Цветовая модель rgb. Цветовые модели и их виды

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Цветовая модель RGB

Данный вид цветовой модели базируется на трех основных цветах, смешение которых в различных пропорциях дает все остальные. Причем данные используемые краски отражены в названии модели: красный (Red), зеленый (Green) и синий (Blue) – RGB.

Цветовая модель RGB складывается субтрактивно. Дело в том, что полное сочетание всех трех цветов в их "чистом" виде, дает в итоге белый. Сама же модель относится к аддитивным цветовым моделям, потому как цвета получаются добавлением к черному.

Кодировка цветовой модели RGB происходит по трем каналам, каждый из которых имеет диапазон возможных принимаемых значений, равный 256 (от 0 до 255). В итоге, не сложно посчитать, что данная компьютерная цветовая модель сможет смоделировать 256*3 = 16777216 различных оттенков.

Цветовая модель CMYK

Данная цветовая модель имеет в своем основании 4 базовых цвета, также аббревиатурно заложенных в название: голубой (Cyan), малиновый (Magenta), желтый (Yellow) и черный (blacК). Для черного выбрали последнюю букву, так как В была уже занята синим цветом в модели RGB.

Их смешение происходит аддитивно, но образование имеет субтрактивную основу: они получаются путем вычитания цветов из белого (например, пурпурный выходит вычитанием зеленого и т.п.). Именно поэтому субтрактивную цветовую модель иногда еще называют исключающей.

Цветовая модель CMYK является основной в полиграфии. Она часто применяется в цветных принтерах и плоттерах. При этом необходимо отметить, что цветовая модель CMYK по сравнению с RGB имеет меньшее количество получаемых оттенков. Это необходимо учитывать при конвертации.

Более подробно о данной цветовой модели в компьютерной графике мы расскажем на странице нашей статьи: "Цветовая модель CMYK".

Цветовая модель HSB (HSV)

Если рассматривать данную цветовую модель, то в первую очередь бросается в глаза ее сходство с RGB. Базовые цвета этих моделей совпадают. Зачем же тогда было создавать новую модель?

На самом деле цветовая модель HSB имеет совсем иную систему координат. В ее основе лежат такие параметры, как тон (Hue), насыщенность (Saturation) и яркость (Brightness/Value). В цветовой модели HSV множество получаемых цветов представляет собой шестиугольник, все шесть вершин которого являются пиком одного из основных цветов: красный, зеленый, синий (RGB), голубой, малиновый, желтый (CYM). Черный цвет выведен в качестве вершины конуса. Он регулируется таким параметром, как яркость.

Цветовая модель HSV более ориентирована на интуитивное понятие человека о цвете и тоне.

Цветовая модель HSL

Такая компьютерная цветовая модель по своей основе похожа на HSB (HSV). Но ее основными параметрами являются: тон (Hue), светлота (Lightness) и насыщенность (Brightness/Value). Если представить цветовую модель HSL в виде фигуры, то это будет двойной (отраженный) шестигранный конус. Его основанием, как и у HSB (HSV), служат базовые цвета, а вершинами: белый цвет, регулируемый насыщенностью, и черный, характеризуемый светлотой.

Таким образом, цветовая модель HSL является одним из наиболее ярких примеров интуитивных понятий тона, насыщенности и яркости (светлоты).

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.

Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.

Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.

Цветовая модель LAB

Данная компьютерная цветовая модель является аппаратно-независимой. Это позволяет ей служить стандартом для оптимизации других моделей с целью получения предсказуемого цвета на различных устройствах (сканнер, принтер, монитор). Цветовая модель LAB является трехканальной. При этом, изменение цветов происходит по таким параметрам, как а – от зеленого к красному и b – от синего к желтому. Яркость цвета в данной цветовой модели отделена от параметров а и b. Это делает более удобным регулировку яркости, резкости и тона.

Цветовая модель LAB позволяет оптимизировать растровый файл под различные устройства и привести их визуализацию к одному цвету.

В данной статье мы рассказали вам об основных цветовых моделях в компьютерной графике, описали их особенности и возможности, выделили наиболее значимые характеристики и параметры. Теперь вы сможете попробовать самостоятельно "поиграть" с цветами и цветовыми моделями в любой графической программе. Удачных вам экспериментов и ярких свершений!

Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Наверняка многие слышали о таких цветовых моделях как RGB и CMYK, но на самом деле таких схем не 2 и не 5, а больше.

Цветовые модели бывают разные и о них пойдет сегодня речь.

RGB - R ed G reen B lue, как известно, что почти любой цвет можно задать комбинацией трех цветов - красный+зеленый+синий.

Вот из википедии пример такой модельки:

Данная модель называется аддитивной, так как для указания любого из цветов, используется добавление одного из цветовых каналов к черному. Что прекрасно видно на рисунке

Принцип RGB основан на восприятии цвета сетчаткой глаза человека:

Как видно из рисунка и описания, если ни один из цветовых каналов не задан - изображение будет черным. Если же задать все цветовые каналы по-максимуму, то получится белый цвет.

В отличии от CMYK, RGB-модель охватывает гораздо большое число цветовых тонов и нашла свое широкое применение в телевизорах и мониторах. В телевизорах (ЭЛТ) как раз стоят 3 "пушки", которые бомбардируют пучки цвета на экран. В LCD экранах жидкие-кристаллы также состоят из RGB составляющих.

В компьютерах RGB модель так и задается в виде чисел от 0 до 255 для каждого цвета. Если брать html, то черный цвет будет #000000 , красный #FF0000 , зеленый #00FF00 , синий #0000FF , а белый как #FFFFFF . Серый цвет буде что-то вроде #d3d3d3 .

Те, кто знаком с полиграфией, знают, что там используется другая цветовая модель - CMYK. C - Cyan, M - magenta, Y - yellow, K - blacK (насчет K много споров, многие считают его производным от k ey plate - ключевая поверхность, кто-то от k ontur - контурная пленка, а кто-то от k obalt - темно-серый цвет). По-русски это Голубой, Пурпурный, Желтый и Черный цвета.

Так же, как и в RGB, используется задание цвета путем указания процентного содержания одного из цветовых каналов.

Причем г+п+ж = черный цвет, но эстетам полиграфии этого мало. Они имеют дело с различным оборудованием и с различным материалом, на котором печатается изображение. Для полиграфии важно насколько изображение итоговое копирует оригинал. Ведь при использовании RGB модели, печать на черном и на белом фоне (а также, например, на кремовом) - будет отличаться. А вот CMYK модель позволяет нивелировать (свести к минимуму) подобные косяки. Причем для конкретного оборудования и конкретного материала рекомендуется создавать свою схему CMYK, что приводит к расходам на настройщика. Прям пианино, а не принтер =)

В разных странах свои стандарты CMYK также. В Америке одни, в Европе другие и тд.

Черный цвет (а в CMYK-принтера, например, лазерных цветных, 4 картриджа), который задается смешиванием 100%-но насыщенных г+п+ж приводит также к излишнему намоканию бумаги (поверхности), что приводит к ее деформации от влаги. Поэтому и стоит отдельный картридж. Ну и отдельный черный цвет дешевле других (поэтому и в обычных принтерах есть цветной отдельный и отдельный черный картридж).

Раз мы уже говорили выше о восприятии глазом RGB-модели, то для CMYK она такая же:

Если очень близко друг к друг разместить 3 (или 4, в случае с CMYK) разноцветных точки, то сетчатка сольет их в одну точку с определенным цветом. Вот для примера увеличенное изображение курсора мышки на БЕЛОМ фоне обычного LCD монитора:

Макросьемка курсора на белом фоне для TN+film матрице монитора:

Точно также и для остальных цветовых моделей. Глаз сам дорисовывает цвет.

CIE XYZ - линейная трехкомпонентная цветовая модель, основана на изучении человеческого глаза организацией CIE (Commission Internationale de l"Eclairage ). Ученые создали модель стандартного человеческого глаза и уже на ее основе цветовую модель. Грубо говоря, CIE XYZ это то, как видет трехкомпонентное изображение стандарный человек .

Из википедии:

Как известно, цветовое зрение человека обусловлено наличием трёх видов световосприимчивых рецепторов на сетчатке глаза, максимумы спектральной чувствительности которых локализованы в области 420, 534 и 564 нм, что соответствует синему, зелёному и жёлтому (хотя в литературе обычно пишут «красному») цветам. Они являются базовыми, все остальные тона воспринимаются как их смешение в определённой пропорции. Например, чтобы получить жёлтый спектральный цвет, совсем необязательно воспроизводить его точную длину волны 570—590 нм, достаточно создать такой спектр излучения, который возбуждает рецепторы глаза сходным образом. Это явление называется .

Комитет CIE провёл множество экспериментов с огромным количеством людей, предлагая им сравнивать различные цвета, а затем с помощью совокупных данных этих экспериментов построил так называемые функции соответствия цветов (color-matching functions) и универсальное цветовое пространство (universal color space), в котором был представлен диапазон видимых цветов, характерный для среднестатистического человека.

Функции соответствия цветов — это значения каждой первичной составляющей света — красной, зелёной и синей, которые должны присутствовать, чтобы человек со средним зрением мог воспринимать все цвета видимого спектра. Этим трём первичным составляющим были поставлены в соответствие координаты X, Y и Z.

YUV - линейная трехкомпонентная цветовая модель, в основе которой стоит яркость и две цветоразностных компоненты. Подобную модель мы уже рассматривали в .

Кратко модель можно описать так:

Для любого пикселя (если речь идет о компьютерном изображении) создается слой яркости (в оттенках серого), а также 2 слоя, необходимых для восстановления оригинала. Модель использовалась для перехода от ч/б ТВ к цветному, так как старые телевизоры могли использовать лишь один слой, а новые цветные все 3 компонента. Думаю технология аналогичная используется и в окрашивании старых советских кино в цвет.

Модель YUV:

HSV (Hue, Saturation, Value — тон, насыщенность, значение) или HSB (Hue, Saturation, Brightness — оттенок, насыщенность, яркость) - цветовая модель, тоже трехкомпанентная.

Как видно из рисунка, данные модели представляются в трехмерном формате (цилиндр и конус). Из-за трехмерности не совсем удобно их использовать в качестве цветовой модели внутри ПО и изображений, но зато в качестве визуализации они подходят очень кстати.

Думаю подобные палитры в графических редакторах видели многие из вас:

Для выбора цвета из палитры, действительно, такой формат представления удобен и часто используется в прикладном ПО.

RYB - модель на основе 3х компонентов - Красного, Желтого и Синего цветов. Раньше считалась правильной, но не все цвета можно такой моделью задать, особенно оттенки зеленого. Основана на палитре художников, которые смешивают краски для получения нужного цвета, но художники используют не 3 цвета, а большее количество, поэтому модель не используется сейчас уже.

Lab — аббревиатура названия двух разных (хотя и похожих) . Более известным и распространенным является CIELAB (точнее, CIE 1976 L*a*b*), другим — Hunter Lab (точнее, Hunter L, a, b). Таким образом, Lab — это неформальная аббревиатура, не определяющая цветовое пространство однозначно. Чаще всего, говоря о пространстве Lab, подразумевают CIELAB.

При разработке Lab преследовалась цель создания цветового пространства, изменения цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета. Таким образом математически корректировалась бы нелинейность восприятия цвета человеком. Оба цветовых пространства рассчитываются относительно определенного значения . Если значение точки белого дополнительно не указывается, подразумевается, что значения Lab рассчитаны для стандартного осветителя D50. (c) Wikipedia

Для простых смертных, RGB и CMYK это то, как мы будем кодировать цвета для машин, причем не учитывая итог (CMYK учитывает итог путем калибровки инструмента и цветовой модели). А вот LAB обеспечивает отображение именно того цвета, который увидит человек. Часто используется как промежуточная цветовая модель при переводе из одной модели к другой.

NCS (Natural Color System , естественная система цвета) — цветовая модель, предложенная Скандинавским институтом цвета (Skandinaviska Färginstitutet AB), Стокгольм, Швеция. Она основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции.

За основу взяты 6 цветов: Белый, черный, голубой, желтый, зеленый и красный.

Остальные цвета получаются путем задания темноты, насыщенности и двух основных цветов.

Вроде (беру из головы):

Оранжевый: 5% темноты, 80% насыщенности, 50% желтого, 50% красного.

Ну и в таком духе.

Цветовая модель Пантон , система PMS (Pantone Matching System) — стандартизованная система подбора цвета, разработанная американской фирмой Pantone Inc в середине XX века. Использует цифровую идентификацию цветов изображения для полиграфии печати как смесевыми, так и красками. Эталонные пронумерованные цвета напечатаны в специальной книге, страницы которой веерообразно раскладываются.

Существуют и другие цветовые модели, я отобрал наиболее приглянувшиеся и интересные. Для наших простых нужд хватает RGB, YUV, LAB моделей, для полиграфии добавляются еще CMYK и другие.

Вообще довольно интересно было узнать о том, как вроде бы простой цвет задают совершенно разными моделями.

На принципе такого деления света основан цветной телевизор или монитор Вашего компьютера. Если говорить очень грубо, то монитор, в который Вы сейчас смотрите состоит из огромного количества точек (их количество по вертикали и горизонтали определяет разрешение монитора) и в каждую эту точку светят по три "лампочки": красная, зеленая и синяя. Каждая "лампочка" может светить с разной яркостью, а может не светить вовсе. Если светит только синяя "лампочка" - мы видим синюю точку. Если только красная - мы видим красную точку. Аналогично и с зеленой. Если все лампочки светят с полной яркостью в одну точку, то эта точка получается белой, так как все градации этого белого опять собираются вместе. Если ни одна лампочка не светит, то точка кажется нам черной. Так как черный цвет - это отсутствие света. Сочетая цвета этих "лампочек", светящихся с различной яркостью можно получать различные цвета и оттенки.

Яркость каждой такой лампочки определяется интенсивностью (делением) от 0 (выключенная "лампочка") до 255 ("лампочка", светящая с полной "силой"). Такое деление цветов называется цветовой моделью RGB от первых букв слов "RED" "GREEN" "BLUE" (красный, зеленый, синий).


Таким образом белый цвет нашей точки в цветовой модели RGB можно записать в следующем виде:

R (от слова "red", красный) - 255

G (от слова "green", зеленый) - 255

B (от слова "blue", синий) - 255


"Насыщенный" красный будет выглядеть так:



Желтый цвет будет иметь следующий вид:


Так же, для записи цвета в rgb, используют шестнадцатеричную систему. Показали интенсивности запмсывают по порядку #RGB:

Белый - #ffffff

Красный - #ff0000

Черный - #00000

Желтый - #ffff00

Цветовая модель CMYK

Итак, теперь мы знаем, каким хитрым способом наш компьютер передает нам цвет той или иной точки. Давайте теперь воспользуемся приобретенными знаниями и попробуем получить белый цвет с помощью красок. Для этого купим в магазине гуашь, возьмем баночки с красной, синей и зеленой краской, и смешаем их. Получилось? И у меня нет.

Проблема в том, что наш монитор излучает свет, то есть светится, но в природе многие объекты не обладают таким свойством. Они попросту отражают белый свет, который на них падает. Причем если предмет отражает весь спектр белого света, то мы видим его белым, а если же часть этого света им поглощается - то не совсем.

Примерно так: мы светим на красный предмет белым светом. Белый свет можно представить как R-255 G-255 B-255. Но предмет не хочет отражать весь свет, который мы на него направили, и нагло ворует у нас все оттенки зеленого и синего. В итоге отражает только R-255 G-0 B-0. Именно поэтому он нам и кажется красным.

Так что для печати на бумаге весьма проблематично пользоваться цветовой моделью RGB. Для этого, как правило, используется цветовую модель CMY (цми) или CMYK (цмик). Цветовая модель CMY основана на том, что сам по себе лист бумаги белый, то есть отражает практически весь спектр RGB, а краски, наносимые на нее, выступают в качестве фильтров, каждый из которых "ворует" свой цвет (либо red, либо green, либо blue). Таким образом цвета этих красок определяются вычитанием из белого по одному цветов RGB. Получаются цвета Cyan (что-то вроде голубого), Magenta (можно сказать, розовый), Yellow (желтый).


И если в цветовой модели RGB градация каждого цвета происходила по яркости от 0 до 255, то в цветовой модели CMYK у каждого цвета основным значением является "непрозрачность" (количество краски) и определяется процентами от 0% до 100%.


Таким образом, белый цвет можно описать так:

C (cyan) - 0%; M (magenta) - 0%; Y (yellow) - 0%.

Красный - C-0%; M-100%; Y-100%.

Зеленый - C-100%; M-0%; Y-100%.

Синий - C-100%; M-100%; Y-0%.

Черный - C-100%; M-100%; Y-100%.

Однако, это возможно только в теории. А на практике же обойтись цветами CMY не получается. И черный цвет при печати получается скорее грязно-коричневым, серый не похож сам на себя, а темные оттенки цветов создать проблематично. Для урегулирования конечного цвета используется еще одна краска. Отсюда и последняя буква в названии CMYK (ЦМИК). Расшифровка этой буквы может быть разной:

Это может быть сокращение от blacK (черный). И в сокращении используется именно последняя буква, чтобы не спутать этот цвет с цветом Blue в модели RGB;

Печатники очень часто употребляют слово "Контур" относительно этого цвета. Так что возможно, что буква K в абревиатуре CMYK (ЦМИК) - это сокращение от немецкого слова "Kontur";

Так же это может быть сокращение от Key-color (ключевой цвет).

Однако ключевым его назвать сложно, так как он является скорее дополнительным. И на черный этот цвет не совсем похож. Если печатать только этой краской изображение получается скорее серое. Поэтому некоторые придерживаются мнение, что буква K в обревиатуре CMYK означает "Kobalt" (темно-серый, нем.).

Как правило, используется для обозначения этого цвета термин "black" или "черный".

Печать с использованием цветов CMYK называют "полноцветной" или "триадной".

*Стоит, наверное, сказать, что при печати CMYK (ЦМИК) краски не смешиваются. Они ложатся на бумагу "пятнами" (растром) одна рядом с другой и смешиваются уже в воображении человека, потому что эти "пятна" очень малы. То есть изображение растрируется, так как иначе краска, попадая одна на другую, расплывается и образуется муар или грязь. Существует несколько разных способов растрирования.


Цветовая модель grayscale

Изображение в цветовой модели grayscale многие ошибочно называют черно-белым. Но это не так. Черно-белое изображение состоит только из черных и белых тонов. В то время, как grayscale (оттенки серого) имеет 101 оттенок. Это градация цвета Kobalt от 0% до 100%.


Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Цветовые модели HSB и HLS

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.


Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.


Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.


Цветовая модель LAB

В этой цветовой модели цвет состоит из:

Luminance - освещенность. Это совокупность понятий яркость (lightness) и интенсивность (chrome)

A - это цветовая гамма от зеленного до пурпурного

B - цветовая гамма от голубого до желтого


То есть двумя показателями в совокупности определяется цвет и одним показателем определяется его освещенность.

LAB - Это аппаратно-независимая цветовая модель, то есть она не зависит от способа передачи нам цвета. Она содержит в себе цвета как RGB так и CMYK, и grayscale, что позволяет ей с минимальными потерями конвертировать изображение из одной цветовой модели в другую.

Еще одним достоинством является то, что она, в отличие от цветовой модели HSB, соответствует особенностям восприятия цвета глазом человека.

Часто используется для улучшения качества изображения, и конвертирования изображений из одного цветового пространства в другое.



Очень часто у людей, напрямую не связанных с полиграфическим дизайном, возникают вопросы "Что такое CMYK?", "Что такое Pantone?" и "почему нельзя использовать ничего, кроме CMYK?".

В этой статье постараемся немного разобраться, что такое цветовые пространства CMYK, RGB, LAB, HSB и как использовать краски Pantone в макетах.

Цветовая модель

CMY(K), RGB, Lab, HSB - это цветовая модель. Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных множество цветов цветовой модели определяет цветовое пространство.

RGB - аббревиатура английских слов Red, Green, Blue - красный, зелёный, синий. Аддитивная (Add, англ. - добавлять) цветовая модель, как правило, служащая для вывода изображения на экраны мониторов и другие электронные устройства. Как видно из названия – состоит из синего, красного и зеленого цветов, которые образуют все промежуточные. Обладает большим цветовым охватом.

Главное, что нужно понимать, это то, что аддитивная цветовая модель предполагает, что вся палитра цветов складывается из светящихся точек. То есть на бумаге, например, невозможно отобразить цвет в цветовой модели RGB, поскольку бумага цвет поглощает, а не светится сама по себе. Итоговый цвет можно получить, прибавляя к исходномой черной (несветящейся) поверхности проценты от каждого из ключевых цветов.


CMYK - Cyan, Magenta, Yellow, Key color - субтрактивная (subtract, англ. - вычитать) схема формирования цвета, используемая в полиграфии для стандартной триадной печати. Обладает меньшим, в сравнении с RGB, цветовым охватом.

CMYK называют субстрактивной моделью потому, что бумага и прочие печатные материалы являются поверхностями, отражающими свет. Удобнее считать, какое количество света отразилось от той или иной поверхности, нежели сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета - RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» - из белого вычитаются первичные цвета.

Key Color (черный) используется в этой цветовой модели в качестве замены смешению в равных пропорциях красок триады CMY. Дело в том, что только в идеальном варианте при смешении красок триады получается чистый черный цвет. На практике же он получится, скорее, грязно-коричневым - в результате внешних условий, условий впитываемости краски материалом и неидеальности красителей. К тому же, возрастает риск неприводки в элементах, напечатанных черным цветом, а также переувлажнения материала (бумаги).



В цветовом пространстве Lab значение светлоты отделено от значения хроматической составляющей цвета (тон, насыщенность). Светлота задана координатой L (изменяется от 0 до 100, то есть от самого темного до самого светлого), хроматическая составляющая - двумя декартовыми координатами a и b. Первая обозначает положение цвета в диапазоне от зеленого до пурпурного, вторая - от синего до желтого.

В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха на производстве или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цветокоррекции.

Благодаря характеру определения цвета в Lab появляется возможность отдельно воздействовать на яркость, контраст изображения и на его цвет. Во многих случаях это позволяет ускорить обработку изображений, например, при допечатной подготовке. Lab предоставляет возможность избирательного воздействия на отдельные цвета в изображении, усилиения цветового контраста, незаменимыми являются и возможности, которые это цветовое пространство предоставляет для борьбы с шумом на цифровых фотографиях.


HSB - модель, которая в принципе является аналогом RGB, она основана на её цветах, но отличается системой координат.

Любой цвет в этой модели характеризуется тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness). Тон - это собственно цвет. Насыщенность - процент добавленной к цвету белой краски. Яркость - процент добавленной чёрной краски. Итак, HSB - трёхканальная цветовая модель. Любой цвет в HSB получается добавлением к основному спектру чёрной или белой, т.е. фактически серой краски. Модель HSB не является строгой математической моделью. Описание цветов в ней не соответствует цветам, воспринимаемых глазом. Дело в том, что глаз воспринимает цвета, как имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В HSB все цвета основного спектра (канала тона) считаются обладающими 100%-й яркостью. На самом деле это не соответствует действительности.

Хотя модель HSB декларирована как аппаратно-независимая, на самом деле в её основе лежит RGB. В любом случае HSB конвертируется в RGB для отображения на мониторе и в CMYK для печати,а любая конвертация не обходится без потерь.


Стандартный набор красок

В стандартном случае полиграфическая печать осуществляется голубой, пурпурной, желтой и черной красками, что, собственно и составляет палитру CMYK. Макеты, подготовленные для печати, должны быть в этом пространстве, поскольку в процессе подготовки фотоформ растровый процессор однозначно трактует любой цвет как составляющую CMYK. Соответственно, RGB-рисунок, который на экране смотрится очень красиво и ярко, на конечной продукции будет выглядеть совсем не так, а, скорее, серым и бледным. Цветовой охват CMYK меньше, чем RGB, поэтому все изображения, подготавливаемые для полиграфической печати, требуют цветокоррекции и правильной конвертации в цветовой пространство CMYK!. В частности, если вы пользуетесь Adobe Photoshop для обработки растровых изображений, следует пользоваться командой Convert to Profile из меню Edit.

Печать дополнительными красками

В связи с тем, что для воспроизведения очень ярких, "ядовитых" цветов цветового охвата CMYK недостаточно, в отдельных случаях используется печать CMYK + дополнительные (SPOT) краски . Дополнительные краски обычно называют Pantone , хотя это не совсем верно (каталог Pantone описывает все цвета, как входящие в CMYK, так и не содержащиеся в нем) - правильно называть такие цвета SPOT (плашечные), в отличие от смесевых, то есть CMYK.

Физически это означает, что вместо четырех печатных секций со стандартными CMYK-цветами используется большее их количество. Если печатных секций всего четыре, организовывается дополнительный прогон, при котором в уже готовое изделие впечатываются дополнительные цвета.

Существуют печатные машины с пятью печатными секциями, поэтому печать всех цветов происходит за один прогон, что, несомненно, улучшает качество приводки цвета в готовом изделии. В случае печати в 4 CMYK-секциях и дополнительным прогоном через печатную машину с плашечными красками цветосовпадение может страдать. Особенно это будет заметно на машинах с менее чем 4 печатными секциями - наверняка не раз вы видели рекламные листовки, где за края, к примеру, красивых ярко-красных букв может немного выступать желтая рамочка, которая есть ни что иное, как желтая краска из раскладки данного красивого красного цвета.

Подготовка макетов для полиграфии

Если вы готовите макет для печати в типографии и вами не оговорена возможность печати дополнительными (SPOT) красками, готовьте макет в цветовом пространстве CMYK, какими бы привлекательными вам не казались цвета в палитрах Pantone. Дело в том, что для имитации цвета Pantone на экране используются цвета, выходящие за пределы цветового пространства CMYK. Соответственно, все ваши SPOT-краски будут автоматически переведены в CMYK и результат будет совсем не таким, как вы ожидаете.

Если в вашем макете (при договоренности об использовании триады) все-таки есть не CMYK краски, будьте готовы к тому, что макет вам вернут и попросят переделать.

При составлении статьи за основу были взяты материалы с citypress72.ru и masters.donntu.edu.ua/

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: