Что такое яркость, контрастность и насыщенность и с чем их едят. Контрастность изображения

Excel для Office 365 Word для Office 365 Outlook для Office 365 PowerPoint для Office 365 Excel 2019 Word 2019 Outlook 2019 PowerPoint 2019 Project профессиональный 2019 Excel 2016 Word 2016 Outlook 2016 PowerPoint 2016 Project профессиональный 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Excel 2010 Word 2010 Outlook 2010 PowerPoint 2010 Excel 2007 Word 2007 Outlook 2007 PowerPoint 2007 Project Online Desktop Client Project профессиональный 2013 Project стандартный 2013 Project стандартный 2016 Project стандартный 2019 Меньше

Изменение яркости экрана

Вы хотите настроить яркость экрана ?

    Windows 10 : нажмите кнопку Пуск , выберите пункт Параметры , а затем - _гт_ системы . в разделе яркость и цвет установите ползунок изменить яркость , чтобы настроить яркость. Дополнительные сведения см. в статье изменение яркости экрана

    Windows 8 : нажмите клавиши Windows + C. Выберите пункт Параметры , а затем - изменить параметры ПК . Выберите компьютер и устройства, _гт_ дисплей . Включите автоматическУю настройку яркости экрана . Дополнительные сведения см. в статье Настройка яркости и контрастности

Подробнее о корректировке рисунков в приложениях Office.

В этом видеоролике демонстрируется несколько способов настройки рисунка.

(По время воспроизведения видео можно щелкнуть стрелку изменения размера в правом нижнем углу кадра, чтобы увеличить размер изображения.)


Длительность: 1:35

Настройка яркости, четкости или контрастности

Примечание: , даже если вы внесли исправления. Эта функция недоступна в Word или Excel.

Изменение цветовой схемы Office для повышения контрастности

Является ли цветовая схема Office слишком яркой? Вам нужна более контрастность приложений Office ? Дополнительные сведения см. в разделе Изменение темы Office (office 2016 и 2013) .

Вы можете изменить яркость, контрастность или резкость изображения с помощью средств исправления.

По часовой стрелке с левого верхнего угла: исходный рисунок, рисунок с увеличенной плавностью, увеличенной контрастностью и увеличенной яркостью.


Настройка яркости и контрастности рисунка

Совет: Если вы используете PowerPoint, вы по-прежнему можете сохранить исходную версию рисунка , даже если вы изменили яркость рисунка. Эта функция недоступна в Word или Excel.

Главный редактор - Владимир Крылов, к.т.н.
Зам. главного редактора - Михаил Никуличев, к.ф.н.

Первая часть статьи посвящена характеристикам современных светодиодных экранов, влияющим на качество изображения – управления яркостью методами ШИМ, формирование изображения с временным разделением и частоте рефреша экранов. Во второй части статьи рассмотрены - динамический диапазон яркости, цветопередача и контрастность экранов, драйверы и современные системы управления светодиодными экранами, электромагнитная совместимость и индустриальные помехи экранов.

Светодиодный экран – сложное электронное устройство, содержащее большое количество компонентов. Качество изображения и эксплуатационные характеристики светодиодного экрана зависят как от параметров компонентов, используемых в экране, так и от возможностей системы управления данным экраном.

С точки зрения качества изображения важны следующие характеристики экрана:

  • разрешение экрана (т.н. пространственное разрешение), в случае светодиодных экранов обычно выражаемое в виде расстояния между пикселями (pitch size);
  • максимальная яркость (измеряемая в Нитах);
  • динамический диапазон яркости, выражаемый в количестве уровней яркости, которые возможно отобразить на светодиодном экране (эта характеристика носит также название радиометрического или энергетического разрешения);
  • частота смены кадров, выражаемая в количестве кадров, показываемых за секунду (fps) (это временное разрешение);
  • частота обновления кадра (частота рефреша), измеряемая в Герцах (это тоже временное разрешение);
  • спектральное разрешение – насколько много спектральных составляющих формируют изображение;
  • однородность цвета по всему экрану;
  • баланс белого цвета и возможность его настройки;
  • линейность восприятия яркости – субъективная характеристика качества изображения, которая выражается в возможности различать глазом близкие уровни яркости, как на темных участках изображения, так и на ярких;
  • контрастность изображения экрана;
  • характеристика изменения качества изображения экрана в зависимости от угла обзора;

Кроме качества изображения отметим также такие эксплуатационные характеристики светодиодного экрана:

  • наличие системы мониторинга состояния светодиодного экрана;
  • развитость ПО (программного обеспечения) системы управления (возможность построения сетей светодиодных экранов, в том числе сетей, содержащих как светодиодные, так и LCD экраны, возможность управления экранами через Internet, наличие встроенной подсистемы информационной безопасности);
  • уровень электромагнитного излучения в виде индустриальных радиопомех, создаваемых светодиодным экраном.

Рассмотрим некоторые из вышеперечисленных характеристик подробнее.

Формирование изображения на светодиодном экране и управление яркостью Широтно-импульсная модуляция (PWM) и частота рефреша (refresh rate)

Исходное изображение для вывода на светодиодный экран формируется в виде компьютерного файла, чаще всего в виде видеоролика в некотором формате (*.avi, *.mpg). Этот файл декодируется управляющим компьютером (или видеоконтроллером), затем преобразуется в специальный цифровой поток, подающийся на микросхемы драйверов постоянного тока, которые, в свою очередь обеспечивают пропускание электрического тока через светодиод, что и вызывает излучение в определенном спектре.

Для формирования различных уровней яркости излучения светодиодов применяют технику широтно-импульсной модуляции - ШИМ (PWM - Pulse-width modulation). Суть этой техники заключается в том, что в зависимости от необходимого уровня яркости ток не постоянно подается на светодиод, а только в течение некоторого времени (зависящего от требуемого уровня яркости), затем прекращает подаваться, затем снова подается и т.д. Например, для формирования яркости в половину от максимальной надо пропускать ток половину времени некоторого цикла, в четверть яркости – четверть времени, и т. д. Иными словами, светодиод работает в режиме “включен-выключен”, причем время включения пропорционально требуемому уровню яркости.

Из этой техники следует, что на светодиоде (а значит и на экране) изображение формируется циклично. Время минимального цикла, за который происходит последовательное «включение» и “выключение” светодиода называется периодом обновления (рефреша, refresh time). Чаще используется обратная величина – частота рефреша (refresh rate).

Рассмотрим пример. Пусть частота рефреша светодиодного экрана равна 100 Гц. Если нам нужно обеспечить полную яркость – 100%, то мы постоянно подаем ток на светодиод весь период рефреша, равный в данном случае 1/100 с = 10 мс. Если требуется яркость 50%, то за это время мы в течение 5 мс подаем ток, в течение следующих 5 мс не подаем, в следующий цикл снова 5 мс подаем, 5 мс – нет и т.д. Если требуется яркость в 1% от максимальной, то ток подается в течение 0,1 мс и не подается в течение 9,9 мс.

Кроме этой техники применяются модифицированные методы PWM: Scrambled PWM (Macroblock), Sequential Split Modulation (Silicon Touch), Adaptive Pulse Density Modulation (MY-Semi). Суть этих техник заключается в “размазывании” времени “включения” светодиода по всему периоду рефреша. Так формирование 50%-ой яркости при частоте рефреша 100 Гц может выглядеть так: 1 мс - светодиод включен, 1 мс – выключен, 1 мс – включен, 1 мс – выключен и т.д. То есть для 50% яркости можно сказать, что период рефреша уменьшился в 5 раз и стал равен 2 мс. Соответственно частота рефреша увеличилась и стала 500 Гц. Но эти цифры справедливы лишь для формирования 50% яркости. Для каждой схемы формирования яркости есть минимальная яркость – 1 импульс (некоторое минимальное время) включения светодиода и остальное время он выключен.

Таким образом, четкая цикличность присущая традиционному PWM при применении модифицированных методов искажается, поскольку, в зависимости от уровня яркости можно выделить периоды с меньшим временем (и следовательно большей частотой рефреша). Можно, например, сказать, что для данного светодиодного экрана частота рефреша изменяется от 100 Гц до 1 кГц. Это означает, что минимальную яркость на светодиодном экране мы показываем с периодом рефреша 100 Гц. А при формировании больших уровней яркости можно выделить периоды (“включения-выключения” светодиодов) с меньшей длительностью.

Итак, для модифицированных методов PWM такое понятие как частота рефреша может трактоваться неоднозначно. Однако, если рассматривать период рефреша как минимальное время, за которое происходит обновление изображения для всех уровней яркости , то это значение не зависит от схемы формирования PWM.

Чересстрочная развертка или временное разделение (time division) светодиодных экранов

В ряде случаев конструкцией светодиодного экрана предусмотрен такой метод формирования изображения, при котором в один момент времени ток не может быть подан на все светодиоды сразу. Все светодиоды экрана разбиваются на несколько групп (как правило, две, четыре или восемь), которые включаются поочередно. То есть описанные выше методы формирования изображения применяются поочередно к каждой из этих групп. В случае двух таких групп формирование изображения аналогично применяемой в аналоговом телевидении чересстрочной развертке.

Данный способ применяется, в основном, для удешевления светодиодных экранов, так как для его реализации требуется меньше светодиодных драйверов (в два, четыре, восемь раз - в число раз соответствующее количеству поочередно включаемых групп), которые составляют существенную часть стоимости светодиодного экрана. Кроме этого, метод временного деления практически неизбежен при высоком разрешении (то есть малом шаге) светодиодного экрана, так как в этом случае чрезвычайно сложно обеспечить размещение большого количества драйверов и их теплоотвод.

Следует понимать, что при применении этого метода снижается максимальная яркость светодиодного экрана, а также уменьшается частота рефреша (в количество раз соответствующее количеству групп).

Предположим, что мы производим временное деление между двумя группами светодиодов. На одну группу подается ток в соответствии с требуемой яркостью и используемым методом PWM. Другая группа в это время отключена от источника тока. По прошествии периода рефреша группы меняются – теперь на вторую подается ток, а первая отключена. Поэтому, общий период, за который обновляется вся информация на светодиодном экране, увеличивается в два раза.

Понятие частота рефреша в этом случае еще более размывается. Строго говоря, период рефреша как минимальное время, за которое происходит обновление изображения для всего светодиодного экрана, увеличивается. Однако, если для каждой группы рассматривать только период, на котором формируется изображение методом PWM, то частота рефреша – прежняя.

Частота рефреша светодиодного экрана и человеческий глаз

Частота рефреша, в первую очередь, влияет на восприятие изображения глазом человека. Изображение, образно говоря, постоянно “мерцает”, хотя и с достаточно высокой частотой. Восприятие человеком световых образов – явление психофизическое и устроено таким образом, что отдельные вспышки света суммируются во времени. Это суммирование происходит в течение определенного времени (10 мс) и зависит от яркости вспышек (закон Блоха). Если свет “мерцает” достаточно быстро, с частотой выше некоторой пороговой (CFF – Critical Flicker Frequency), то глаз человека воспринимает этот свет так же, как если бы он горел постоянно (закон Тальбо-Плато). Пороговая частота CFF зависит от множества факторов, таких как спектр источника света, расположение источника по отношению к глазу, уровень яркости. Однако, можно с уверенностью сказать, что при обычных условиях эта частота не превышает 100 Гц.

Таким образом, если рассматривать восприятие изображения на светодиодном экране, сформированного методом PWM или модифицированным PWM, человеческим глазом, то изображение с частотой рефреша 100 Гц и 1 кГц будут восприниматься одинаково.

Частота рефреша экрана и видеокамера

Однако, в качестве воспринимающей системы может выступать не только глаз человека, но и видеозаписывающая аппаратура, которая имеет характеристики, отличные от глаза. Это особенно актуально для светодиодных экранов, установленных на стадионах, спортивных сооружениях или концертных площадках, с которых обычно ведется видеотрансляция. Время экспозиции, или выдержка (shutter speed), в современных видеокамерах может меняться от секунд до тысячных долей секунды.

Рассмотрим светодиодный экран, в котором изображение формируется традиционным методом PWM с частотой рефреша 100 Гц. На экране демонстрируется статическое изображение. Предположим также, что мы снимаем светодиодный экран видеокамерой с выдержкой 1/8 с, т.е. время экспозиции 125 мс. За это время на фотосенсор попадет свет от 12,5 периодов рефреша. Когда мы делаем серию кадров с данной выдержкой, то разница в световом потоке, попадающем на светочувствительный элемент, не превышает потока, сформированного светодиодами за 0,5 периода рефреша, т.е. не более 4% от всего потока. Разница образуется за счет того, что видеокамера и светодиодный экран, естественно, не синхронизированы и каждый кадр, сделанный видеокамерой, попадает в разное время относительно начала цикла рефреша светодиода. Таким образом, видеоизображение с камеры будет показывать достаточно ровную картинку со светодиодного экрана.

Теперь уменьшим выдержку, с которой мы снимаем до 1/250 с, время экспозиции равно 4 мс. Это время в 2,5 раза меньше периода рефреша. Теперь соотношение между временем начала кадра видеокамеры и началом цикла PWM будет иметь существенное значение. Одни кадры могут попасть в начало цикла, другие в середину, третьи в конец. Таким образом, образуется значительная погрешность в световом потоке в разных кадрах. То есть, изображение, проигрываемое на видеокамере, будет случайно менять яркость, будет “плыть”. Кроме того, уменьшится яркость изображения, что, впрочем, характерно для всех снимаемых на короткой выдержке объектов. Если еще уменьшить выдержку, то с большей вероятностью будут появляться черные кадры (когда начало кадра видеокамеры попадает на тот участок цикла PWM, где светодиод “выключен”) и изображение с камеры начнет мерцать.

Таким образом, если мы хотим снимать на видеокамеру светодиодный экран, на котором изображение формируется с использованием традиционного PWM, то частота рефреша должна быть сопоставимой или превосходить выдержку, с которой снимает камера.

В случае применения модифицированных методов PWM можно провести те же рассуждения. В силу “размазывания” времени включения светодиода по циклу PWM на больших яркостях, изображение, снятое на видеокамеру будет более стабильно, чем при применении традиционного PWM. Но на малых яркостях ситуация остается прежней – картинка будет либо менять яркость, либо мерцать. Поскольку реальное изображение содержит, как правило, различные уровни яркости, то изображение, снятое на видеокамеру также будет иметь погрешности, хотя и иного свойства.

Итак, при видеосъемке избежать наличия искажения изображения при произвольных параметрах съемки не удается. Всегда можно найти значение выдержки, при которой видео будет искажено. Ситуация аналогична съемке аналогового телевизора аналоговой же камерой. В силу различий в частоте развертки при подобной съемке на снимаемом телевизоре видны диагональные черные полосы.

Более важным для видеосъемки светодиодного экрана представляется вопрос однородности изображения, снятого на видеокамеру. Светодиодный экран – конструкция модульная, состоящая из нескольких блоков, изображение на которых непосредственно формируется различными контроллерами. Если эти контроллеры не синхронизируют начало цикла PWM, то есть начало цикла на разных участках светодиодного экрана приходится на разное время, то при съемке может произойти следующая ситуация. На одном участке светодиодного экрана начало кадра видеокамеры может совпасть с началом цикла PWM, а на другом, например, на середину. Если выдержка сопоставима с периодом рефреша, то на одном участке изображение будет светлее, а на другом темнее. Все изображение на светодиодном экране в этом случае будет разбиваться на прямоугольники разной яркости, что представляет больший дискомфорт для зрителя.

Стоимость увеличения частоты рефреша светодиодных экранов

Независимо от способа генерации PWM схемы их реализующие имеют общие черты. Схема генерации PWM имеет некоторую тактовую частоту F pwm . Пусть требуется сгенерировать N уровней яркости. В этом случае частота рефреша F r не может превышать F pwm /N .

Для иллюстрации приведем некоторые примеры:

Приведенные цифры предполагают, что существуют независимые схемы формирования PWM для каждого светодиода, то есть схема PWM реализована непосредственно в светодиодных драйверах экрана.

В случае применения простых драйверов и формирования PWM на контроллере светодиодного экрана, необходимо учитывать, сколько драйверов соединены последовательно и обслуживаются одной схемой PWM. Если одной схемой PWM обслуживаются M драйверов с 16-ю выходами, то частота рефреша не может превышать F pwm /(N*M*16) , что приводит к значительному уменьшению частоты рефреша либо необходимости существенно увеличивать тактовую частоту.

В случае применения временного деления (чересстрочной развертки), как мы уже говорили, частота рефреша уменьшается пропорционально коэффициенту деления.

Итак, для увеличения частоты рефреша светодиодных экранов возможны следующие варианты:

  • применение “интеллектуальных” драйверов;
  • увеличение тактовой частоты схемы генерации PWM;
  • уменьшение количества уровней яркости (глубины цвета).

Каждый из этих способов имеет свои достоинства и недостатки. Так интеллектуальные драйверы дороже обычных, повышение тактовой частоты увеличивает энергопотребление (а значит тепловыделение, необходимость теплоотвода во избежание перегрева), уменьшение количества уровней яркости снижает качество изображения.

Рефреш светодиодных экранов: Выводы

Часто такой параметр как частота рефреша светодиодных экранов используется в маркетинговых целях как один из показателей качества изображения. Предполагается, что чем выше частота рефреша, тем лучше светодиодный экран при прочих равных условиях. Однако, иногда приводятся цифры, вводящие в заблуждение потенциального покупателя. Например, указание частоты рефреша в несколько килогерц, как мы видели, может означать либо применение модифицированных методов PWM, для которых частота рефреша различна для различных уровней яркости, либо уменьшение глубины цвета.

Следует понимать, что высокие значения частоты рефреша и, одновременно, глубины цвета, скорее всего, предполагают, что этот рефреш в светодиодном экране достигается на определенных (высоких) уровнях яркости.

В случае применения чересстрочной развертки может быть указана частота соответствующая одному циклу PWM для одной группы светодиодов, в то время как реальная частота рефреша экрана (которая влияет на восприятие) в несколько раз ниже.

Более информативным, видимо, является указание глубины цвета и тактовой частоты PWM, с возможным добавлением диапазона частоты рефреша экрана (например, 200-1000 Гц) в случае использования модифицированных методов PWM. Если в светодиодном экране применено временное деление, то необходимо явно указать на этот метод формирования изображения (например time division = 1:1 – нет временного деления, time division = 1:2 – одновременно PWM работает на половине экрана и т. д.).

Для восприятия глазом этот параметр светодиодного экрана вообще несущественен. Для частот выше 100 Гц глаз человека не увидит разницу в качестве изображения. Следовательно, необходимо понять, нужна ли высокая частота рефреша и стоит ли за нее платить.

В случае активного использования светодиодного экрана в процессе видеосъемки этот показатель становится существенным, но следует также обратить внимание на однородность изображения при видеосъемке. Для таких светодиодных экранов, возможно, лучше провести тестовые съемки, чем полагаться лишь на такой параметр как частота рефреша.

Не путайте яркость видимого изображения (проекции) с яркостью исходящего в сторону экрана светового потока.

Яркость проекции — это световой поток, рассеянный экраном в сторону зрителя.

Яркость изображения можно оценить с помощью следующих референсных показателей:

12-16 fL - для коммерческого кинотеатра (стандарт THX)

40-45 fL – средний показатель яркости полностью белого поля для ЖК панели

Метрические единицы: Nit или Candela/m² = Lux x к.усиления / p

1 Lux отраженный от Lambertian (референсной отражающей) поверхности равен 1 Nit

Имперские единицы: Foot Lambert = Foot Candles * к.усиления / p

Пересчет FtL в Nit: x 3,43 т.е. 16 FtL равно 55 Nits

Как правильно рассчитать ожидаемую яркость изображения?

Существует простая формула, позволяющая рассчитать ожидаемую яркость изображения.

Т.е. Яркость проектора в ANSI люменах / площадь экрана в кв.футах * к. отражения экрана = яркость в fL

В теории люмены и фут-Ламберты напрямую связаны. Один фут-Ламберт светимости, равен одному люмену на квадратный фут. Но, как обычно, не все так прямолинейно. Эта формула не учитывает посторонней засветки и ее направления, не учитывает износ лампы или калибровку проектора (которая способна снизить исходящий световой поток на 40%). Чтобы не ошибиться можно либо изначально брать лишь 70%, заявленной в спецификации яркости проектора при расчетах, либо брать как приемлемый уровень показатели от 20 до 40 fL.

Более высокая яркость позволит компенсировать негативное влияние посторонней засветки и поднять уровень реальной контрастности.

В принципе, не рекомендуется увлекаться «магией цифр» в спецификациях. При указании параметра яркость в ANSI люменах, производители не указывают все параметры измерения. Многие проекторы имеют функции оптимизации изображения, которые существенно влияют на результат. Это приводит к тому, что проектор с заявленной яркостью 700 ANSI, может быть по факту ярче проектора с показателем 1500 ANSI. Таким образом, спецификации - довольно условный источник данных для расчета ожидаемых показателей.

На какие типы делятся проекционные экраны?

Проекционные экраны делятся на различные категории:

  • По типу полотна: с гибким полотном и с жестким полотном (пластик, стекло)
  • По типу проекции: фронтальная и экраны обратной проекции
  • По исполнению: рамные, сворачиваемые и мобильные

Внутри дополнительно они делятся на подвиды:

Рамные экраны: сложно дать называния группам, очень много разных типов рам, полотно может крепиться к раме кнопками, крючками и спицами, липучкой, в больших диагоналях полотно почти всегда с люверсами.

Сворачиваемые: с электроприводом и с ручным управлением; с растяжками и без растяжек; страиваемые в потолок и настенно-потолочные.

Мобильные: на треноге, напольные, на стойках (в т.ч. тип экрана, называемый Fast-Fold, это торговая марка Da-lite, которая стала в области экранов почти тем же, что Xerox в копировальной технике).

В чём преимущество обратной проекции?

Экраны обратной проекции обеспечивают более высокое качество картинки в условиях сильной засветки (при условии отсутствия засветки в аппаратной комнате)

Для каких задач используются экраны с жестким полотном?

Жесткие экраны - это, как правило, обратная проекция, поскольку такой экран, кроме, собственно, функций экрана, выполняет функцию части стены, т.е. отделяет аппаратную от зоны просмотра, он должен изолировать зрителей от шума. В основном, это большие диагонали и, собственно, яркие и шумные проекторы.

Также есть примеры установки жестких экранов обратной проекции в уличных кинотеатрах. Проектор прячется в помещении, а в проем в стене вставляется экран, который не боится влажности.

Гибкие виниловые полотна обратной проекции заметно дешевле, и их проще транспортировать, но звукоизоляцию они не обеспечивают.

Какие существуют типы традиционных экранов (прямой проекции с гибким полотном)?

Следует разделять свойства полотна (материала) и тип экрана. Одна и та же модель экрана (рамного, электрического) и т.п. может быть выполнена с разными полотнами.

Свойства полотна определяются уровнем внешней засветки, разрешением контента (офисные полотна не предназначены для работы с высоким разрешением), яркостью проектора.

Если любитель кино или организация выбирают экран, то им следует рассматривать отдельно, какой тип экрана будет для них оптимален и отдельно - параметры полотна.

В сегменте дешевых экранов выбор невелик, обычно полотно Matte White (белое матовое) или High Contrast (слегка серое). В сегменте повыше, одна модель экрана может иметь от трех до двенадцати вариантов полотна.

В какой степени полотно экрана способно повлиять на качество изображения в различных условиях? Какую долю в стоимости системы должен составлять экран?

Свойства полотна экрана могут очень заметно влиять на качество изображения. В некоторых случаях правильно подобранное полотно в сочетании с не самым дорогим проектором может дать в итоге более качественную картинку, чем самый дорогой проектор с «неправильным» полотном.

Завязывать стоимость экрана, на стоимость проектора подход неверный.

Это как со звуком: купив более дорогой источник за счет экономии на акустике, мы получим плохой звук, поскольку это элементы системы. Аналогично в сочетании проектор – экран.

На какие параметры изображения может влиять качество полотна экрана?

Основными параметрами изображения, на которые могут повлиять свойства полотна являются:

  • яркость
  • реальная контрастность
  • цветопередача
  • равномерность яркости по полю
  • разрешение
Как качество полотна может влиять на яркость?

За счет коэффициента отражения (gain) более 1.0 изображение становится более ярким (по сравнению с эталонной отражающей поверхностью). Человеческий глаз отстраивается по самому яркому (как правило белому) цвету, и в итоге более яркое изображение воспринимается, как более контрастное. Но есть предел: после определенного порога изменения яркости уже не воспринимается. Фотометр будет видеть картинку по-другому, для него кривая восприятия ровная.

Это физиологическое свойство восприятия давно известно используется в живописи, фотографии и, соответственно, применимо в кино. Вот хороший материал на эту тему.

Как качество полотна может влиять на реальную контрастность?

Реальная контрастность измеряется при выведении «шахматки» по методике ANSI, в отличие от физиологического восприятия, измеряется фотометром. Тут учитываются свойства матрицы проектора (насколько «черный» черный), внешняя засветка и способность полотна работать с этой засветкой. Если базовый слой экрана имеет к. отражения ниже 1.0, а оптическое покрытие его повышает, то получается, что на темных участках полотно дает более темный «черный», на светлых - увеличивает яркость.

Также, полотна с к.отражения более 1.0 имеют направленную диаграмму рассеивания, т.е. свет падающий под острыми углами (фоновая засветка) рассеивается не в сторону зрителя, а под равным углу падения, противоположном направлении.

Как качество полотна может влиять на цветопередачу?

«Правильное» полотно может работать с яркостью изображения, т.е. со всем диапазоном белого света (тут мы помним, что черный, он же серый, есть разновидности белого, отличающиеся между собой только яркостью, в нем присутствует все цвета диапазона), не влияя на цветовой тон. Некачественное полотно может изменить тон изображения.

Экраны с высоким к. отражения могут начать работать как призма, разлагая цвета на компоненты, причем по разному, в зависимости от угла падения. В итоге мы получаем сдвиг по цвету, причем неравномерный по площади экрана.

Некоторые любители кино боятся ставить серый экран, поскольку полагают, что они в итоге не получат «белого» цвета, т.е. его тональность изменится. Фактически, если экран хорошего качества, он изменит только яркость проекции и контраст между участками изображения, но не повлияет на соотношение цветов в белом свете.

Как качество полотна может влиять на равномерность яркости?

Если взять точечный источник света, который изначально дает равномерную засветку экрана (некоторые проекторы изначально имеют проблемы с равномерной засветкой всей площади экрана по яркости), то в центр экрана и на его края свет будет падать под разными углами. Правильное полотно с к.отражения 1.0 должно дать равномерную яркость рассеиваемого света по всей площади. Если к.отражения более 1.0 то яркость должна быть в пределах приемлемых показателей (тут не знаю точных цифр, и есть ли по этом поводу стандарты, но понятно, что чем ровнее будут цифры яркости во всех точках экрана, тем лучше).

Как качество полотна может влиять на разрешение?

Проекционная поверхность экрана неровная, иначе она бы превратилась в зеркало, за счет микронеровностей достигается эффект рассеивания попавшего на экран света; чем меньше физический размер пикселя на экране (4K) тем более равномерными должны быть эти неровности; если они будут слишком большими или неравномерными, часть пикселей начнет отражаться в произвольном направлении, смешиваться между собой, в итоге мы фактически получаем потерю разрешения и проблемы с цветопередачей.

Почему экраны с высоким к.отражения имеют ограничение минимального проекционного расстояния?

Чем выше к.отражения, тем больше показатель неравномерности яркости изображения по всему полю экрана. Вызвано это тем, что чем ближе проектор расположен к экрану, тем больше отличаются углы падения света в центре экрана и на его края. Крайним проявлением подобной ситуации является эффект «hot spot», т.е. очень яркий блик по центру проекции.

Что такое «угол половинного падения яркости»?

Угол обзора напрямую завязан на «half gain» (угол половинного падения яркости). Данный параметр определяется экспериментальным путем: с помощью фотометра измеряется уровень отражаемого света при перпендикулярном расположении к плоскости экрана, далее фотометр начинает смещаться по радиусу, привязанному к геометрическому центру экрана. Там, где количество отраженного света падает на 50% от показателя, полученного на перпендикуляре, обозначается угол половинного падения яркости.

Угол половинного падения яркости определяет конус просмотра (угол), т.е. стандарты индустрии считают, что 50% падение яркости приемлемо для просмотра. Следует понимать, что при смещении по радиусу у нас смещается и «центр яркости» т.е. один край экрана становится ярче другого (если только экран не рассеивает свет ровно на 180 градусов).

Зная такой параметр как угол половинного падения яркости, мы знаем конус просмотра, в котором должен находиться зритель, чтобы видеть качественное изображение, т.е. максимальную ширину зрительского ряда в зависимости от дистанции просмотра.

Тангенс угла половинного падения яркости, умноженный дистанцию просмотра, даёт половину ширины зрительского ряда.

По поводу того, почему 50% считаются приемлемым показателем, возможно, есть данные на сайте ISF, но я не уверен. Государственных стандартов в этой области нет, только индустриальные, устанавливаемые авторитетными организациями ISF, THX, ANSI.

Для каких задач используют офисные экраны с соотношением сторон 1:1?

Никаких специальных особенностей у таких экранов нет. Единственно, что можно предположить, - их берут, как «универсальный» формат, т.е. выдвигают не полностью, чтобы получить 4:3, 16:10, 16:9. Как мне кажется, это сила привычки. Такие экраны выступают, как правило, в сегменте лоу-кост.

Как настроить контрастность / яркость изображения монитора (экрана) на ноутбуке?

Контрастность происходит от английского слова «contrast». Она есть у любого монитора, будет то телевизор, компьютер, ноутбук или даже мобильный телефон. Но, чаще всего настраивать контрастность экрана приходится именно для компьютера. Если знать алгоритм действия, то сделать это будет несложно. Контрастность является отношением яркости самого светлого участка экрана к самому темному его участку. Настройку можно проводить с помощью кнопок на мониторе. Правильно настроенная контрастность улучшить восприятие текста и изображения. Также она обеспечит реалистичную передачу цветов, если речь идет о цифровых изображениях.

Как настроить контрастность на Windows

Итак, техника у вас может быть любой марки (торговый производитель), но должна быть установлена операционная система Windows. Когда компьютер грузиться, то логотип этой системы появляется на экране. Также, уже при включенном компьютере, он отображается на кнопке «Пуск». У большинства жителей нашей страны установлена именно такая операционная система.

Итак, необходимо воспользоваться калибровкой цветов монитора. Калибровка поможет настроить не только контрастность, но и другие параметры передачи цвета по необходимости. Все необходимо подбирать исключительно под себя, но ориентироваться на усредненные показатели.

Способ настройки будет зависеть от монитора:

На передней панели некоторых мониторов находится кнопка яркости и контрастности. На некоторых мониторах эти регуляторы могут быть на задней панели. Будут использоваться стандартные обозначения для каждой характеристики.

Экранное меню. Для некоторых типов мониторов, а также для ноутбуков, настройка происходит с помощью экранного меню. Найти его можно в «Меню», которое откроется при нажатии на кнопку «Пуск». Можно посмотреть исходные значения и задать свои.

Экран ноутбука. Можно будет воспользоваться кнопка яркости на передней панели, но в старых моделях. В современных моделях нет элемента управления контрастностью. Поэтому, нужно будет использовать клавишу Fn и и нажимать на значки и для уменьшения или, соответственно, увеличения контрастности.

Какие настройки оптимальные?

Для экрана компьютера есть свои стандартные настройки контрастности, которых нужно придерживаться для комфортной работы. Несмотря даже на то, что все люди разные и требования к изображениям может быть разным.

Частота изображения на современных мониторах рекомендована в пределах от 60 до 85 Гц. Что касается яркости, она не должна быть выше 80 канделах на квадратный метр. Высокая контрастность (это, как мы уже выяснили, соотношение яркости черного и белого цвета) способна сделать изображение максимально четким. Чем показатель контрастности выше, тем быстрее будут уставать глаза. Оптимальную настройку надо производит с учетом середины на шкале, которая предлагается производителем.

Интересно! С помощью программы NTest можно подобрать наиболее точные настройки экрана под себя, а потом задать их на своем компьютере.

Это основные моменты, как нужно настраивать изображение на своем компьютере. Чаще всего, при установке операционной системы, применяются усредненные показатели. Но, для более комфортной работы необходимо покрутить их в ту или другую сторону. Кстати, восприятие изображения также может зависеть от времени суток и от того, как освещение падает на экран. Все это необходимо учитывать, подбирая характеристики под себя. Разобраться с контрастностью не сложно, хотя, придется потратить немного личного времени.

И еще полезные статьи о контрастности:

Добавить комментарий (можно с фото)

Currently you have JavaScript disabled. In order to post comments, please make sure JavaScript and Cookies are enabled, and reload the page. on how to enable JavaScript in your browser.

Вы можете добавить свое фото (jpg)

  • Ремонт кофеварки своими руками — проблемы, разбираем самостоятельно.

  • Как пользоваться соковыжималкой, инструкция и схема по эксплуатации.

  • Какое разрешение экрана для просмотра жк телевизора оптимальное и лучшее?

  • Про телевизоры с форматом сверхвысокой четкости UHDTV.

  • Где и как лучше купить холодильник в кредит (в рассрочку) без переплаты?

Все прекрасно знаете, что фотоаппараты не идеальны и не всегда точно подбирают цвет (свет) на фото. Бывает, вспышка не успевает зарядиться и мы наблюдаем практически черный квадрат Малевича, бывает она сработает чересчур сильно и мы наблюдаем белый квадрат неизвестного художника с красными точками посередине (глазенки хомячка), а бывает что мы пытаемся не зависеть от вспышки, пробуем снять без нее, а фото получается желтовато-коричневатого мутного оттенка. Все это с легкость можно вылечить средствами Photoshop (безусловно, в разумных пределах! Конечно же, полностью черный или полностью засвеченный кадр восстановить не удастся).

Как правильно менять яркость, контрастность и насыщенность

Давайте начнем сначала с некратких, а затем кратких определений, чтобы понимать что же мы с вами меняем.

Что нам говорят по этой теме словари:

Яркость — световая характеристика тел. Отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскости, перпендикулярной оси наблюдения.

Контрастность — различимость предмета наблюдения от окружающего его фона (монохроматическое излучение); цветовая контрастность - разновидность оптической контрастности, связанная с разницей цветовых оттенков.

Насыщенность — в физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света.

Гхм… Неудобоваримые термины… Попробую сформулировать попроще и касательно данной темы:

Яркость — количество белого цвета на вашем фото. Чем выше вы ставите яркость, тем светлее становится кадр.

Контрастность — разница между разными, расположенными рядом цветами. Чем выше контрастность, тем более резко мы наблюдаем переход от одного цвета к другому (иногда контрастность срабатывает как повышение резкости).

Насыщенность — насколько сочно и ярко у вас выглядит тот или иной цвет. Можно увеличивать ее в нескромных пределах — тогда фото начинает даже «резать» глаз.

Можно, конечно, расписать по пунктам каждую из этих характеристик, но это было бы неправильно. Правильно комплексно менять все три настройки кадра. Как? Сейчас разберем…

Возьмем для рассмотрения вот такое вот темное, слабоконтрастное фото…

Команды эти прячутся в меню «Изображение», далее «Коррекция», затем «Яркость / Контрастность» и «Цветой тон / Насыщенность»:

и

При нажатии кнопки «Яркость / Контрастность» мы наблюдаем такое вот окошко:

При выборе «Цветой фон / Насыщенность» вот такое:

Для начала открываем «Яркость / Контрастность» и спокойно и умиротворенно двигаем оба ползунка вправо до требуемого значения яркости и контраста (все это делается чисто интуитивным образом и в каждом случае по-своему!). Не следует выставлять всегда точно такие же значения как на этом вот кадре:

Мне вот показалось что сначала нужно выставить яркость на +120, а контрастность на +30. Но всем заметно что цвета чересчур яркие и ненатуральные. Хорошо, что мы знаем где находится меню «Цветовой фон / Насыщенность», которая нам поможет это исправить:

Мне кажется, что если сбросить значение насыщенности на 13 пунктов получается неплохо. Вот, вроде бы, и все, но я всегда перестраховываюсь и еще разок захожу в «Яркость / Контрастность», проверяя, может что -то еще следует поменять для достижения наиболее красивого результата и реалистичного фото.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: