку проекта будет выглядеть так:

Make -f bejo

Структура файла

Makefile содержит разделы для "целей" , зависимостей и правил (rules) сборки. Все это оформляется следующим образом: сначала указывается имя цели (обычно это имя исполняемого или объектного файла), после которого следует двоеточие, затем следуют имена зависимостей, т.е. файлов, необходимых для получения данной цели. И, наконец, следует список правил: т.е. команд, которые необходимо выполнить для получения указанной цели.

Простой пример структуры makefile"а:

Target: dependencies command command ...

Каждое правило command должно начинаться с символа табуляции -- это обязательное условие! Отсутствие символа табуляции в начале строки с правилом - самая распространенная ошибка. К счастью, подобные ошибки легко обнаруживаются, так как утилита make сообщает о них.

Пример Makefile.

Ниже приводится простой пример (номера строк добавлены для ясности).

1 client: conn.o 2g++ client.cpp conn.o -o client 3 conn.o: conn.cpp conn.h 4g++ -c conn.cpp -o conn.o

В этом примере строка, содержащая текст
client: conn.o ,
называется "строкой зависимостей", а строка
g++ client.cpp conn.o -o client
называется "правилом" и описывает действие, которое необходимо выполнить.

А теперь более подробно о примере, приведенном выше:

  • Задается цель -- исполняемый файл client , который зависит от объектоного файла conn.o
  • Правило для сборки данной цели
  • В третьей строке задается цель conn.o и файлы, от которых она зависит -- conn.cpp и conn.h .
  • В четвертой строке описывается действие по сборке цели conn.o .

Комментарии

Строки, начинающиеся с символа "#", являются комментариями

Ниже приводится пример makefile с комментариями:

1 # Создатьисполняемыйфайл "client" 2 client: conn.o 3g++ client.cpp conn.o -o client 4 5 # Создать объектный файл "conn.o" 6 conn.o: conn.cpp conn.h 7g++ -c conn.cpp -o conn.o

"Ложная" цель

Обычно "ложные" цели, представляющие "мнимое" имя целевого файла, используются в случае возникновения конфликтов между именами целей и именами файлов при явном задании имени цели в командной строке.

Допустим в makefile имеется правило, которое не создает ничего, например:

Clean: rm *.o temp

Поскольку команда rm не создает файл с именем clean , то такого файла никогда не будет существовать и поэтому команда make clean всегда будет отрабатывать.

Однако, данное правило не будет работать, если в текущем каталоге будет существовать файл с именем clean . Поскольку цель clean не имеет зависимостей, то она никогда не будет считаться устаревшей и, соответственно, команда "rm *.o temp" никогда не будет выполнена. (при запуске make проверяет даты модификации целевого файла и тех файлов, от которых он зависит. И если цель оказывается "старше", то make выполняет соответствующие команды-правила -- прим. ред.) Для устранения подобных проблем и предназначена специальная декларация .PHONY , объявляющая "ложную" цель. Например:

PHONY: clean

Таким образом мы указываем необходимость исполнения цели, при явном ее указании, в виде make clean вне зависимости от того - существует файл с таким именем или нет.

Переменные

Определить переменную в makefile вы можете следующим образом:

$VAR_NAME=value

В соответствии с соглашениями имена переменных задаются в верхнем регистре:

$OBJECTS=main.o test.o

Чтобы получить значение переменной, необходимо ее имя заключить в круглые скобки и перед ними поставить символ "$", например:

$(VAR_NAME)

В makefile-ах существует два типа переменных: "упрощенно вычисляемые" и "рекурсивно вычисляемые" .

TOPDIR=/home/tedi/project SRCDIR=$(TOPDIR)/src

При обращении к переменной SRCDIR вы получите значение /home/tedi/project/src .

Однако рекурсивные переменные могут быть вычислены не всегда, например следующие определения:

CC = gcc -o CC = $(CC) -O2

выльются в бесконечный цикл. Для разрешения этой проблемы следует использовать "упрощенно вычисляемые" переменные:

CC:= gcc -o CC += $(CC) -O2

Где символ ":=" создает переменную CC и присваивает ей значение "gcc -o". А символ "+=" добавляет "-O2" к значению переменной CC.

Заключение

Я надеюсь, что это краткое руководство содержит достаточно информации, чтобы начать создавать свои makefile. А за сим -- успехов в работе.

Библиография

  • 1 GNU Make Documentation File, info make.
  • Kurt Wall, et.al., Linux Programming Unleashed (Программирование под Linux на оперативном просторе -- прим. ред.) , 2001.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: