Объявление двумерного массива java. Изучаем Java

Массив - это структура данных, которая предназначена для хранения однотипных данных. Массивы в Java работают иначе, чем в C/C++. Особенности:

  • Поскольку массивы являются объектами, мы можем найти их длину. Это отличается от C/C++, где мы находим длину с помощью sizeof.
  • Переменная массива может также быть .
  • Переменные упорядочены и имеют индекс, начинающийся с 0.
  • Может также использоваться как статическое поле, локальная переменная или параметр метода.
  • Размер массива должен быть задан значением int, а не long или short.
  • Прямым суперклассом типа массива является Object.
  • Каждый тип массива реализует интерфейсы Cloneable and java.io.Serializable.

Инициализация и доступ к массиву

Одномерные Массивы: общая форма объявления

Type var-name; или type var-name;

Объявление состоит из двух компонентов: типа и имени. type объявляет тип элемента массива. Тип элемента определяет тип данных каждого элемента.

Кроме типа int, мы также можем создать массив других типов данных, таких как char, float, double или определяемый пользователем тип данных (объекты класса).Таким образом, тип элемента определяет, какой тип данных будет храниться в массиве. Например:

// both are valid declarations int intArray; or int intArray; byte byteArray; short shortsArray; boolean booleanArray; long longArray; float floatArray; double doubleArray; char charArray; // an array of references to objects of // the class MyClass (a class created by // user) MyClass myClassArray; Object ao, // array of Object Collection ca; // array of Collection // of unknown type

Хотя приведенное выше первое объявление устанавливает тот факт, что intArray является переменной массива, массив фактически не существует. Он просто говорит компилятору, что эта переменная типа integer.

Чтобы связать массив int с фактическим физическим массивом целых чисел, необходимо обозначить его с помощью new и назначить int.

Как создать массив в Java

При объявлении массива создается только ссылка на массив. Чтобы фактически создать или предоставить память массиву, надо создать массив следующим образом: общая форма new применительно к одномерным и выглядит следующим образом:
var-name = new type ;

Здесь type указывает тип данных, size — количество элементов в массиве, а var-name-имя переменной массива.

Int intArray; //объявление intArray = new int; // выделение памяти

Int intArray = new int; // объединение

Важно знать, что элементы массива, выделенные функцией new, автоматически инициализируются нулем (для числовых типов), ложью (для логических типов) или нулем (для ссылочных типов).
Получение массива — это двухэтапный процесс. Во-первых, необходимо объявить переменную нужного типа. Во-вторых, необходимо выделить память, которая будет содержать массив, с помощью new, и назначить ее переменной. Таким образом, в Java все массивы выделяются динамически.

Литералы массива

В ситуации, когда размер массива и переменные уже известны, можно использовать литералы.

Int intArray = new int{ 1,2,3,4,5,6,7,8,9,10 }; // Declaring array literal

  • Длина этого массива определяет длину созданного массива.
  • Нет необходимости писать int в последних версиях Java

Доступ к элементам массива Java с помощью цикла for

Доступ к каждому элементу массива осуществляется через его индекс. Индекс начинается с 0 и заканчивается на (общий размер)-1. Все элементы могут быть доступны с помощью цикла for.

For (int i = 0; i < arr.length; i++) System.out.println("Element at index " + i + " : "+ arr[i]);

// Пример для иллюстрации создания array
// целых чисел, помещает некоторые значения в массив,
// и выводит каждое значение.

class GFG
{

{

int arr;

// allocating memory for 5 integers.
arr = new int;


arr = 10;


arr = 20;

//so on...
arr = 30;
arr = 40;
arr = 50;

// accessing the elements of the specified array
for (int i = 0; i < arr.length; i++)
System.out.println("Element at index " + i +
" : "+ arr[i]);
}
}
В итоге получаем:

Element at index 0: 10 Element at index 1: 20 Element at index 2: 30 Element at index 3: 40 Element at index 4: 50

Массивы объектов

Массив объектов создается так же, как элементов данных следующим образом:

Student arr = new Student;

StudentArray содержит семь элементов памяти каждый из класса student, в котором адреса семи объектов Student могут быть сохранены. Student объекты должны быть созданы с помощью конструктора класса student и их ссылки должны быть присвоены элементам массива следующим образом:

Student arr = new Student;

// Java program to illustrate creating an array of
// objects

class Student
{
public int roll_no;
public String name;
Student(int roll_no, String name)
{
this.roll_no = roll_no;
this.name = name;
}
}

// Elements of array are objects of a class Student.
public class GFG
{
public static void main (String args)
{
// declares an Array of integers.
Student arr;

// allocating memory for 5 objects of type Student.
arr = new Student;

// initialize the first elements of the array
arr = new Student(1,"aman");

// initialize the second elements of the array
arr = new Student(2,"vaibhav");

// so on...
arr = new Student(3,"shikar");
arr = new Student(4,"dharmesh");
arr = new Student(5,"mohit");

// accessing the elements of the specified array
for (int i = 0; i < arr.length; i++)
System.out.println("Element at " + i + " : " +
arr[i].roll_no +" "+ arr[i].name);
}
}

Получаем:

Element at 0: 1 aman Element at 1: 2 vaibhav Element at 2: 3 shikar Element at 3: 4 dharmesh Element at 4: 5 mohit

Что произойдет, если мы попытаемся получить доступ к элементу за пределами массива?
Компилятор создает исключение ArrayIndexOutOfBoundsException, указывающее, что к массиву был получен доступ с недопустимым индексом. Индекс либо отрицательный, либо больше или равен размеру массива.

Многомерные

Многомерные массивы — это массивы массивов, каждый элемент которых содержит ссылку на другой массив. Создается путем добавления одного набора квадратных скобок () для каждого измерения. Рассмотрим пример:

Int intArray = new int; //a 2D array or matrix int intArray = new int; //a 3D array

class multiDimensional
{
public static void main(String args)
{
// declaring and initializing 2D array
int arr = { {2,7,9},{3,6,1},{7,4,2} };

// printing 2D array
for (int i=0; i< 3 ; i++)
{
for (int j=0; j < 3 ; j++)
System.out.print(arr[i][j] + " ");

System.out.println();
}
}
}

Output: 2 7 9 3 6 1 7 4 2


Передача массивов в метод

Как и переменные, мы можем передавать массивы в методы.

// Java program to demonstrate // passing of array to method class Test { // Driver method public static void main(String args) { int arr = {3, 1, 2, 5, 4}; // passing array to method m1 sum(arr); } public static void sum(int arr) { // getting sum of array values int sum = 0; for (int i = 0; i < arr.length; i++) sum+=arr[i]; System.out.println("sum of array values: " + sum); } }

На выходе получим:

sum of array values: 15

Возврат массивов из методов

Как обычно, метод также может возвращать массив. Например, ниже программа возвращает массив из метода m1.

// Java program to demonstrate // return of array from method class Test { // Driver method public static void main(String args) { int arr = m1(); for (int i = 0; i < arr.length; i++) System.out.print(arr[i]+" "); } public static int m1() { // returning array return new int{1,2,3}; } }

Объекты класса

Каждый массив имеет связанный объект класса, совместно используемый со всеми другими массивами с тем же типом компонента.

// Java program to demonstrate // Class Objects for Arrays class Test { public static void main(String args) { int intArray = new int; byte byteArray = new byte; short shortsArray = new short; // array of Strings String strArray = new String; System.out.println(intArray.getClass()); System.out.println(intArray.getClass().getSuperclass()); System.out.println(byteArray.getClass()); System.out.println(shortsArray.getClass()); System.out.println(strArray.getClass()); } }

class +" "); } } }

Клон многомерного массива (например, Object ) является копией и это означает, что он создает только один новый массив с каждым элементом и ссылкой на исходный массив элементов, но вложенные массивы являются общими.

// Java program to demonstrate // cloning of multi-dimensional arrays class Test { public static void main(String args) { int intArray = {{1,2,3},{4,5}}; int cloneArray = intArray.clone(); // will print false System.out.println(intArray == cloneArray); // will print true as shallow copy is created // i.e. sub-arrays are shared System.out.println(intArray == cloneArray); System.out.println(intArray == cloneArray); } }

Массив - это конечная последовательность упорядоченных элементов одного типа, доступ к каждому элементу в которой осуществляется по его индексу.

Размер или длина массива - это общее количество элементов в массиве. Размер массива задаётся при создании массива и не может быть изменён в дальнейшем, т. е. нельзя убрать элементы из массива или добавить их туда, но можно в существующие элементы присвоить новые значения.

Индекс начального элемента - 0, следующего за ним - 1 и т. д. Индекс последнего элемента в массиве - на единицу меньше, чем размер массива.

В Java массивы являются объектами. Это значит, что имя, которое даётся каждому массиву, лишь указывает на адрес какого-то фрагмента данных в памяти. Кроме адреса в этой переменной ничего не хранится. Индекс массива, фактически, указывает на то, насколько надо отступить от начального элемента массива в памяти, чтоб добраться до нужного элемента.

Чтобы создать массив надо объявить для него подходящее имя, а затем с этим именем связать нужный фрагмент памяти, где и будут друг за другом храниться значения элементов массива.Возможные следующие варианты объявления массива: тип имя; тип имя;

Где тип - это тип элементов массива, а имя - уникальный (незанятый другими переменными или объектами в этой части программы) идентификатор, начинающийся с буквы.

Примеры: int a; double ar1; double ar2;

В примере мы объявили имена для трёх массивов. С первом именем a сможет быть далее связан массив из элементов типа int, а с именами ar1 и ar2 далее смогут быть связаны массивы из вещественных чисел (типа double). Пока мы не создали массивы, а только подготовили имена для них.

Теперь создать (или как ещё говорят инициализировать) массивы можно следующим образом: a = new int; // массив из 10 элементов типа int int n = 5; ar1 = new double[n]; // Массив из 5 элементов double ar2 = {3.14, 2.71, 0, -2.5, 99.123}; // Массив из 6 элементов типа double То есть при создании массива мы можем указать его размер, либо сразу перечислить через запятую все желаемые элементы в фигурных скобках (при этом размер будет вычислен автоматически на основе той последовательности элементов, которая будет указана). Обратите внимание, что в данном случае после закрывающей фигурной скобки ставится точка с запятой, чего не бывает когда это скобка закрывает какой-то блок.

Если массив был создан с помощью оператора new , то каждый его элемент получает значение по умолчанию. Каким оно будет определяется на основании типа данных (0 для int, 0.0 для double и т. д.).

Объявить имя для массива и создать сам массив можно было на одной строке по следующей схеме: тип имя = new тип[размер]; тип имя = {эл0, эл1, …, элN}; Примеры: int mas1 = {10,20,30}; int mas2 = new int;

Чтобы обратиться к какому-то из элементов массива для того, чтобы прочитать или изменить его значение, нужно указать имя массива и за ним индекс элемента в квадратных скобках. Элемент массива с конкретным индексом ведёт себя также, как переменная. Например, чтобы вывести последний элемент массива mas1 мы должны написать в программе:

System.out.println("Последний элемент массива " + mas1);

А вот так мы можем положить в массив mas2 тот же набор значений, что хранится в mas1:

Mas2 = 10; mas2 = 20; mas2 = 30;Уже из этого примера видно, что для того, чтоб обратиться ко всем элементам массива, нам приходится повторять однотипные действия. Как вы помните для многократного повторения операций используются циклы. Соответственно, мы могли бы заполнить массив нужными элементами с помощью цикла: for(int i=0; iПонятно, что если бы массив у нас был не из 3, а из 100 элементов, до без цикла мы бы просто не справились.

Длину любого созданного массива не обязательно запоминать, потому что имеется свойство, которое его хранит. Обратиться к этому свойству можно дописав.length к имени массива. Например:

Int razmer = mas1.length; Это свойство нельзя изменять (т. е. ему нельзя ничего присваивать), можно только читать. Используя это свойство можно писать программный код для обработки массива даже не зная его конкретного размера.

Например, так можно вывести на экран элементы любого массива с именем ar2:

For(int i = 0; i <= ar2.length - 1; i++) { System.out.print(ar2[i] + " "); } Для краткости удобнее менять нестрогое неравенство на строгое, тогда не нужно будет вычитать единицу из размера массива. Давайте заполним массив целыми числами от 0 до 9 и выведем его на экран: for(int i = 0; i < ar1.length; i++) {ar1[i] = Math.floor(Math.random() * 10); System.out.print(ar1[i] + " "); }

Обратите внимание, на каждом шаге цикла мы сначала отправляли случайное значение в элемент массива с i-ым индексом, а потом этот же элемент выводили на экран. Но два процесса (наполнения и вывода) можно было проделать и в разных циклах. Например:

For(int i = 0; i < ar1.length; i++) { ar1[i] = Math.floor(Math.random() * 9); } for(int i = 0; i < ar1.length; i++) { System.out.print(ar1[i] + " "); } В данном случае более рационален первый способ (один проход по массиву вместо двух), но не всегда возможно выполнить требуемые действия в одном цикле.

Для обработки массивов всегда используются циклы типа «n раз» (for) потому, что нам заранее известно сколько раз должен повториться цикл (столько же раз, сколько элементов в массиве).

Задачи

    Создайте массив из всех чётных чисел от 2 до 20 и выведите элементы массива на экран сначала в строку, отделяя один элемент от другого пробелом, а затем в столбик (отделяя один элемент от другого началом новой строки). Перед созданием массива подумайте, какого он будет размера.

    2 4 6 … 18 20
    2
    4
    6

    20

    Создайте массив из всех нечётных чисел от 1 до 99, выведите его на экран в строку, а затем этот же массив выведите на экран тоже в строку, но в обратном порядке (99 97 95 93 … 7 5 3 1).

    Создайте массив из 15 случайных целых чисел из отрезка . Выведите массив на экран. Подсчитайте сколько в массиве чётных элементов и выведете это количество на экран на отдельной строке.

    Создайте массив из 8 случайных целых чисел из отрезка . Выведите массив на экран в строку. Замените каждый элемент с нечётным индексом на ноль. Снова выведете массив на экран на отдельной строке.

    Создайте 2 массива из 5 случайных целых чисел из отрезка каждый, выведите массивы на экран в двух отдельных строках. Посчитайте среднее арифметическое элементов каждого массива и сообщите, для какого из массивов это значение оказалось больше (либо сообщите, что их средние арифметические равны).

    Создайте массив из 4 случайных целых чисел из отрезка , выведите его на экран в строку. Определить и вывести на экран сообщение о том, является ли массив строго возрастающей последовательностью.

    Создайте массив из 20-ти первых чисел Фибоначчи и выведите его на экран. Напоминаем, что первый и второй члены последовательности равны единицам, а каждый следующий - сумме двух предыдущих.

    Создайте массив из 12 случайных целых чисел из отрезка [-15;15]. Определите какой элемент является в этом массиве максимальным и сообщите индекс его последнего вхождения в массив.

    Создайте два массива из 10 целых случайных чисел из отрезка и третий массив из 10 действительных чисел. Каждый элемент с i-ым индексом третьего массива должен равняться отношению элемента из первого массива с i-ым индексом к элементу из второго массива с i-ым индексом. Вывести все три массива на экран (каждый на отдельной строке), затем вывести количество целых элементов в третьем массиве.

    Создайте массив из 11 случайных целых чисел из отрезка [-1;1], выведите массив на экран в строку. Определите какой элемент встречается в массиве чаще всего и выведите об этом сообщение на экран. Если два каких-то элемента встречаются одинаковое количество раз, то не выводите ничего.

    Пользователь должен указать с клавиатуры чётное положительное число, а программа должна создать массив указанного размера из случайных целых чисел из [-5;5] и вывести его на экран в строку. После этого программа должна определить и сообщить пользователю о том, сумма модулей какой половины массива больше: левой или правой, либо сообщить, что эти суммы модулей равны. Если пользователь введёт неподходящее число, то программа должна требовать повторного ввода до тех пор, пока не будет указано корректное значение.

    Программа должна создать массив из 12 случайных целых чисел из отрезка [-10;10] таким образом, чтобы отрицательных и положительных элементов там было поровну и не было нулей. При этом порядок следования элементов должен быть случаен (т. е. не подходит вариант, когда в массиве постоянно выпадает сначала 6 положительных, а потом 6 отрицательных чисел или же когда элементы постоянно чередуются через один и пр.). Вывести полученный массив на экран.

    Пользователь вводит с клавиатуры натуральное число большее 3, которое сохраняется в переменную n. Если пользователь ввёл не подходящее число, то программа должна просить пользователя повторить ввод. Создать массив из n случайных целых чисел из отрезка и вывести его на экран. Создать второй массив только из чётных элементов первого массива, если они там есть, и вывести его на экран.

Сортировка массива

Сортировкой называется такой процесс перестановки элементов массива, когда все его элементы выстраиваются по возрастанию или по убыванию.Сортировать можно не только числовые массивы, но и, например, массивы строк (по тому же принципу, как расставляют книги на библиотечных полках). Вообще сортировать можно элементы любого множества, где задано отношение порядка.Существуют универсальные алгоритмы, которые выполняют сортировку вне зависимости от того, каким было исходное состояние массива. Но кроме них существуют специальные алгоритмы, которые, например, очень быстро могут отсортировать почти упорядоченный массив, но плохо справляются с сильно перемешанным массивом (или вообще не справляются). Специальные алгоритмы нужны там, где важна скорость и решается конкретная задача, их подробное изучение выходит за рамки нашего курса.

Сортировка выбором

Рассмотрим пример сортировки по возрастанию. То есть на начальной позиции в массиве должен стоять минимальный элемент, на следующей - больший или равный и т. д., на последнем месте должен стоять наибольший элемент.Суть алгоритма такова. Во всём отыскиваем минимальный элемент, меняем его местами с начальным. Затем в оставшейся части массива (т. е. среди всех элементов кроме начального) снова отыскиваем минимальный элемент, меняем его местами уже со вторым элементом в массиве. И так далее.

Иллюстрация:

For (int i = 0; i

Сортировка методом пузырька

Суть алгоритма такова. Если пройдёмся по любому массиву установив правильный порядок в каждой паре соседних элементов, то после того прохода на последнем месте массива гарантированно будет стоять нужный элемент (самый большой для сортировки по возрастанию или самый маленький для сортировки по убыванию). Если ещё раз пройтись по массиву с такими же преобразованиями, то и на предпоследнем месте гарантированно окажется нужный элемент. И так далее.Пример:

2 9 1 4 3 5 2 → порядок правильный, не будет перестановки

2 9 1 4 3 5 2 → 2 1 9 4 3 5 2

2 1 9 4 3 5 2 → 2 1 4 9 3 5 2

2 1 4 9 3 5 2 → 2 1 4 3 9 5 2

2 1 4 3 9 5 2 → 2 1 4 3 5 9 2

2 1 4 3 5 9 2 → 2 1 4 3 5 2 9

Код: /* Внешний цикл постоянно сужает фрагмент массива, * который будет рассматриваться, ведь после каждого прохода * внутреннего цикла на последнем месте фрагмента будет * оказываться нужный элемент (его не надо рассматривать снова). */ for (int i = a.length - 1; i >= 2; i--) { /* В переменной sorted мы будем хранить признак того, * отсортирован ли массив. Перед каждым проходом внутреннего * цкла будем предполагать, что отсортирован, но если совершим * хоть одну перестановку, то значит ещё не конца отсортирован. * Этот приём, упрощающий сортировку, называется критерием Айверсона. */ boolean sorted = true; /* Во внутреннем цикле мы проходимся по фрагменту массива, который * определяется внешним циклом. В этом фрагменте мы устанавливаем * правильный порядок между соседними элементами, так попарно * обрабатывая весь фрагмент. */ for (int j = 0; j a) { int temp = a[j]; a[j] = a; a = temp; sorted = false; } } /* Если массив отсортирован (т.е. не было ни одной перестановки * во внутреннем цикле, значит можно прекращать работу внешнего * цикла. */ if(sorted) { break; } }

Многомерные массивы

Массив может состоять не только из элементов какого-то встроенного типа (int, double и пр.), но и, в том числе, из объектов какого-то существующего класса и даже из других массивов.

Массив который в качестве своих элементов содержит другие массивы называется многомерным массивом.Чаще всего используются двумерные массивы. Такие массивы можно легко представить в виде матрицы. Каждая строка которой является обычным одномерным массивом, а объединение всех строк - двумерным массивом в каждом элементе которого хранится ссылка на какую-то строку матрицы.Трёхмерный массив можно представить себе как набор матриц, каждую из которых мы записали на библиотечной карточке. Тогда чтобы добраться до конкретного числа сначала нужно указать номер карточки (первый индекс трёхмерного массива), потому указать номер строки (второй индекс массива) и только затем номер элемент в строке (третий индекс).

Соответственно, для того, чтобы обратиться к элементу n-мерного массива нужно указать n индексов.

Объявляются массивы так: int d1; //Обычный, одномерный int d2; //Двумерный double d3; //Трёхмерный int d5; //Пятимерный При создании массива можно указать явно размер каждого его уровня: d2 = int; // Матрица из 3 строк и 4 столбцов Но можно указать только размер первого уровня: int dd2 = int; /* Матрица из 5 строк. Сколько элементов будет в каждой строке пока не известно. */ В последнем случае, можно создать двумерный массив, который не будет являться матрицей из-за того, что в каждой его строке будет разное количество элементов. Например: for(int i=0; i<5; i++) { dd2[i] = new int; } В результате получим такой вот массив: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Мы могли создать массив явно указав его элементы. Например так: int ddd2 = {{1,2}, {1,2,3,4,5}, {1,2,3}};

При этом можно обратиться к элементу с индексом 4 во второй строке ddd2 , но если мы обратимся к элементу ddd2 или ddd2 - произойдёт ошибка, поскольку таких элементов просто нет. Притом ошибка это будет происходить уже во время исполнения программы (т. е. компилятор её не увидит).

Обычно всё же используются двумерные массивы с равным количеством элементов в каждой строке.Для обработки двумерных массивов используются два вложенных друг в друга цикла с разными счётчиками.Пример (заполняем двумерный массив случайными числами от 0 до 9 и выводим его на жкран в виде матрицы): int da = new int; for(int i=0; i

Задачи

    Создать двумерный массив из 8 строк по 5 столбцов в каждой из случайных целых чисел из отрезка . Вывести массив на экран.

    Создать двумерный массив из 5 строк по 8 столбцов в каждой из случайных целых чисел из отрезка [-99;99]. Вывести массив на экран. После на отдельной строке вывести на экран значение максимального элемента этого массива (его индекс не имеет значения).

    Cоздать двумерный массив из 7 строк по 4 столбца в каждой из случайных целых чисел из отрезка [-5;5]. Вывести массив на экран. Определить и вывести на экран индекс строки с наибольшим по модулю произведением элементов. Если таких строк несколько, то вывести индекс первой встретившейся из них.

    Создать двумерный массив из 6 строк по 7 столбцов в каждой из случайных целых чисел из отрезка . Вывести массив на экран. Преобразовать массив таким образом, чтобы на первом месте в каждой строке стоял её наибольший элемент. При этом изменять состав массива нельзя, а можно только переставлять элементы в рамках одной строки. Порядок остальных элементов строки не важен (т.е. можно соврешить только одну перестановку, а можно отсортировать по убыванию каждую строку). Вывести преобразованный массив на экран.

    Для проверки остаточных знаний учеников после летних каникул, учитель младших классов решил начинать каждый урок с того, чтобы задавать каждому ученику пример из таблицы умножения, но в классе 15 человек, а примеры среди них не должны повторяться. В помощь учителю напишите программу, которая будет выводить на экран 15 случайных примеров из таблицы умножения (от 2*2 до 9*9, потому что задания по умножению на 1 и на 10 - слишком просты). При этом среди 15 примеров не должно быть повторяющихся (примеры 2*3 и 3*2 и им подобные пары считать повторяющимися).

2010, Алексей Николаевич Костин. Кафедра ТИДМ математического факультета МПГУ.

  • Tutorial

Думаю, мало кто из готовящихся к своему первому интервью, при приеме на первую работу в должности (pre)junior программиста, ответит на этот вопрос отрицательно. Или хотя бы усомнится в положительном ответе. Конечно, такая простая структура данных с прямым доступом по индексу - никаких подвохов! Нет, в некоторых языках типа JavaScript или PHP массивы, конечно, реализованы очень интересно и по сути являются много большим чем просто массив. Но речь не об этом, а о «традиционной» реализации массивов в виде «сплошного участка памяти». В этом случае на основании индексов и размера одного элемента просто вычисляется адрес и осуществляется доступ к соответствующему значению. Что тут сложного?
Давайте разберемся. Например, на Java. Просим ничего не подозревающего претендента создать массив целых чисел n x n . Человек уверено пишет что-то в духе:
int g = new int[n][n];
Отлично. Теперь просим инициализировать элементы массива чем-нибудь. Хоть единицами, хоть суммой индексов. Получаем:
for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } }
Даже чаще пишут
for(int i = 0; i < g.length; i++) { for(int j = 0; j < g[i].length; j++) { g[i][j] = i + j; } }
что тоже повод для беседы, но сейчас речь о другом. Мы ведь пытаемся выяснить, что человек знает и посмотреть, как он думает. По этому обращаем его внимание на тот факт, что значения расположены симметрично и просим сэкономить на итерациях циклов. Конечно, зачем пробегать все значения индексов, когда можно пройти только нижний треугольник? Испытуемый обычно легко соглашается и мудро выделяя главную диагональ старательно пишет что-то в духе:
for(int i = 0; i < n; i++) { g[i][i] = 2* i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } }
Вместо g[i][i] = 2* i; часто пишут g[i][i] = i + i; или g[i][i] = i << 1; и это тоже повод поговорить. Но мы идем дальше и задаем ключевой вопрос: На сколько быстрее станет работать программа? . Обычные рассуждения такие: почти в 2 раза меньше вычислений индексов; почти в 2 раза меньше вычислений значений (суммирование); столько же присваиваний. Значит быстрее процентов на 30. Если у человека за плечами хорошая математическая школа, то можно даже увидеть точное количество сэкономленных операций и более аргументированную оценку эффективности оптимизации.
Теперь самое время для главного удара. Запускаем оба варианта кода на каком-нибудь достаточно большом значении n (порядка нескольких тысяч), например, так .

Код с контролем времени

class A { public static void main(String args) { int n = 8000; int g = new int[n][n]; long st, en; // one st = System.nanoTime(); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nOne time " + (en - st)/1000000.d + " msc"); // two st = System.nanoTime(); for(int i = 0; i < n; i++) { g[i][i] = i + i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nTwo time " + (en - st)/1000000.d + " msc"); } }


Что же мы видим? Оптимизированный вариант работает в 10-100 раз медленнее! Теперь самое время понаблюдать за реакцией претендента на должность. Какая будет реакция на необычную (точнее обычную в практике разработчика) стрессовую ситуацию. Если на лице подзащитного изобразился азарт и он стал жать на кнопочки временно забыв о Вашем существовании, то это хороший признак. До определенной степени. Вы ведь не хотите взять на работу исследователя, которому плевать на результат проекта? Тогда не задавайте ему вопрос «Почему?». Попросите переделать второй вариант так, чтобы он действительно работал быстрее первого.
Теперь можно смело заниматься некоторое время своими делами. Через пол часа у Вас будет достаточно материала, для того, чтобы оценить основные личностные и профессиональные качества претендента.
Кстати, когда я коротко описал эту задачку на своем рабочем сайте, то наиболее популярный комментарий был «Вот такая эта Ваша Java кривая». Специально для них выкладываю код на Великом и Свободном. А счастливые обладатели Free Pascal под Windows могут заглянуть

под спойлер

program Time; uses Windows; var start, finish, res: int64; n, i, j: Integer; g: Array of Array of Integer; begin n:= 10000; SetLength(g, n, n); QueryPerformanceFrequency(res); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by rows:", (finish - start) / res, " sec"); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by cols:", (finish - start) / res, " sec"); end.


В приведенном коде на Паскале я убрал «запутывающие» моменты и оставил только суть проблемы. Если это можно назвать проблемой.
Какие мы в итоге получаем вопросы к подзащитному?
1. Почему стало работать медленнее? И поподробнее…
2. Как сделать инициализацию быстрее?

Если есть необходимость копнуть глубже именно в реализацию Java, то просим соискателя понаблюдать за временем выполнения для небольших значений n . Например, на ideone.com для n=117 «оптимизированный» вариант работает вдвое медленнее. Но для следующего значения n=118 он оказывается уже в 100 (сто) раз быстрее не оптимизированного! Предложите поэкспериментировать на локальной машине. Пусть поиграет с настройками.
Кстати, а всем понятно, что происходит?

Несколько слов в оправдание

Хочу сказать несколько слов в оправдание такого способа собеседования при найме. Да, я не проверяю знание синтаксиса языка и владение структурами данных. Возможно, при цивилизованном рынке труда это все работает. Но в наших условиях тотальной нехватки квалифицированных кадров, приходится оценивать скорее перспективную адекватность претендента той работе с которой он столкнется. Т.е. способность научиться, прорваться, разобраться, сделать.
По духу это похоже на «собеседованию» при наборе легионеров в древнем Риме. Будущего вояку сильно пугали и смотрели краснеет он или бледнеет. Если бледнеет, то в стрессовой ситуации у претендента кровь отливает от головы и он склонен к пассивной реакции. Например, упасть в обморок. Если же соискатель краснел, то кровь у него к голове приливает. Т.е. он склонен к активным действиям, бросаться в драку. Такой считался годным.
Ну и последнее. Почему я рассказал об этой задаче всем, а не продолжаю использовать её на собеседованиях? Просто, эту задачу уже «выучили» потенциальные соискатели и приходится использовать другие.
Собственно на этот эффект я обратил внимание именно в связи с реальной задачей обработки изображений. Ситуация была несколько запутанная и я не сразу понял почему у меня так просел fps после рефакторинга. А вообще таких чуднЫх моментов наверное много накопилось у каждого.

Пока лидирует версия, что «виноват» кэш процессора. Т.е. последовательный доступ в первом варианте работает в пределах хэша, который обновляется при переходе за определенную границу. При доступе по столбцам хэш вынужден постоянно обновляться и это занимает много времени. Давайте проверим эту версию в самом чистом виде. Заведем массив и сравним, что быстрее - обработать все элементы подряд или столько же раз обработать элементы массива со случайным номером? Вот эта программа - ideone.com/tMaR2S . Для 100000 элементов массива случайный доступ обычно оказывается заметно быстрее. Что же это означает?
Тут мне совершенно справедливо указали (Big_Lebowski), что перестановка циклов меняет результаты в пользу последовательного варианта. Пришлось для чистоты эксперимента поставить цикл для разогрева. Заодно сделал несколько повторов, чтобы вывести среднее время работы как советовал leventov. Получилось так ideone.com/yN1H4g . Т.е. случайный доступ к элементам большого массива на ~10% медленнее чем последовательный. Возможно и в правду какую-то роль может сыграть кэш. Однако, в исходной ситуации производительность проседала в разы. Значит есть еще что-то.

Постепенно в лидеры выходит версия про дополнительные действия при переходе от одной строки массива к другой. И это правильно. Осталось разобраться, что же именно там происходит.

Теги: Добавить метки

Массив — это множество однотипных объектов, которые имеют общее название. К каждому элементу массива возможен доступ по его индексу. Рассмотрим реальный пример. Пусть у нас есть некоторый склад, который называется a и пусть в нем есть некоторое количество ящиков, каждый из которых последовательно пронумерован. В каждом ящике лежит некоторый объект, который по своему типу совпадает с объектами в других ящиках. Пример данного склада является классическим массивом, где название склада — это название массива, ящики — это элементы массива, номера ящиков — это индексы элементов, а содержимое ящиков — это значения наших переменных. Представим, что внутри ящиков лежат лимоны, и в каждом ящике лежит определенное количество лимонов. Тогда, значения наших переменных будут показывать количество лимонов. Рассмотрим такой склад, состоящий из трех ящиков, пусть в первом ящике лежит 3, во втором 7, в третьем 273. Тогда, массив, описывающий данный склад можно изобразить следующим образом:

Индекс 0 1 2
Значение 3 7 273

Индексация в массиве всегда начинается с 0. Рассмотрим некоторые операции, которые можно производить с массивом:

Создание массива

Тип имяПеременной;
int a;//целочисленный массив
char b;//массив символов
String c;

Выделение памяти:

A = new int;//выделяем память под 10 элементов
b = new char;//выделяем память под 20 элементов
c = new String;//выделяем память под 30 элементов

Таким образом инициализация массива выглядит следующим образом:

Int a = new int;//инициализация массива целых чисел из 10 элементов
char b = new char;//инициализация массива символов из 20 элементов
String c = new String;//инициализация массива строк из 30 элементов

Всем элементам массива после такой инициализации присваивается значение по умолчанию.
Существует возможность сразу задать значения элементов массива, создадим массив, который будет показывать количество лимонов в ящике, как в примере выше:

Int a = new int{ 3, 7, 273 };

Работа с массивом

Считывание массива:

Import java.util.Scanner;
public class test {
public static void main(String args) {
int a;//массив целых чисел
int n;//количество элементов в массиве
Scanner in = new Scanner(System.in);
n = in.nextInt();
a = new int[n];
for(int i = 0; i Изменение значений массива:


for(int i = 0; i Вывод массива:

Int a;//массив целых чисел, который был как - то обработан
for(int i = 0; i Произвольный доступ к элементу массива по индексу:

System.out.println(a);//Выводим первый элемент массива
a = 1;//Присваиваем второму элементу массива 1
int temp = a;//Сохраняем значение третьего элемента массива в переменную temp

Вот так вот выглядят основные операции с массивами. Очень часто на различных уроках по информатике просят вынести эти этапы работы с массивом в отдельные функции, но про это мы поговорим позднее. Таким образом, с помощью считывания массива, мы можем ввести некоторые значение с консоли, с помощью изменения значений, мы можем например, увеличить все значения на единицу или умножить на два, а с помощью вывода мы можем вывести текущие значения массива. Если нам требуется работать только с конкретными элементами массива, то тут мы можем воспользоваться произвольным доступом по индексу, где индекс - это любое положительное целое число, которое меньше длины массива. Текущую длину массива можно получить с помощью свойства length, оно уже применялось при выводе массива.
Тут я опущу диалог про то, что массивы являются ссылками и работа с ними отличается от работы с обычными базовыми типами.

Двумерные массивы

Не всегда бывает удобно нумеровать ящики на складе с 0 до определенного числа, иногда хочется привести склад в более упорядоченный вид, например ввести ряды. Теперь каждый ящик имеет свой номер ряда и свой порядковый номер в этом ряду. Пусть на нашем складе есть девять ящиков, которые имеют содержат 1, 2 и так далее 9 апельсинов. Ящики на складе располагаются в три ряда по три ящика, тогда ситуацию на складе можно представить так.


Учеба на "Разработчика игр" + трудоустройство

Java массивы

Массив - это структура данных, в которой хранятся величины одинакового типа. Доступ к отдельному элементу массива осуществляется с помощью целого индекса. Например, если а - массив целых чисел, то значение выражения а [ i ] равно i-му целому числу в массиве.

Массив объявляется следующим образом: сначала указывается тип массива, т.е тип элементов, содержащихся в массиве, за которым ставится пара пустых квадратных скобок, а затем - имя переменной. Например, вот как объявляется массив, состоящий из целых чисел:
int a;

Однако этот оператор лишь объявляет переменную а, не инициализируя ее настоящим массивом. Чтобы создать массив, нужно применить оператор new.

Этот оператор создает массив, состоящий из 100 целых чисел. Элементы этого массива нумеруются от 0 до 99 (а не от 1 до 100). После создания массив можно заполнять, например, с помощью цикла.

int а = new int;
for (int i = 0; i < 100; i++)
a[i] = i; // Заполняет массив числами от 0 до 99.

Если вы попытаетесь обратиться к элементу а (или любому другому элементу, индекс которого выходит за пределы диапазона от 0 до 99), создав массив, состоящий из 100 элементов, программа прекратит работу, поскольку возникнет исключительная ситуация, связанная с выходом индекса массива за пределы допустимого диапазона.
Чтобы подсчитать количество элементов в массиве, используйте метод имяМасси-
ва.length.

Например,

for (int i = 0; i < a. length; i++ System.out.println (a[i]);

После создания массива изменить его размер невозможно (хотя можно, конечно, изменять отдельные его элементы). Если в ходе выполнения программы необходимо часто изменять размер массива, лучше использовать другую структуру данных, называемую списком массивов (array list).

Массив можно объявить двумя способами:

int a;
или
int a;

Большинство программистов на языке Java предпочитают первый стиль, поскольку в нем четче отделяется тип массива int (целочисленный массив) от имени переменной.

Инициализаторы массивов и безымянные массивы

В языке Java есть средство для одновременного создания массива и его инициализации. Вот пример такой синтаксической конструкции:

int smallPrimes = { 2, 3, 5, 7, 11, 13};

Отметим, что в этом случае не нужно применять оператор new. Кроме того, можно даже инициализировать безымянный массив:

new int { 16, 19, 23 , 29 , 31, 37}

Это выражение выделяет память для нового массива и заполняет его числами, указанными в фигурных скобках. При этом подсчитывается их количество и, соответственно, определяется размер массива. Эту синтаксическую конструкцию удобно применять для повторной инициализации массива без образования новой переменной. Например, выражение

smallPrimes = new int{ 17, 19, 23, 29, 31, 37 };
представляет собой укороченную запись выражения
int anonymous = { 17, 19, 23, 29, 31, 37 };
smailPrimes = anonymous;

Можно создать массив нулевого размера. Такой массив может оказаться полезным при написании метода, вычисляющего некий массив, который оказывается пустым. Массив нулевой длины объявляется следующим образом:

new типЭлементов

Заметим, что такой массив не эквивалентен объекту null.

Копирование массивов

Один массив можно скопировать в другой, но при этом обе переменные будут ссылаться на один и тот же массив.

int luckyNumbers = smailPrimes;
luckyNuimbers = 12; // Теперь элемент smailPrimesтакже равен 12.

Результат показан на рис. 3.14. Если необходимо скопировать все элементы одного массива в другой, следует использовать метод arraycopy из класса System. Его вызов выглядит следующим образом:

System.arraycopy(from, fromlndex, to, tolndex, count);

Массив to должен иметь достаточный размер, чтобы в нем поместились все копируемые элементы.

Рис. 3.14. Копирование массива

Например, показанные ниже операторы, результаты работы которых изображены на рис. 3.15, создают два массива, а затем копируют последние четыре элемента первого массива во второй. Копирование начинается со второй позиции в исходном массиве, а копируемые элементы помещаются в целевой массив, начиная с третьей позиции.

int smailPrimes = {2, 3, 5, 7, 11, 13};
int luckyNumbers = {1001, 1002, 1003, 1004, 1005, 1006, 1007};
System.аггаусору(smailPrimes, 2, luckyNumbers, 3, 4);
for (int i = 0; i < luckyNumbers.length; i++)
System.println(i +.": " + luckyNumbersfi]);

Выполнение этих операторов приводит к следующему результату.

0: 1001
1: 1002
2: 1003
3: 5
4: 7
5: 11
6: 13

Рис. 3.15. Копирование элементов массива

Массив в языке Java значительно отличается от массива в языке C++. Однако он практически совпадает с указателем на динамический массив. Это значит, что оператор

int a = new int; //Java
эквивалентен оператору
i n t * = new i n t [ 1 0 0 ] ; // C++,
а не
int a; // C++

В языке Java оператор no умолчанию проверяет диапазон изменения индексов. Кроме того, в языке Java нет арифметики указателей - нельзя увеличить указатель а, чтобы обратиться к следующему элементу массива.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: