Азы радиоэлектроники. С чего начать изучение электроники

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте , на мой ответ, что в инете море информации на эту тему, занимайся - не хочу, я услышал от обоих примерно одинаковое, - что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 - 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 - 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги - дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно - утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet ), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип . Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта - AKV .

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Видео версия статьи:

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.
Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.
Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.
Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.

Зависимость между всеми тремя рассмотренными величинами в цепи постоянного тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.

Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением. Удельное сопротивление веществ можно найти в интернете в виде таблиц.
Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.
Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!
Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.
Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед.
Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).
Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.

Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, джеймсом джоулем и эмилием ленцем.
Закон назвали закон джоуля ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах. Я нашёл вот такую очень крутую табличку, которая связывает все изученные нами на этот момент величины.
Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.

Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.

Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.
Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.

Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.
Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.

Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.
Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.
И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.

Электроника, как хобби. Кризис жанра?

Многие из тех, кто превратил электронику в занимательное времяпрепровождение, часто задают себе вопрос: «Зачем я этим занимаюсь?». Читаю журналы и книги из раздела «Электроника это просто» и прочую литературу из серии «Для чайников». На более сложные и умные книги просто не хватает терпения.

А далее рассуждения идут примерно по такому руслу: вот, мол, сделал простенький усилитель, собрал несколько мигалок (световых эффектов), . А оказывается, все это можно купить, если не новое, то во всяком случае б/у, и окажется все лучшего качества, в фирменных корпусах, даже в рабочем состоянии. Спрашивается, где же выгода, экономический эффект от подобных занятий?

Но, пожалуй, не стоит забивать голову такими мыслями. Ведь можно привести немало примеров, которые не приносят никакой выгоды. Такие занятия называются хобби, т.е. увлечение, в котором вряд ли следует искать смысл. Это как любовь, ведь мало кто может ответить, в чем ее смысл. Или рыбалка, - проще пойти в магазин и купить рыбы, чем стоять с удочкой возле реки и кормить «злющих комаров». Так таких рыбаков просто не счесть. То же самое можно сказать и об охотниках: добытая утка по размерам невелика - куда меньше покупной.

Так и электроника, увлечение которой в молодом возрасте приходит просто из любопытства: а как это устроено, и почему оно работает так, а не иначе? К тому же наука это непростая, требует приложить немало усилий на изучение теории, создание первых работающих устройств, а впоследствии, при появлении опыта, разработка собственных схем и ремонт аппаратуры промышленного изготовления.

Серьезные игрушки

Одним из «непонятных» направлений в любительской электронике можно считать роботостроение. Конструкции подобных «роботов» чаще всего представляют собой небольшую тележку, которая может объезжать препятствия, двигаться по заданному маршруту и управляться от пульта управления. Правда такое творчество наиболее характерно для западных радиолюбителей, в странах СНГ этим занимаются не столь охотно.

Казалось бы, что тут такого? Непосвященный, увидев конечный результат, просто скажет: «Ну и что?». А тем, кто занимается этим на полном серьезе, тема эта настолько близка, важна и понятна, что по этому направлению в Интернете можно найти не один и не два форума, и даже скачать книги, чаще на английском языке, на эту тему.

И в самом деле, если разобраться, то устройство «роботов» заслуживает внимания. Ведь схемы управления чаще всего строятся на микроконтроллерах, пусть даже самых простых, но начинать и следует с простого. Сначала «изобретатель» практикуется в написании простых и коротких программ (без программы не будет работать ни один контроллер), а после переходит к сложным и большим. Ведь изучить программирование можно только начав писать собственные программы. хорошо, если в этот момент рядом окажется человек, который может объяснить с чего начинать, зачем все это программирование нужно.

Любительская электроника - это один из способов поработать головой и руками. Ведь придется научиться не только хорошо паять, часто приходится делать и слесарные операции, чтобы все получилось на высшем уровне. Решить проблемы, которые другие люди решают простым походом в магазин, а вот я сделал сам. Это еще один повод, чтобы получить удовольствие от электроники, как от хобби.

Достаточно часто случается, что именно это хобби плавно переходит в любимую профессию. И, видимо, прав был древнекитайский мыслитель Конфуций, который сказал примерно следующее: «Если выбранная работа будет вам по душе, то ни одного дня в своей жизни вам не придется работать». Наверно, в этом изречении подразумевалось, что слово работа однокоренное со словом раб.

Итак, человек после основательных раздумий, может даже под влиянием своих хороших друзей, принял решение в свободное время заняться электроникой, превратить ее в свое хобби: заразительными бывают примеры не только плохие, но и хорошие. Это решение сразу вызывает появление целого ряда проблем, казалось бы неразрешимых. Вот только некоторые из них.

Как организовать рабочее место

Такая проблема достаточно просто решается в современных частных домах, где небольшой уголок, чтобы поставить стол, можно найти где угодно: в гараже, в подвале, в кладовке, в комнате и может даже на чердаке. Несколько сложнее дело обстоит в многоквартирном доме, но если близкие смогут понять, насколько серьезно и полезно это увлечение, то свободный уголок в одной из трех и даже двух комнат всегда найдется.

Если увлечение электроникой не прекратится и не зачахнет в самом начале, а пойдет успешно, то со временем любитель - электронщик для занятий любимым делом может арендовать помещение, открыть свою ремонтную мастерскую, превратить хобби в любимую профессию. Таких специалистов в настоящее время великое множество.

Чаще всего электроникой начинают заниматься примерно так: берется готовая схема, приобретаются детали, инструменты, и вперед. Берется в руки паяльник, собирается самая первая схема, включается, ура, заработало!

Первый успех заставляет перейти к повторению других готовых схем. Но иногда бывает и по другому: собранная схема не заработала, попытки «оживить» ее результатов не принесли, и паяльники, детали забрасываются в дальний угол, иногда навсегда. Поэтому, первые схемы должны быть простыми, которые начинают работать сразу. В этом плане можно рекомендовать классические схемы электроники. Прежде всего это генераторы, на основе которых можно собрать «пищалки и мигалки».

Первая заработавшая схема просто окрыляет. Но, чтобы увлечение электроникой не превратилось в мучение, следует заняться изучением теории, хотя бы самых азов.

Где взять теоретические познания

Если человек в средней школе учился достаточно хорошо, то закон Ома и еще несколько основных законов физики запомнил. Совсем неплохо, если и математика была любимым предметом. А если удалось освоить еще и английский язык, то совсем прекрасно: большая часть современной технической документации как раз на английском. Именно эти учебные дисциплины и заставляют задаться вопросом, как вся эта электроника устроена, а со временем превратить ее в свое хобби.

И не надо думать, что без специального высшего образования совсем ничего не получится. В свое время журнал «Радио» многих своих авторов и читателей называл «инженерами без диплома», настолько хорошо они разбирались в схемотехнике различных устройств и собирали неплохие конструкции. Вообще журналов до сих пор выпускается множество, например украинский «Радиоаматор», белорусский «Радиомир», российские «Схемотехника» и «Ремонт электронной» техники.

В журнале «Радиоконструктор 03 - 2011» есть целая статья об использовании радиодеталей б/у, что очень кстати для начинающих радиолюбителей. Там же даются рекомендации по проверке деталей и предупреждение о том, что попытка «собрать» транзистор из двух диодов, что иногда пытаются сделать начинающие, к положительному результату не приведет, хотя при проверке транзистор похож именно на два диода. Ну, почти, как у классиков: «Моторчик был очень похож на настоящий, но не работал».

Электронные журналы

В качества примера можно привести электронный журнал «Радиолоцман». Именно последние три слова достаточно набрать в поисковой строке, например, «Яндекса», чтобы познакомиться с его содержимым, и даже скачать отдельные номера или даже подшивку за целый год. Содержимое журнала достаточно многообразно и интересно.

Журналы, это, конечно, хорошо, но не следует забывать и о книгах. В сети Интернет сейчас можно найти практически любую литературу, в том числе и техническую. Многие из этих книг стали уже музейными экспонатами, например, справочники радиолюбителя, начиная со второй половины прошлого века. В них можно не только проследить историю развития радиолюбительства, но и найти множество полезных сведений, которые до сих пор не утратили своей актуальности.

Одной из лучших книг по радиоэлектронике следует, пожалуй, считать «Искусство схемотехники» авторы П. Хоровиц и У. Хилл. Последнее издание этого занимательного трехтомника вышло в 1993 году.

В книге рассказывается практически обо всем, что использовалось в то время продолжает использоваться до сих пор. При этом авторы, даже самые сложные схемы объясняют просто, что называется «на пальцах», используя минимальное количество формул. Книга содержит множество практических схем с примерами их расчетов. Текст книги, рассчитанной на массового читателя, достаточно прост и дружелюбен, содержит некоторое количество юмора. Поэтому не надо бояться прочтения этого трехтомника.

С таким же названием есть несколько книг и других, более современных авторов, которые также можно скачать в Интернете, либо купить бумажный вариант в интернет магазине. В этих книгах можно найти сведения по современной элементной базе, ведь электроника развивается быстрее всех остальных областей науки и техники.

Нетривиально занятие, скажу я вам. :) Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще;)).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Закон Ома

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Научиться можно только тому, что любишь.
Гёте И.

"Как самостоятельно изучить электронику с нуля?" — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку -- будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину... Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: "Раз ты хорош в математике, то тебе надо пойти в электронику". Типичная чушь. Электроника -- это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное -- это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на "метод тыка", но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование -- это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения , владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше - люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать -- это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Климчевский Ч. - Азбука радиолюбителя.
  2. Эймишен. Электроника? Нет ничего проще.
  3. Б.С.Иванов. Осциллограф - ваш помощник (как работать с осциллографом)
  4. Хабловски. И. Электроника в вопросах и ответах
  5. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  6. Ревич. Занимательная электроника
  7. Шишков. Первые шаги в радиоэлектронике
  8. Колдунов. Радиолюбительская азбука
  9. Бессонов В.В. Электроника для начинающих и не только
  10. В. Новопольский - Работа с осциллографом

Это мой список книг для самых "маленьких". Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  3. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  4. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  5. Шустов М. А. Практическая схемотехника.
  6. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  7. Барнс. Эллектронное конструирование
  8. Миловзоров. Элементы информационных систем
  9. Ревич. Практическое программирвоание МК AVR
  10. Белов. Самоучитель по Микропроцессорной технике
  11. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  12. Ю.Сато. Обработка сигналов
  13. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  14. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь .

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет -- будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: