8 перевести в двоичную систему. Перевод чисел в различные системы счисления с решением

Привет, посетитель сайта сайт! Продолжаем изучать и протокол сетевого уровня IP, а если быть более точным, то его версию IPv4. На первый взгляд тема двоичных чисел и двоичной системы счисления не имеет отношения к протоколу IP, но если вспомнить, что компьютеры работают с нулями и единицами, то оказывается, что двоичная система и ее понимание — это основа основ, нам нужно научиться переводить числа из двоичной системы счисления в десятичную и наоборот: из десятичной в двоичную . Это нам поможет лучше понять протокол IP, а также принцип работы масок сети переменной длины. Давайте приступать!

Если тема компьютерных сетей вам интересна, то можете ознакомиться с другими записями курса.

4.4.1 Введение

Прежде чем мы начнем, стоит вообще объяснить зачем нужна эта тема сетевому инженеру. Хотя вы могли убедиться в ее необходимости, когда мы говорили , но, вы можете сказать, что есть IP-калькуляторы, которые существенно облегчают задачу по распределению IP-адресов, вычислению нужных масок подсетей/сетей и определению номера сети и номера узла в IP-адресе. Так-то оно так, но IP-калькулятор не всегда под рукой, это причина номер раз. Причина номер два заключается в том, что на экзаменах Cisco вам не дадут IP-калькулятор и все преобразования IP-адресов из десятичной системы счисления в двоичную вам придется делать на листе бумаги , а вопросов, где это требуется на экзамене/экзаменах по получению сертификата CCNA не так уж и мало, будет обидно, если из-за такой мелочи экзамен будет завален. Ну и наконец понимания двоичной системы счисления ведет к лучшему пониманию принципа работы .

Вообще сетевой инженер не обязан уметь делать перевод чисел из двоичной системы счисления в десятичную и наоборот в уме. Более того, это редко кто умеет делать в уме, в основном к такой категории относятся преподаватели различных курсов по компьютерным сетям, так как они сталкиваются с этим постоянно изо дня в день. Но при помощи листа бумаги и ручки вам стоит научиться осуществлять перевод.

4.4.2 Десятичные цифры и числа, разряды в числах

Давайте начнем с простого и поговорим про двоичные цифры и числа , вы же знаете, что цифры и числа – это две разные вещи. Цифра – это специальный символ для обозначения, а число – это абстрактная запись, означающая количество. Например, чтобы записать, что у нас пять пальцев на руке мы можем использовать римские и арабский цифры: V и 5. В данном случае пять является одновременно и числом, и цифрой. А, например, для записи числа 20 мы используем две цифры: 2 и 0.

Итого, в десятичной системе счисления у нас есть десять цифр или десять символов (0,1,2,3,4,5,6,7,8,9), комбинируя которые мы можем записывать различные числа. Каким принципом мы руководствуемся, используя десятичную систему счисления? Да все очень просто, мы возводим десятку в ту или иную степень, для примера возьмём число 321. Как его можно записать по-другому, да вот так: 3*10 2 +2*10 1 +1*10 0 . Таким образом получается, что число 321 представляет собой три разряда:

  1. Цифра 3 означает старший разряд или в данном случае это разряд сотен, иначе их количество.
  2. Цифра 2 стоит в разряде десятков, у нас два десятка.
  3. Цифра один относится к младшему разряду.

То есть в данной записи двойка это не просто двойка, а две десятки или два раза по десять. А тройка это не просто тройка, а три раза по сто. Получается такая зависимость: единица каждого следующего разряда в десять раз больше единицы предыдущего, ведь, что такое 300 – это три раза по сто. Отступление по поводу десятичной системы счисление было нужно, чтобы проще понять двоичную.

4.4.3 Двоичные цифры и числа, а также их запись

В двоичной системе счисления всего две цифры: 0 и 1 . Поэтому запись числа в двоичной системе зачастую гораздо больше, чем в десятичной. За исключением чисел 0 и 1, ноль в двоичной системе счисления равен нулю в десятичной, аналогично и для единицы. Иногда, чтобы не перепутать в какой системе счисления записано число, используют суб-индексы: 267 10 , 10100 12 , 4712 8 . Число в суб-индексе указывает на систему счисления.

Для записи двоичных чисел могут быть использованы символы 0b и &(амперсанд): 0b10111, &111 . Если в десятичной системе счисления, чтобы произнести число 245 мы воспользуемся вот такой конструкцией: двести сорок пять, то в двоичной системе счисления чтобы назвать число, нам нужно произнести цифру из каждого разряда, например, число 1100 в двоичной системе счисления следует произносить не как тысяча сто, а как один, один, ноль, ноль. Давайте посмотрим на запись чисел от 0 до 10 в двоичной системе счисления:

Думаю, логика должна быть уже понятна. Если в десятичной системе счисления для каждого разряда у нас было доступно десять вариантов (от 0 до 9 включительно), то в двоичной системе счисления в каждом из разрядов двоичного числа у нас только два варианта: 0 или 1 .

Для работы с IP-адресами и масками подсети нам достаточно натуральных чисел в двоичной системе счисления, хотя двоичная система позволяет записывать дробные и отрицательные числа, но нам это без надобности .

4.4.4 Преобразование чисел из десятичной системы счисления в двоичную

Давайте лучше разберемся с тем, как преобразовать число из десятичной системы счисления в двоичную . И тут все на самом деле очень и очень просто, хотя на словах объяснить трудно, поэтому сразу приведу пример преобразования чисел из десятичной системы счисления в двоичную . Возьмем число 61, чтобы выполнить преобразование в двоичную систему, нам нужно это число делить на два и смотреть, что получается в остатке от деления. А результат деления снова делить на два. В данном случае 61 – это делимое, в качестве делителя у нас всегда будет двойка, а частное (результат деления) мы делим снова на два, продолжаем деление до тех пор, пока в частном не окажется 1, эта последняя единица и будет крайним левым разрядом. Рисунок ниже это демонстрирует.

При этом обратите внимание, что число 61, это не 101111, а 111101, то есть выписываем результат с конца. Единицу в последнем частном смысла делить на два нет, поскольку в данном случае используется целочисленное деление, а при таком подходе получается так, как на Рисунке 4.4.2.

Это не самый быстрый способ перевода числа из двоичной системы счисления в десятичную . У нас есть несколько ускорителей. Например, число 7 в двоичной системе записывается как 111, число 3 как 11, а число 255 как 11111111. Все эти случаи до безобразия просты. Дело в том, что числа 8, 4, и 256 являются степенями двойки, а числа 7, 3 и 255 на единицу меньше этих чисел. Так вот для числа, которые на единицу меньше, чем число равное степени двойки, действует простое правило: в двоичной системе такое десятичное число записывается количеством единиц равным степени двойки. Так, например, число 256 это два в восьмой степени, следовательно, 255 записывается как 11111111, а число 8 это два в третьей степени, а это говорит нам о том, что 7 в двоичной системе счисления будет записано как 111. Ну а понять, как записать 256, 4 и 8 в двоичной системе счисления тоже не трудно, достаточно просто прибавить единицу: 256 = 11111111 + 1 = 100000000; 8 = 111 + 1 = 1000; 4 = 11 + 1 = 100.
Любой свой результат вы можете проверить на калькуляторе и по началу лучше так и делать.

Как видим, делить мы еще не разучились. И теперь можем двигаться дальше.

4.4.5 Преобразование чисел из двоичной системы счисления в десятичную

Преобразование чисел из двоичной системы счисления выполняется гораздо проще, чем перевод из десятичной в двоичную. В качестве примера перевода будем использовать число 11110. Обратите внимание на табличку ниже, она показывает степень, в которую нужно возвести двойку, чтобы потом в итоге получить десятичное число.

Чтобы из этого двоичной числа получить десятичное, нужно каждое число в разряде умножить на два в степени, а затем сложить результаты перемножения, проще показать:

1*2 4 +1*2 3 +1*2 2 +1*2 1 +0*2 0 = 16+8+4+2+0=30

Откроем калькулятор и убедимся, что 30 в десятичной системе счисления, это 11110 в двоичной.

Видим, что всё сделано верно. Из примера видно, что перевод числа из двоичной системы счисления в десятичную выполняется куда проще, чем обратный перевод . Чтобы уверенно работать с нужно лишь помнить степени двойки до 2 8 . Для наглядности приведу таблицу.

Нам больше и не нужно, поскольку максимально возможное число, которое можно записать в один байт (8 бит или восемь двоичных значений) равно 255, то есть в каждом октете IP-адреса или маски подсети протокола IPv4 максимально возможное значение — 255. В есть поля, в которых есть значения больше 255, но их нам рассчитывать не нужно.

4.4.6 Сложение, вычитание, умножение двоичных чисел и другие операции с двоичными числами

Давайте теперь посмотрим на операции, которые можно выполнять с двоичными числами . Начнем с простых арифметических операций, а затем перейдем к операциям булевой алгебры.

Сложение двоичных чисел

Складывать двоичные числа не так уж сложно: 1+0 =1; 1+1=0 (в дальнейшем дам пояснение); 0+0=0. Это были простые примеры, где использовался лишь один разряд, давайте посмотрим на примеры, где количество разрядов больше, чем один.
101+1101 в десятичной системе это будет 5 + 13 = 18. Давайте посчитаем в столбик.

Результат выделен оранжевым цветом, калькулятор говорит, что мы посчитали верно, можете проверить. Теперь давайте смотреть почему так получилось, ведь вначале я написал, что 1+1=0, но это для случая, когда у нас есть только один разряд, для случаев, когда разрядов больше, чем один, 1+1=10 (или два в десятичной), что логично.

Тогда смотрите, что получается, мы выполняем сложения по разрядам справа налево:

1. 1+1=10, записываем ноль, а единица уходит в следующий разряд.

2. В следующем разряде получается 0+0+1=1 (эта единица пришла к нам из результата сложения на шаге 1).

4. Тут у нас есть единица только у второго числа, но сюда еще перенеслась, поэтому 0+1+1 = 10.

5. Склеиваем всё воедино:10|0|1|0.

Если лень в столбик, то давайте считать так: 101011+11011 или 43 + 27 = 70. Как тут можно поступить, а давайте смотреть, ведь нам никто не запрещает делать преобразования, а от перемены мест слагаемых сумма не меняется, для двоичной системы счисления это правило также актуально.

  1. 101011 = 101000 + 11 = 101000 + 10 + 1 = 100000 + 1000 + 10 + 1.
  2. 11011 = 11000 + 10 + 1 = 10000 + 1000 + 10 + 1.
  3. 100000 + 10000 + (1000 +1000) + (10+10) + (1+1).
  4. 100000 + (10000 + 10000) + 100 + 10.
  5. 100000 + 100000 +110
  6. 1000000 + 110.
  7. 1000110.

Можете проверить калькулятором, 1000110 в двоичной системе счисления это 70 в десятичной.

Вычитание двоичных чисел

Сразу пример для вычитания одноразрядных чисел в двоичной системе счисления , про отрицательные числа мы не говорили, поэтому 0-1 не берем в расчет: 1 – 0 = 1; 0 – 0 = 0; 1 – 1 = 0. Если разрядов больше чем один, то тоже все просто, даже никаких столбиков и ухищрений не нужно: 110111 – 1000, это то же самое, что и 55 – 8. В результате мы получим 101111. И биться сердце перестало, откуда единица в третьем разряде (нумерация слева направо и начинается с нуля)? Да всё просто! Во втором разряде числа 110111 стоит 0, а в первом разряде стоит 1 (если примем, что нумерация разрядов начинается с 0 и идет слева направо), но единица четвертого разряда получается путем сложения двух единиц третьего разряда (получается этакая виртуальная двойка) и от этой двойки мы отнимаем единицу, которая стоит в нулевом разряде числа 1000, ну а 2 — 1 = 1, ну а 1 является допустимой цифрой в двоичной системе счисления.

Умножение двоичных чисел

Нам осталось рассмотреть умножение двоичных чисел, которое реализует за счет сдвига на один разряд влево . Но для начала давайте посмотрим на результаты одноразрядного умножения: 1*1 = 1; 1*0=0 0*0=0. Собственно, всё просто, теперь давайте посмотрим на что-нибудь более сложное. Возьмем числа 101001 (41) и 1100 (12). Умножать будем столбиком.

Если из таблицы непонятно как так получилось, то попробую объяснить словами:

  1. Умножение двоичных чисел удобно делать в столбик, поэтому выписываем второй множитель под первым, если числа с разным количество разрядов, то будет удобнее, если большее число будет сверху.
  2. Следующим шагом умножаем все разряды первого числа на самый младший разряд второго числа. Записываем результат перемножения ниже при этом нужно записать так, чтобы под каждым соответствующим разрядом был записан результат перемножения.
  3. Теперь нам нужно перемножить все разряды первого числа на следующий разряд второго числа и результат записать еще одной строчкой ниже, но этот результат нужно сдвинуть на один разряд влево, если смотреть на таблицу, то это вторая последовательность нулей сверху.
  4. Точно также нужно сделать для последующих разрядов, каждый раз сдвигаясь на один разряд влево, а если смотреть на таблицу, то можно сказать, что на одну клетку влево.
  5. У нас получилось четыре двоичных числа, которые нужно теперь сложить и получить результат. Сложение мы недавно рассмотрели, проблем возникнуть не должно.

В общем-то, операция умножения не такая уж и сложная, нужно лишь немного попрактиковаться.

Операции булевой алгебры

В булевой алгебре есть два очень важных понятия: true (истина) и false (ложь), эквивалентом для них служат ноль и единица в двоичной системе счисления. Операторы булевой алгебры расширяют количество доступных операторов над этими значениями, давайте на них посмотрим.

Операция «Логическое И» или AND

Операция «Логическое И» или AND эквивалентно умножению одноразрядных двоичных чисел.

1 AND 1 = 1; 1 AND 0 = 1; 0 AND 0 = 0; 0 AND 1 = 0.

1 AND 1 = 1 ;

1 AND 0 = 1 ;

0 AND 0 = 0 ;

0 AND 1 = 0.

Единица в результате «Логического И» будет только в том случае, если оба значения равны единицы, во всех остальных случаях будет ноль.

Операция «Логическое ИЛИ» или OR

Операция «Логическое ИЛИ» или OR работает по следующему принципу: если хотя бы одно значение равно единице, то в результате будет единица.

1 OR 1 = 1; 1 OR 0 = 1; 0 OR 1 = 1; 0 OR 0 = 0.

1 OR 1 = 1 ;

1 OR 0 = 1 ;

0 OR 1 = 1 ;

0 OR 0 = 0.

Операция «Исключающее ИЛИ» или XOR

Операция «Исключающее ИЛИ» или XOR даст нам в результате единицу только в том случае, если один из операндов равен единице, а второй равен нулю. Если оба операнда равны нулю, будет ноль и даже если оба операнда равны единице, в результате получится ноль.

2.3. Перевод чисел из одной системы счисления в другую

2.3.1. Перевод целых чисел из одной системы счисления в другую

Можно сформулировать алгоритм перевода целых чисел из системы с основанием p в систему с основанием q :

1. Основание новой системы счислениявыразитьцифрамиисходной системы счисления ивсепоследующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числаиполучаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученныеостатки,являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

Пример 2.12. Перевестидесятичное число 173 10 в восьмеричную систему счисления:

Получаем:173 10 =255 8

Пример 2.13. Перевести десятичное число 173 10 в шестнадцатеричную систему счисления:

Получаем: 173 10 =AD 16 .

Пример 2.14. Перевести десятичное число 11 10 в двоичную систему счисления. Рассмотреннуювыше последовательность действий (алгоритм перевода) удобнее изобразить так:

Получаем: 11 10 =1011 2 .

Пример 2.15. Иногда более удобно записать алгоритм перевода в форме таблицы. Переведем десятичное число 363 10 в двоичное число.

Делитель

Получаем: 363 10 =101101011 2

2.3.2. Перевод дробных чисел из одной системысчисленияв другую

Можно сформулировать алгоритм перевода правильнойдроби с основанием p в дробь с основанием q:

1. Основание новой системы счислениявыразитьцифрамиисходной системы счисленияивсепоследующие действия производить в исходной системе счисления.

2. Последовательноумножатьданноечислои получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведенияне станет равной нулю или будет достигнута требуемая точность представления числа.

3. Полученные целые части произведений,являющиеся цифрами числа в новой системе счисления,привести в соответствие с алфавитомновой системы счисления.

4. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 2.17. Перевести число 0,65625 10 в восьмеричную систему счисления.

Получаем: 0,65625 10 =0,52 8

Пример 2.17. Перевести число 0,65625 10 вшестнадцатеричнуюсистему счисления.

x 16

Получаем: 0,65625 10 =0,А8 1

Пример 2.18. Перевестидесятичнуюдробь 0,5625 10 в двоичную систему счисления.

x 2

x 2

x 2

x 2

Получаем: 0,5625 10 =0,1001 2

Пример 2.19. Перевести в двоичную систему счисления десятичную дробь 0.7 10 .

Очевидно, чтоэтот процесс может продолжаться бесконечно,давая все новые и новые знакивизображениидвоичногоэквивалентачисла 0,7 10 . Так,за четыре шага мы получаем число 0,1011 2 , а за семь шагов число 0,1011001 2 ,которое является более точным представлениемчисла 0,7 10 в двоичной системе счисления,и т.д.Такой бесконечный процесс обрывают на некотором шаге, когда считают, что получена требуемая точность представления числа.

2.3.3. Перевод произвольных чисел

Перевод произвольных чисел,т.е. чисел, содержащих целую и дробную части,осуществляется в два этапа.Отдельно переводится целая часть, отдельно - дробная. В итоговой записи полученного числа целая часть отделяется от дробной запятой (точкой).

Пример 2.20 . Перевести число 17,25 10 в двоичную систему счисления.

Получаем: 17,25 10 =1001,01 2

Пример 2.21. Перевести число 124,25 10 в восьмеричную систему.

Получаем: 124,25 10 =174,2 8

2.3.4. Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2 n и обратно

Перевод целых чисел. Если основание q-ичной системы счисления является степеньючисла 2, топереводчисел из q-ичной системы счисления в 2-ичную и обратно можно проводить по более простым правилам. Для того, чтобы целое двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Двоичное число разбить справа налево на группы по nцифр в каждой.

2. Если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов.

Пример 2.22. Число 101100001000110010 2 переведем в восьмеричную систему счисления.

Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 541062 8 .

Пример 2.23. Число 1000000000111110000111 2 переведем в шестнадцатеричную систему счисления.

Разбиваем числосправа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричноепредставлениеисходногочисла: 200F87 16 .

Перевод дробных чисел. Длятого,чтобыдробное двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Двоичное число разбить слева направо на группы по nцифр в каждой.

2. Еслив последней правой группе окажется меньше n разрядов,то ее надо дополнить справа нулями до нужного числа разрядов.

3. Рассмотреть каждую группу как n-разрядное двоичное число изаписать ее соответствующей цифрой в системе счисления с основанием q=2 n .

Пример 2.24. Число0,10110001 2 переведем в восьмеричную систему счисления.

Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 0,542 8 .

Пример 2.25. Число0,100000000011 2 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричноепредставлениеисходногочисла: 0,803 16

Перевод произвольных чисел. Для того, чтобы произвольное двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Целую часть данногодвоичногочисларазбитьсправа налево, а дробную - слева направо на группы по n цифр в каждой.

2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулямидо нужного числа разрядов;

3.Рассмотретькаждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2 n

Пример 2.26. Число 111100101,0111 2 переведем в восьмеричную систему счисления.

Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 745,34 8 .

Пример 2.27. Число11101001000,11010010 2 переведем в шестнадцатеричную систему счисления.

Разбиваем целую и дробную части числа на тетрадыи под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричное представление исходного числа: 748,D2 16 .

Перевод чисел из систем счисления с основанием q=2 n в двоичную систему. Для того, чтобы произвольное число, записанное в системе счисления с основанием q=2 n , перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-значным эквивалентом в двоичной системе счисления.

Пример 2.28 .Переведем шестнадцатеричное число 4АС35 16 вдвоичную систему счисления.

В соответствии с алгоритмом:

Получаем: 1001010110000110101 2 .

Задания для самостоятельного выполнения (Ответы )

2.38. Заполните таблицу, в каждой строке которой одно и то же целое число должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

2.39. Заполните таблицу, в каждой строке которой одно и то же дробное число должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

2.40. Заполните таблицу, в каждой строке которой одно и то же произвольное число (число может содержать как целую, так и дробную часть) должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

59,B

Сдающим ЕГЭ и не только…

Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.

Например, нужно перевести число 810 10 в двоичную систему:

Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102

Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?

В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.

Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.

Таблица степеней числа 2:

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10
2 4 8 16 32 64 128 256 512 1024

Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.

Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 A B C D E F

Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.

Перевод целых чисел

Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 810 10 . Нам нужно разложить это число на слагаемые, равные степеням двойки.

  1. Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
  2. Вычитаем 512 из 810, получаем 298.
  3. Повторим шаги 1 и 2, пока не останется 1 или 0.
  4. У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Далее есть два способа, можно использовать любой из них. Как легко увидеть, что в любой системе счисления её основание всегда 10. Квадрат основания всегда будет 100, куб 1000. То есть степень основания системы счисления - это 1 (единица), и за ней столько нулей, какова степень.

Способ 1 : Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 810 10 = 1100101010 2 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.

Способ 2 : Распишем слагаемые как степени двойки друг под другом, начиная с большего.

810 =

А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .

Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».

Ответ - столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.

Теперь пример попроще.

Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 - это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.

Получаем 63 10 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 223 5 .

Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.

Переведем в двоичную систему число 547 8 .

547 8 = 101 100 111
5 4 7

Ещё одно, например 7D6A 16 .

7D6A 16 = (0)111 1101 0110 1010
7 D 6 A

Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 736 8 = 111 011 110 = 1 1101 1110 = 1DE 16 . Переведем в 8-ричную систему число C25 16 . Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C25 16 = 1100 0010 0101 = 110 000 100 101 = 6045 8 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E68 16 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 732 8 = 7 * 8 2 + 3*8 + 2 = 474 .

Перевод отрицательных чисел

Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать - в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.

Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.

Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.

Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ - 4.

Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.

Перевод дробных чисел

Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.

Переведем число 0,6752 в двоичную систему.

0 ,6752
*2
1 ,3504
*2
0 ,7008
*2
1 ,4016
*2
0 ,8032
*2
1 ,6064
*2
1 ,2128

Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.

Получается 0,6752 = 0,101011 .

Если число было 5,6752, то в двоичном виде оно будет 101,101011 .

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: