Целочисленное линейное программирование метод гомори. Составление дополнительного ограничения (сечения Гомори)

По смыслу значительной части экономических задач, относящихся к задачам линейного программирования, компоненты решения должны выражаться в целых числах, т.е. быть целочисленными. К ним относятся, например, задачи, в которых переменные означают количество единиц неделимой продукции, число станков при загрузке оборудования, число судов при распределениях по линиям, число турбин в энергосистеме, число вычислительных машин в управляющем комплексе и многие другие.

Задача линейного целочисленного программирования формулируется следующим образом: найти такое решение (план) i, при котором линейная функция

принимает максимальное или минимальное значение при ограничениях

(8.2)

(8.3)

– целые числа. (8.4)

Следует отметить, что классическая транспортная задача и некоторые другие задачи транспортного типа "автоматически" обеспечивают решение задачи в целых числах (если, конечно, целочисленны параметры условий). Однако в общем случае условие целочисленности (8.4), добавляемое к обычным задачам линейного программирования, существенно усложняет ее решение.

Для решения задач линейного целочисленного программирования используется ряд методов. Самый простой из них – обычный метод линейного программирования. В случае если компоненты оптимального решения оказываются нецелочисленными, их округляют до ближайших целых чисел. Этот метод применяют тогда, когда отдельная единица совокупности составляет малую часть объема всей совокупности. В противном случае округление может привести к далекому от оптимального целочисленному решению, поэтому используют специально разработанные методы.

Методы целочисленной оптимизации можно разделить на три основные группы: а) методы отсечения; б) комбинаторные методы; в) приближенные методы. Остановимся подробнее на методах отсечения.

Методы отсечения. Метод Гомори

Сущность методов отсечения состоит в том, что сначала задача решается без условия целочисленное™. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:

  • оно должно быть линейным;
  • должно отсекать найденный оптимальный нецелочисленный план;
  • не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением .

Геометрически добавление каждого линейного ограничения отвечает проведению прямой (гиперплоскости), которая отсекает от многоугольника (многогранника) решений некоторую его часть вместе с оптимальной точкой с нецелыми координатами, но не затрагивает ни одной из целых точек этого многогранника. В результате новый многогранник решений содержит все целые точки, заключавшиеся

в первоначальном многограннике решений, и соответственно полученное при этом многограннике оптимальное решение будет целочисленным (рис. 8.1).

Один из алгоритмов решения задачи линейного целочисленного программирования (8.1)-(8.4), предложенный Р. Гомори, основан на симплексном методе и использует достаточно простой способ построения правильного отсечения.

Пусть задача линейного программирования (8.1)-(8.3) имеет конечный оптимум, и на последнем шаге ее решения симплексным методом получены следующие уравнения, выражающие основные переменные через неосновные переменные оптимального решения:

(8.5)

так что оптимальным решением задачи (8.1)-(8.3) является i, в котором, например, β; – нецелая компонента. В этом случае можно доказать, что неравенство, сформированное по i- му уравнению системы (8.5), обладает всеми свойствами правильного отсечения.

Для решения задачи целочисленного линейного программирования (8.1)-(8.4) методом Гомори используется следующий алгоритм.

  • 1. Симплексным методом решить задачу (8.1)-(8.3) без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочисленного программирования (8.1)-(8.4). Если первая задача (8.1)-(8.3) неразрешима (т.е. нс имеет конечного оптимума или условия ее противоречивы), то и вторая задача (8.1)-(8.4) также неразрешима.
  • 2. Если среди компонент оптимального решения есть нецелые, то выбрать компоненту с наибольшей целой частью и по соответствующему уравнению системы (8.5) сформировать правильное отсечение (8.6).
  • 3. Неравенство (8.6) введением дополнительной неотрицательной целочисленной переменной преобразовать в равносильное уравнение и включить его в систему ограничений (8.2).
  • 4. Полученную расширенную задачу решить симплексным методом. Если найденный оптимальный план будет целочисленным, то задача целочисленного программирования (8.1)–(8.4) решена. В противном случае вернуться к п. 2 алгоритма.

Если задача разрешима в целых числах, то после конечного числа шагов (итераций) оптимальный целочисленный план будет найден.

1 В неравенстве (8.6) присутствует символ { }, означающий дробную часть числа. Целой частью числа а называется наибольшее целое число [в], не превосходящее а, дробной частью числа – число {а}, равное разности между этим числом и его целой частью, т.е. {а} = а-[в].

Например, для (обратите внимание, именно -3, а не -2) и

Если в процессе решения появится уравнение (выражающее основную переменную через неосновные) с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В этом случае и данная задача не имеет целочисленного оптимального решения.

8.1. Для приобретения оборудования по сортировке зерна фермер выделяет 34 ден. ед. Оборудование должно быть размещено на площади, не превышающей 60 кв. м. Фермер может заказать оборудование двух видов: менее мощные машины типа А стоимостью 3 ден. ед., требующие производственную площадь 3 кв. м (с учетом проходов), и производительностью за смену 2 т зерна, и более мощные машины типа В стоимостью 4 ден. ед., занимающие площадь 5 кв. м, и производительностью за смену 3 т сортового зерна.

Требуется составить оптимальный план приобретения оборудования, обеспечивающий максимальную общую производительность при условии, что фермер может приобрести не более 8 машин типа В.

Решение. Обозначим черезколичество машин соответственно типа А и В, через Z – общую производительность. Тогда математическая модель задачи примет вид

(!!!8.8)

при ограничениях:

(8.2)

– целые числа. (8.4)

Приведем задачу к каноническому виду, введя дополнительные неотрицательные переменные. Получим систему ограничений:

(8.5)

Решаем задачу симплексным методом. Для наглядности решение иллюстрируем графически (рис. 8.2).

На рис. 8.2 OKLM – область допустимых решений задачи (8.Г)–(8.3"), ограниченная прямыми (1), (2), (3) и осями координат; L (2/3; 8) – точка оптимального, но нецелочисленного решения задачи (8.1")–(8.3"); (4) – прямая, отсекающая это нецелочисленное решение; OKNM – область допустимых решений расширенной задачи (8.1")–(8.3"), (8.6"); N( 2; 7) – точка оптимального целочисленного решения.

I шаг. Основные переменные Неосновные переменные

Первое базисное решение– допусти

мое. Соответствующее значение линейной функции

Переводим в основные переменные переменную, которая входит в выражение линейной функции с наибольшим положительным коэффициентом. Находим максимально возможное значение переменной, которое "позволяет"

принять система ограничений, из условия минимума соответствующих отношений:

т.е. разрешающим (выделенным) является третье уравнение. При х. 2 = 8 в этом уравнении х- = 0, и в неосновные переходит переменная х 5.

II шаг. Основные переменные х 2, х 3, х 4.

Неосновные переменные.г, ху

После преобразований получим

Переводим в основные переменнуюа в неосновные х4.

III шаг. Основные переменные х, х 2, х 3.

Неосновные переменные х4, х5.

После преобразований получим

Базисное решение X., оптимально для задачи (8.1")–(8.3") (), так как в выражении линейной функции

отсутствуют неосновные переменные с положительными коэффициентами.

Однако решение Х 3 не удовлетворяет условию целочисленности (8.4") По первому уравнению с переменной х, получившей нецелочисленное значение в оптимальном решении (2/3), составляем дополнительное ограничение (8.6):

Обращаем внимание на то, что согласно (8.5) и (8.6) берем дробную часть свободного члена с тем же знаком, который он имеет в уравнении, а дробные части коэффициентов при неосновных переменных х 4 и х- – с противоположными знаками.

Так как дробные части,

, го последнее неравенство запишем

(8.6")

Введя дополнительную целочисленную переменную х6 0, получим равносильное неравенству (8.6") уравнение

(8.7")

Уравнение (8.7") необходимо включить в систему ограничений (8.5") исходной канонической задачи, после чего повторить процесс решения задачи симплексным методом применительно к расширенной задаче. При этом для сокращения числа шагов (итераций) рекомендуется вводить дополнительное уравнение (8.7") в систему, полученную на последнем шаге решения задачи (без условия целочисленности).

IV шаг. Основные переменные x v х 2, х3, χβ.

Неосновные переменные х4, х5.

Базисное решение – недопусти

мое. (Заметим, что после включения в систему ограничений дополнительного уравнения, соответствующего правильному отсечению, всегда будет получаться недопустимое базисное решение.)

Для получения допустимого базисного решения необходимо перевести в основные переменную, входящую с положительным коэффициентом в уравнение, в котором свободный член отрицательный, т.е. х, или х. (на этом этапе линейную функцию не рассматриваем). Переводим в основные, например, переменную х5 .

V шаг. Основные переменные х, х2, х3, х5.

Неосновные переменные х4, х6.

Получим после преобразований

Так как в выражении линейной функции нет основных переменных с положительными коэффициентами, то Х 5 – оптимальное решение.

Итак, Zmax = 25 при оптимальном целочисленном решении X* = Х 5 = (2; 7; 19; 0; 1; 0), т.е. максимальную производительность 25 т сортового зерна за смену можно получить приобретением 2 машин типа Л и 7 машин типа В при этом незанятая площадь помещения составит 19 кв. м, остатки денежных средств из выделенных равны нулю, в резерве для покупки – 1 машина типа В (шестая компонента содержательного смысла не имеет).

Замечание. Для геометрической интерпретации на плоскости Ох,х2 (см. рис. 8.2) отсечения (8.6") необходимо входящие в него переменные х 4 и х- выразить через переменные х, и х2. Получим (см. 2-е и 3-е уравнения системы ограничений (8.5"))

  • (см. отсечение прямой (4) на рис. 8.2).
  • 8.2. Имеется достаточно большое количество бревен длиной 3 м. Бревна следует распилить на заготовки двух видов: длиной 1,2 и 0,9 м, причем заготовок каждого вида должно быть получено не менее 50 и 81 шт. соответственно. Каждое бревно можно распилить на указанные заготовки несколькими способами: 1) на 2 заготовки но 1,2 м; 2) па 1 заготовку 1,2 м и 2 заготовки по 0,9 м; 3) на 3 заготовки по 0,9 м. Найти число бревен, распиливаемых каждым способом, с тем чтобы заготовок любого вида было получено из наименьшего числа бревен.

Решение. Обозначим через х {} х2, х3 число бревен, распиливаемых соответственно 1, 2 и 3-м способами. Из них можно получить 2xj +х2 заготовок по 1,2 м и х +3х2 заготовок по 0,9 м. Общее количество бревен обозначим Z. Тогда математическая модель задачи примет вид

при ограничениях:

Введя дополнительные переменныепри

ведем систему неравенств к равносильной системе уравнений:

(8.5")

Решая полученную каноническую задачу (без условия целочисленности) симплексным методом, на последнем, III, шаге решения найдем следующие выражения основных переменных и линейной функции через неосновные переменные (рекомендуем студентам получить их самостоятельно).

III шаг. Основные переменные x v х 2.

Неосновные переменные х у х А, х 5.

т.е.при оптимальном решении

Получилось, что две компоненты оптимального решения не удовлетворяют условию целочисленности (8.4"), причем бо́льшую целую часть имеет компонента х 2. В соответствии с ∏. 2 алгоритма решения задачи целочисленного программирования (см. с. 166) по второму уравнению, содержащему эту переменную х 2, составляем дополнительное ограничение (8.6):

Найдем дробные части

и запишем последнее неравенство в виде

(8.6")

Введя дополнительную переменнуюполучим

равносильное неравенству (8.6") уравнение:

(8.7")

Выразим из (8.7") дополнительную переменную х6 и полученное уравнение введем в систему ограничений, которую мы имели на последнем, III, шаге решения задачи (8.1")– (8.3") (без условия целочисленности).

IV шаг. Основные переменные х {, х у х 6.

Неосновные переменные х 3, х4, х 5.

Решая эту расширенную задачу симплексным методом (предлагаем студентам выполнить самостоятельно), получим следующее.

V шаг. Основные переменные х); х 2, х3.

Неосновные переменные х4, х5, хб.

т.е.при оптимальном решении

Полученное оптимальное решение расширенной задачи (8.1")–(8.3"), (8.6") вновь не удовлетворяет условию целочисленности (8.4"). По первому уравнению с переменной Xj, получившей нецелочисленное значение в оптимальном

решении (), еоставляем второе дополнительное ограни

чение (8.6):

которое приводим к виду

С помощью дополнительной переменнойприво

дим это неравенство к равносильному уравнению, которое включаем в систему ограничений, полученную на последнем, V, шаге решения расширенной задачи (8. Г")–(8.3"), (8.6") симплексным методом.

VI шаг. Основные переменные x v х 2, х у х т

Неосновные переменные х 4, X-, х 6.

Опуская дальнейшее решение задачи симплексным методом (предлагаем сделать это самим студентам), на заключительном, VII, шаге получим.

VII шаг. Основные переменные x v х т х3, х г

Неосновные переменные x v х 6, х т

Так как в выражении линейной функции нет неосновных переменных с отрицательными коэффициентами, то Х 7 оптимальное целочисленное решение исходной задачи.

Следует обратить внимание на то, что в полученном выражении линейной функции Z отсутствуют неосновные переменные х Г) и х 6. Это означает, что, вообще говоря, существует бесконечное множество оптимальных решений (любых, не обязательно целочисленных), при которых Z" = Zmjn = 46. Эти решения получаются при значении неосновной переменной х 7 (входящей в выражение для Z), равной нулю (т.е. при х 7 = 0), и при любых значениях неосновных переменных ж5 и х 6 (не входящих в выражение для Z), которые "позволяет" принять система ограничений: 0<лг5 х 5 1 и 0 < x (i ≤ 1. Но в силу условия целочисленности переменные х- и х (> могут принять только значения 0 или 1. Поэтому задача будет иметь четыре целочисленных оптимальных решения, когда х. и *6 в любой комбинации принимают значения 0 или 1, а х 7 = 0. Подставляя эти значения в систему ограничений на VII шаге, найдем эти оптимальные решения:

Наличие альтернативных оптимальных целочисленных решений позволяет осуществить выбор одного из них, руководствуясь дополнительными критериями, не учитываемыми в математической модели задачи. Например, из условия данной задачи следует, что распиливание бревен не дает отходов лишь по 3-му способу, поэтому естественно при выборе одного из четырех оптимальных решений отдать предпочтение решению Х^ 3 при котором максимальное число бревен (х 2 = 41) распиливается без отходов.

Итак, Zmin=46 при оптимальных целочисленных решениях (5; 41; 0), (6; 39; 1), (7; 36; 3), (6; 38; 2). При записи оптимальных решений мы оставили лишь первые три компоненты, выражающие число бревен, распиливаемых соответственно 1, 2 и 3-м способами, и исключили последние четыре компоненты, не имеющие смыслового значения.

Недостатком метода Гомори является требование целочисленности для всех переменных – как основных (выражающих, например, в задаче об использовании ресурсов единицы продукции), так и дополнительных (выражающих величину неиспользованных ресурсов, которые могут быть и дробными).

  • Можно убедиться, что при этом решение задачи короче.

Обычно в задачах линейного программирования не требуется, чтобы координаты плана были целыми числами. Однако в практике часто приходится сталкиваться с задачами, в которых координаты оптимальных планов должны быть целыми числами, и такие задачи называются задачами . При решении задач линейного программирования графическим методом и симплекс-методом нет гарантий, что координаты оптимального плана будут целыми числами.

В некоторых случаях допускается округление результатов. Например, если в оптимальном плане предусмотрено, что следует произвести 499683,3 автомашины, то экономически обосновано округление результата до 499683 или даже до 500000.

Существуют однако задачи, в которых подобное округление может создать большую ошибку. Например, если в оптимальном плане предусмотрено, что следует построить 0,67 заводов, то формальное округление до 0 или 1 недопустимо.

Поэтому большое практическое значение имеют методы решения задач линейного программирования, с помощью которых можно найти оптимальный план, координаты которого - целые числа. Задачи целочисленного программирования решаются именно такими методами.

Если задача целочисленного программирования задана в канонической форме, она формулируется следующим образом:

найти максимум функции цели (линейной формы)

при системе ограничений

Таким образом, задача целочисленного программирования и соответствующая задача линейного программирования отличаются только условием целочисленности неизвестных.

Как и в задачах линейного программирования, в задачах целочисленного программирования требуется, чтобы оптимальный план максимизировал функцию цели (линейную форму).

Метод Гомори решения задач целочисленного программирования

Метод Гомори является универсальным методом решения задач целочисленного программирования, с помощью которого после конечного числа итераций можно найти оптимальный план или убедиться в том, что задача не имеет решений. Однако практическая ценность метода Гомори весьма ограничена, так как при решении задач нужно выполнить довольно много итераций.

При решении задач целочисленного программирования методом Гомори из множества оптимальных планов задачи линейного программирования постепенно удаляются подмножества, которые не содержат целочисленных планов.

На первой итерации симплекс-методом нужно решить задачу линейного программирования. Если найденные неизвестные удовлетворяют требованию целочисленности, то задача целочисленного программирования решена. Если же среди найденных неизвестных хотя бы одна является дробным числом, то тогда следует составить дополнительное условие (как его составлять - об этом чуть ниже) и присоединить его к системе ограничений задачи целочисленного программирования. Таким образом, из множества планов удаляется подмножество, не содержащее целочисленных планов. Если оптимальный план дополненной таким образом задачи является целочисленным, то задача целочисленного программирования решена. Процесс решения продолжается то тех пор, пока на какой-либо итерации не будет найден целочисленный оптимальный план или можно убедиться, что задача не имеет решения.

Теперь о том, как составлять упомянутое дополнительное условие. Оно, дополнительное условие, получается из одного из уравений системы ограничений из коэффициентов при неизвестных и самих неизвестных по формуле

, где в фигурных скобках - дробные части соответственно свободного члена и коэффициентов при неизвестных.

Например, из симплексной таблицы получаем такое уравнение:

.

Дробную часть свободного члена получаем, вычитая из самого числа его целую часть следующим образом:

Аналогично получаем дробные части коэффициентов при неизвестных:

(при x 3 ),

(при x 4 ).

А общее правило нахождения дробных частей таково: целой частью вещественного числа a называется самое большое целое число [a ] , не превыщающее a ; дробной частью вещественного числа a называется разность {a } = a - [a ] самого числа a и его целой части [a ] .

.

В нашем примере по приведённой выше формуле получается следующее уравнение:

.

Пример 1. Решить методом Гомори следующую задачу целочисленного программирования. Найти максимум целевой функции

при системе ограничений

Решение. Решаем задачу симплекс-методом. Поскольку у нас есть урок по решению задач линейного программирования симплекс-методом , сам метод объясняться здесь не будет, а будут приведены лишь симплексные таблицы.

Дополнительные неизвестные x 3 и x 4 примем за базисные. Выразим базисные неизвестные и функцию цели через неосновные переменные:

Из коэффициентов составим симплексную таблицу:

Составляем следующие таблицы до получения оптимального плана:

Таблица 3
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X3 X4
X1 19/7 4/7 -1/7 -1/2
X2 4/7 -1/7 2/7
С 65/7 10/7 1/7 1/2

Из таблицы 3 находим оптимальный план . Поскольку этот оптимальный план не удовлетворяет условию целочисленности, нам нужно составить дополнительное условие. Дробной частью координаты является число , а дробной частью координаты - число .

Первое уравнение на основании таблицы запишется так:

.

Определив дробные части коэффициентов при неизвестных и свободных членов, получаем следующее дополнительное условие:

или, введя добавочную переменную ,

.

Получаем новую строку в симплексной таблице, полученной из таблицы 3 и добавления коэффициентов из только что полученного уравнения:

Таблица 4
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X3 X4
X1 19/7 4/7 -1/7 -1/2
X2 4/7 -1/7 2/7
X5 -5/7 -4/7 -6/7
С 65/7 10/7 1/7 1/2

Совершаем шаг симплекс-метода и получаем таблицу:

Таблица 5
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X3 X4
X1 17/6 2/3 -1/6 1/7
X2 1/3 -1/3 1/3 -2/7
X4 5/6 2/3 -7/6
С 55/6 4/3 1/6 -1/7

Получили оптимальный план . Этот план, как и предыдущий, не удовлетворяет условию целочисленности. Поэтому вновь требуется составить дополнительное условие. В данном случае можно использовать первое или третье уравнение. Получится следующее дополнительное условие:

.

Составляем следующую таблицу:

Таблица 6
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X3 X4
X1 17/6 2/3 -1/6 1/7
X2 1/3 -1/3 1/3 -2/7
X4 5/6 2/3 -7/6
X6 -5/6 -2/3 -5/6
С 55/6 4/3 1/6 -1/7

Оптимальный план получаем из следующей, завершающей таблицы:

Таблица 7
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X3 X6
X1 3 4/5 -1/5 1/6
X2 0 -3/5 2/5 -1/3
X4 2 8/5 -7/5 7/6
X5 1 4/5 -6/5
С 9 6/5 1/5 -1/6

Так как найденный оптимальный план удовлетворяет условию целочисленности, задача целочисленного программирования решена. Координаты x 5 и x 6 можно не учитывать, так как начальные условия задачи содержит лишь четыре неизвестные. Поэтому окончательный оптимальный план запишется так:

,

а максимум функции цели равен 9.

Метод ветвей и границ решения задач целочисленного программирования

Методом ветвей и границ удобно решать такие задачи целочисленного программирования, в которых число неизвестных невелико либо требования целочисленности относятся не ко всем неизвестным. Суть метода ветвей и границ состоит в том, что для тех неизвестных, к которым относится требование целочисленности, нужно определить границы, в которых могут находиться значения этих неизвестных. Затем решаются соответствующие задачи линейного программирования.

Задание границ, в которых должны находиться значения неизвестных в задаче целочисленного программирования, можно записать так:

На практике во многих случаях границы значений неизвестных уже включены в систему ограничений задачи целочисленного программирования или же их можно определить исходя из экономического содержания задачи. Иначе можно принять, что нижняя граница , а верхняя граница , где M - достаточно большое положительное число.

Как метод ветвей и границ позволяет уточнить границы допустимых значений неизвестных?

Сначала решается, допустим, симплекс-методом задача линейного программирования, соответствующая задаче целочисленного программирования. Пусть найден оптимальный план в этой задаче и значением какой-либо его координаты является дробное число. Тогда потребуется составить две новые задачи линейного программирования. Как это сделать?

Обозначим целую часть координаты в виде . В одной из новых задач линейного программирования нижней границей значения координаты будет число , то есть целая часть значения координаты, увеличенная на единицу. Это запишется следующим образом:

.

В другой новой задаче линейного программирования верхней границей значения координаты будет сама целая часть значения координаты . Это запишется так:

Таким образом, от первой задачи линейного программирования "ответвились" две новые задачи, в которых в которых изменились границы допустимых значений одной неизвестной. При решении каждой из этих задач возможны три случая:

  • оптимальный план не является целочисленным,
  • оптимальный план является целочисленным,
  • задача не имеет решений.

Лишь в первом случае возможно "ответвление" новых задач способом, показанным выше. Во втором и третьем случае "ветвление" прекращается.

На каждой итерации решения задачи целочисленного программирования решается одна задача. Введём понятие: список решаемых задач линейного программирования. Из списка следует выбрать задачу, решаемую на соответствующей итерации. На дальнейших итерациях список меняется, так как решённые задачи в него уже не входят, а вместо них в список включаются новые задачи, которые "ответвились" от предыдущих задач.

Для того, чтобы ограничить "ветвления", то есть уменьшить число решаемых задач, на каждой итерации следует определить нижнюю границу максимального значения целевой функции. Это делается следующим образом:

Согласно алгоритму решения задачи целочисленного программирования методом ветвей и границ, на каждой p -й итерации требуется сделать 4 шага.

Пример 2. Решить методом ветвей и границ следующую задачу целочисленного программирования. Найти максимум целевой функции

при системе ограничений

Решение. Допустим, что заданы или определены следующие границы оптимальных значений неизвестных:

.

Так как задача задана в нормальной форме, она имеет целочисленный план и нижнюю границу максимального значения целевой функции .

В списке решаемых задач - 1-я задача:

Итерация 1.

Шаг 1. С помощью симплекс-метода получено решение 1-й задачи:

Так как найденный план не является целочисленным, следует шаг 4.

Шаг 4. Так как оптимальный план имеет дробную координату 1,2, то и . Применяя границы значений неизвестных 1-й задачи, получаем новые задачи. Во 2-й задаче нижней границей для является , а в 3-й задаче верхней границей для является .

Метод основан на симплекс методе, используя который находиться оптимальное решение без учета условий целочисленности. Если полученный план содержит хотя бы одну дробную компоненту, то накладывается дополнительное ограничение и вычисления снова продолжаются по симплекс методу.

Процесс продолжается до тех пор пока все компоненты плана не будут целочисленные, либо будет показано, что задача не имеет целочисленного решения.

Пусть Х* = (х1, х2, …,хm, …, хn) – оптимальный план найденный по симплекс методу, где базисом являются векторы А1, А2,…,Аm. Пусть хi дробное число (число в столбце В в iой строке). Тогда возможно, что в iой строке:

1. все хij целые, это означает, что задача не имеет целочисленного решения

2. некоторые хij дробные

Пусть [хi] и [хij] целые части чисел хi и хij, а {хi } и { хij } – дробные части.

Обозначим qi = {хi} и qij = { хij } и составим разности.

(qi1Х1+ qi1Х2+…+ qi1Хn)- qi ≥0

Преобразуем неравенство в уравнение умножив его на (-1) и добавив новую переменную Хn+1 и добавив новую строку в симплекс таблице (а значит и столбец). Решаем далее двойственным симплекс методом, если найденный план не является целочисленным, то процесс добавления новой переменной, строки и столбца в симплекс таблице повторяем.

Если в оптимальном плане несколько нецелочисленных компанент, то дополнительное ограничение составляем для максимального qi.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 47 Метод Гомори: основные идеи и краткое описание алгоритма. Экономический смысл введения дополнительного ограничения.:

  1. 25.Экономические методы управления, их целевое назначение. Виды и основное содержание методов экономического воздействия. Краткая характеристика и особенности применения экономических методов

В задачах целочисленного программирования в отличие от задач линейного программирования вводится дополнительное ограничение на переменные величины: они могут принимать лишь целые значения.

В некоторых задачах, например, транспортного типа, это условие выполняется автоматически, если исходные данные (количества отправляемых и получаемых грузов) выражены целыми числами. Но в общей задаче линейного программирования обычные методы решения целочисленности не гарантируют, независимо от того, целыми или дробными являются исходные величины.

В математической записи общая задача целочисленного программирования выглядит следующим образом:

максимизировать

при условиях

x j ≥ 0, x j – целые.

Экономические задачи линейного программирования чаще всего требует целочисленного решения. Это относится к задачам, в которых переменные величины обозначают количество единиц неделимой продукции, оборудования, работников (задачи наилучшего распределения производственных заданий между предприятиями, задачи оптимизации производственной программы отдельных предприятий, задачи оптимальной загрузки оборудования и др.). Часто такие задачи решаются обычным симплекс-методом с последующим округлением полученных значений переменных величин до целых чисел. Но в этом случае можно получить лишь некоторое приближение к действительно оптимальному целочисленному плану.

В другой группе задач линейного программирования подлежащими определению величинами являются производственные мощности, наиболее эффективно обеспечивающие заданную потребность. Поскольку «носителями» производственной мощности выступают отдельные предприятия, неделимые единицы оборудования и т. д., эти задачи также сводятся к целочисленным задачам линейного программирования.

Целочисленными являются также задачи рационального раскроя мерного материала (задачи на минимум отходов), так как переменные обозначают в них, как правило, количество исходных заготовок, раскраиваемое тем или иным способом.



Во всех упомянутых задачах решение может быть найдено обычными методами линейного программирования с последующей корректировкой и получением целочисленного плана, более или менее близкого к оптимальному. Но имеются задачи, нецелочисленное решение которых не имеет смысла. К ним относятся задачи выбора, в которых численные значения переменных служат лишь для определения альтернативы («или - или», «да – нет»).

К целочисленным моделям выбора относят некоторые задачи оперативно-календарного планирования, например, задачи об оптимальной последовательности запуска различных изделий (деталей) в производство. Допустим необходимо определить порядок запуска n деталей, каждая из которых последовательно обрабатывается на нескольких станках. Переменные х ij равняются единице, если деталь j должна запускаться за деталью i , и нулю - во всех остальных случаях. Для каждого фиксированного j , так же как и для каждого i , только одна из n переменных может равняться единице, поэтому в число ограничений задачи входят следующие:

Минимизируется общее время обработки всех деталей на станках данной группы. Нецелочисленное решение такой задачи лишено смысла.

Существует несколько методов решения задач целочисленного программирования. Наиболее известен метод Гомори , основывающийся на использовании симплексного метода.

Рассмотрим математические понятия: конгруэнтности чисел, целой и дробной части числа . Число а конгруэнтно числу b в том и только том случае, когда разность а – b является целым числом. Конгруэнтность обозначают тремя горизонтальными черточками (); таким образом, а b , если а – b есть целое число.

Например: 5 / 3 ≡ 2 / 3 , т.к. 5 / 3 - 2 / 3 = 1;

- 1 / 3 ≡ 2 / 3 , т.к.- 1 / 3 - 2 / 3 = 1.

Все целые числа конгруэнтны друг другу и конгруэнтны нулю. Нецелочисленные элементы можно представить в виде суммы целой и дробной части числа а = [a ] + {a }. Квадратные скобки означают взятие целой части числа, заключённого в них, фигурные – взятие дробной части числа.

Целой частью числа а называется наибольшее целое число [a ], не превосходящее а .

Дробная часть числа а определяется как наименьшее неотрицательное число {a }, конгруэнтное числу а . Дробная часть числа а равна разности между числом а и его целой частью: {a }= а - [a ]

Например, для а = 2 1 / 3 [a ]= 2 {a} = 1 / 3

для a = - 2 1 / 3 [a ]= -3 {a} = 2 / 3

Свойства конгруэнтности чисел:

1. Если а b , то {а } = {b }.

2. {а +b } = {а } + {b }.

3. Если n - целое число, то для любого а

nа ≡ { } n {а }.

При решении задач целочисленного программирования методом Гомори первый этап совпадает с обычным расчетом по симплексному алгоритму. Полученное решение в общем виде будет удовлетворять всем условиям задачи, кроме требования целочисленности (не исключено, конечно, получение целочисленного решения уже на первом этапе). Если среди значений переменных в оптимальном плане (точка А на рис.13) есть дробные, то составляется дополнительное ограничение, как бы «отсекающее» дробную часть решения (линия 1 на рис.13), но оставляющее в силе все ограничения задачи, которым должен удовлетворять оптимальный план. Дополнительное ограничение присоединяется к исходным ограничениям задачи и к расширенной системе вновь применяется симплексная процедура. Если оптимальное решение снова окажется нецелочисленным (точка В на рис.13), то добавляется еще одно дополнительное ограничение (линия 2 на рис.13) и процесс вычислений повторяется. Алгоритм позволяет за конечное число шагов прийти к оптимальному целочисленному решению (если оно существует) (точка С на рис.13).

Рис. 13. Метод отсечений Гомори

Пример решения задачи целочисленного программирования. На приобретение оборудования для нового производственного участка выделено 20 ден.ед. Оборудование должно быть размещено на площади, не превышающей 38 м 2 . Предприятие может заказать оборудование двух видов: более мощные машины типа А стоимостью 5 ден.ед, требующие производственную площадь 8 м 2 (с учетом проходов) и обеспечивающие производительность 7 тыс, единиц продукции за смену; менее мощные машины типа Б стоимостью 2 ден.ед, занимающие площадь 4 м 2 и дающие за смену 3 тыс, единиц продукции.

Обозначим через х 1 количество приобретаемых машин А и через х 2 - количество приобретаемых машин Б, получаем математические условия задачи:

максимизировать 7х 1 + 3х 2 → max

при условиях: 5х 1 + 2х 2 ≤ 20

8х 1 + 4х 2 ≤ 38

х 1 , х 2 ≥ 0 (целые).

С помощью дополнительных переменных х 3 и х 4 исходные неравенства преобразуются в уравнения (приводятся к каноническому виду):

5х 1 + 2х 2 + х 3 = 20

8х 1 + 4х 2 + х 4 = 38

Если основные переменные х 1 и х 2 - целые числа, то из уравнений непосредственно следует, что и переменные х 3 и х 4 могут принимать только целочисленные значения.

Задача решается вначале без учета требования целочисленности.

Симплексная таблица имеет следующий вид:

Базис С План θ
Х 1 Х 2 Х 3 Х 4
X 1 →Х 3 20/5=4 min
Х 4 38/8=4,75
f(x) = 0 -7 -3
X 1 2/5 1/5 4:2/5=10
X 2 →X 4 4/5 -8/5 6:4/5=7,5 min
f(x) =28 -1/5 7/5
X 1 -1/2
X 2 7,5 -2 5/4
f(x) =29,5 1/4

В оптимальном плане Х 1 =1, Х 2 =7,5; максимум целевой функции составляет 29,5. Таким образом, необходимо купить один станок типа А и 7 станков типа В (на 8 станков не хватит ни денег, ни места), тогда объём выпуска продукции составит f(x) =7×1+3×7=28 тыс. единиц продукции.

Найдём целочисленное решение методом Гомори. Для переменной Х 2 , получившей нецелочисленное значение в плане, составляем следующее уравнение, непосредственно вытекающее из приведенной симплексной таблицы:

7,5 = Х 2 – 2Х 3 + 1,25Х 4 .

Х 2 = 7,5 + 2Х 3 – 1,25Х 4 .

Это уравнение, очевидно, должно быть справедливо и для допустимого целочисленного решения задачи.

Поскольку Х 2 - целое число, то целым является и выражение в правой части уравнения; следовательно, величина правой части данного уравнения конгруэнтна нулю:

7,5 + 2Х 3 – 1 ,25Х 4 0,

–2Х 3 + 1,25Х 4 7,5.

Учитывая приведенные выше свойства конгруэнтности, а также и то, что Х 3 и Х 4 - целые числа, это выражение можно преобразовать в следующее:

{-2}X 3 + {1,25}X 4 {7,5} ;

отсюда получаем:

0,25X 4 0,5.

Поскольку X 4 - неотрицательное целое число, имеем:

0,25X 4 = 0,5, или 1,5, или 2,5, ...;

следовательно,

0,25X 4 ≥ 0,5.

Полученное неравенство преобразуется в уравнение и добавляется к исходной системе ограничений, которая содержит теперь следующие три уравнения:

5х 1 + 2х 2 + х 3 = 20

8х 1 + 4х 2 + х 4 = 38

0,25х 4 – x 5 = 0,5.

Повторив процесс решения симплексным методом применительно к расширенной системе ограничений, получим новый оптимальный план, в котором значения переменных, входящих в базис, равны: Х 1 = 2; Х 2 = 5; Х 4 = 2 (остаток свободной площади).

Таким образом, получено оптимальное целочисленное решение задачи: при данных ограничениях максимум производительности (29 тыс. единиц продукции) обеспечивается приобретением 2 машин типа А и 5 машин типа Б.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ

МЕТОД ВЕТВЕЙ И ГРАНИЦ

Этот метод можно применить для решения как полностью, так и частично целочисленных задач дискретного программирования.

Рассмотрим модель

при ограничениях

Допустим, что для каждой целочисленной переменной можно задать верхнюю и нижнюю границы, в пределах которых, безусловно, содержатся ее оптимальные значения

H j ≤ X j ≤ V j ; j=1,2,…,k,…,n.

Обычно H j = 0, но это условие не обязательно. Задача решается симплекс-методом. Если X k принимает дробные значения, то полагаем, что оптимальное решение задачи, будет удовлетворять линейному ограничению X k ≤ D k , либо линейному ограничению X k ≤ D k + 1 , где D k =[X k ] – ближайшее целое число в меньшую сторону от значения X k ; D k + 1 – ближайшее целое в большую сторону от X k . При этом H j ≤ D k ≤ V j – 1 . Тогда необходимо решить пару задач линейного программирования симплекс-методом:

А. В.

Получаем итерационный процесс, представляемый в виде дерева, вершина которого соответствует решению исходной задачи, а две соединенные с ней ветви являются решениями пары задач линейного программирования А и В. Полученные значения целевых функций при этом могут быть меньше или равны значению целевой функции исходной задачи f(X) A ≤ f(X) ­ 0 ; f(X) B ≤ f(X) ­ 0 . Каждая из двух новых полученных вершин ветвей может иметь свои дальнейшие ветвления.

1) Итерационный процесс ветвления продолжается до тех пор, пока среди полученных планов не будет получено целочисленное решение, причем значение целевой функции должно быть большим или равным значениям функций целей других ветвящихся вершин.

2) Если на очередном шаге итерации обе задачи имеют нецелочисленные решения, то для дальнейшего ветвления выбирается вершина, соответствующая задача с большим значением функции цели. Для одной из переменных, получивших дробные значения, составляются новые ограничения для следующих задач линейного программирования.

3) Если на очередном шаге итерации одна из задач имеет целочисленное решение, а среди значений переменных во второй задаче имеются дробные, то из них выбирается задача, имеющая наибольшее значение функции цели. Если это задача, получившая целочисленное решение, то процесс заканчивается, если же эта задача с дробными значениями переменных, то для нее производится дальнейший процесс ветвления.

4) Если на очередном шаге итерации одна из задач не имеет решения, а вторая задачи среди значений переменных в получаемом решении имеет дробные величины. Тогда для первой задачи процесс ветвления прекращается, а для дальнейшего преобразования второй задачи выбирается одна из нецелочисленных переменных, для которой составляются дополнительные ограничения для новой пары задач линейного программирования.

5) Если на очередном шаге итерации одна из задач не имеет решения, а для другой получено целочисленное решение, и нет других вариантов с большим целочисленным значением функции цели и для которых можно продолжать ветвление, то процесс заканчивается, а найденное решение является оптимальным целочисленным решением исходной задачи.

Если выбранная задача приводит к обрыву (тупику) или значение функции меньшему, чем в задаче В.1 f(X) A.4 < f(X)­ В,1 ., то происходит возврат к задаче В.1 и происходит новое ветвление.



Рис.14. Блок-схема алгоритма метода ветвей и границ

Рис. 15. Метод «ветвей и границ»

Графический метод решения задач целочисленного программирования.

При наличии в задаче линейного программирования двух переменных, а в системе ограничения – неравенств, она может быть решена графическим методом без требований целочисленных переменных.

Если оптимальное решение этой задачи является целочисленным, то оно и является оптимальным для исходной задачи.

Если же полученное оптимальное решение не целочисленное, то строится дополнительное линейное ограничение. Оно обладает следующими свойствами:

1. Оно должно быть линейным;

2. Должно отсекать найденный оптимальный не целочисленный план;

3. Не должно отсекать ни одного целочисленного плана.

Алгоритм графического решения задачи

Целочисленного программирования.

1. Построить систему координат x 1 0х 2 и выбрать масштаб.

2. Найти область допустимых решений (ОДР) системы ограничений задачи.

3. Построить целевую функцию, являющуюся линией уровня и на ней указать направление нормали.

4. Переместить линию целевой функции по направлению нормали через ОДР, чтобы она из секущей стала касательной к ОДР и проходила через наиболее удаленную от начала координат точку. Эта точка будет являться точкой экстремума, т.е. решением задачи.

Если окажется, что линия целевой функции параллельна одной из сторон ОДР, то в этом случае экстремум достигается во всех точках соответствующей стороны, а задача линейного программирования будет иметь бесчисленное множество решений.

5. Найти координаты, точки экстремума и значение целевой функции в ней. Если полученные значения не целочисленные, то перейти к следующему шагу.

6. Выделить у этих координат область с целочисленными значениями.

7. Определить новые координаты и построить граф.

8. Найти точки с целыми значениями искомых переменных, подставить в уравнение целевой функции и найти её значение. Максимальное из полученных значений целевой функции и будет решением задачи.



Метод Гомори решения задач целочисленного программирования. Примеры решения экономических задач.

Данный метод основан на симплексном методе.

На первом этапе данная задача решается симплекс-методом, если полученное решение не целочисленное, то вводим дополнительное ограничение, которые должны быть:

Линейным;

Отсекать найденный оптимальный не целочисленный план;

Не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение обладающие этими свойствами называются правильным отсечением.

Ограничение накладывается на нецелочисленную переменную или на ту переменную, которая имеет большее дробное значение. Ограничение накладывается на не целочисленную переменную через не основные переменные. Ограничение составляется используя следующее правило: дробная часть свободного члена берётся с тем же знаком, который он имеет и в уравнении, а дробные части неосновных переменных - с противоположным знаком и выделяется положительная дробь. Например, {a}=a, {-a}={-A+a * }, где А - целая часть отрицательное число, а * -положительная дробь.

Получаем новое ограничение, вводим новую основную переменную, приведённое в формуле (1.2.3).

где x n+1 - нововведённая переменная,

x j - переменные не входящие в базис.

Новое ограничение следует вводить в последний этап симплекс метода, когда все переменные, имеющиеся в целевой функции, так же входят в базис.

Полученное базисное решение всегда не допустимое, соответствующее правильному отсечению.

Для получения допустимого базисного решения необходимо перевести в основные переменную, входящую с положительным коэффициентом в уравнение, в котором свободный член отрицательный.

При выборе какую переменные ввести в базис взамен нововведённой, следует выразить эти переменные и следую логическому рассуждения, подставить в базис ту переменную которая даёт целочисленное решение на наложенное ограничение.

Введение новых ограничений следует производить, если не получено целочисленное решение, после решения на первом этапе симплекс-методом и после введения новых ограничений.

Если в процессе решения появится выражение с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В этом случае и данная задача не имеет целочисленного оптимального решения.

Задача. Контейнер объемом помещен на контейнеровоз грузоподъемностью 12т. Контейнер требуется заполнить грузом двух наименований. Масса единицы груза, объем единицы груза, стоимости приведены в таблице:

Вид груза т ден.ед.

Требуется загрузить контейнеровоз таким образом, чтобы стоимость перевозимого груза была максимальной.

Решим задачу методом Гомори.

Введем обозначения: х 1 – количество груза первого вида, х 2 – количество груза второго вида. Тогда экономико-математическая модель задачи примет вид:

Преобразуем математическую модель ЗЛП без учета целочисленности переменных к допустимому предпочтительному виду канонической формы:

По алгоритму основного симплекс-метода заполним симплексную таблицу решения ЗЛП:

*
-10 -12*
* 5/2 -1/2 19/2
1/2 1/2 5/2
-4* -30
2/5 -1/5 19/5
-1/5 3/5 3/5
8/5 26/5 -226/5

Оптимальное решение ЗЛП не удовлетворяет ограничению целочисленности, следовательно, к основным ограничениям необходимо добавить новое линейное ограничение.

Замечание 9.1. Если имеется несколько дробных , то для той у которой дробная часть больше всего составляется ограничение.

Составим сечение Гомори для первого ограничения оптимальной симплекс-таблицы решения ЗЛП (так как ):

,

.

Преобразуем полученное ограничение к канонической форме с предпочтительной переменной:

.

Продолжим решение задачи двойственным симплекс-методом, включив новое ограничение в оптимальную симплекс-таблицу решения ЗЛП:

2/5 -1/5 19/5
-1/5 3/5 3/5
-2/5 -4/5 -4/5
8/5* 26/5 -226/5
-5/2
-42

Оптимальное решение расширенной ЗЛП удовлетворяет ограничению целочисленности.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: