Коэффициент усиления и чувствительность. Что такое реальная чувствительность? Минимальная чувствительность приемника

Любое электронное устройство, а тем более такое сложное, как стереорадиоприемник, чтобы производитель имел законное право его продавать, должно удовлетворять длинному перечню специальных требований. Однако для покупателя обычно доступна только часть параметров, приводимая в перечне технических характеристик. Среди них всегда и в первую очередь - чувствительность, затем избирательность, отношение сигнал/шум, коэффициент нелинейных искажений и ряд других. По этим причинам покупающему многоканальный AV-ресивер, классический тюнер или автомагнитолу, дабы не сожалеть впоследствии о качестве приема, требуется подойти к оценке своего будущего приобретения во всеоружии.

Чувствительность


Зависимости выходного сигнала, шумов и стереоразделения от уровня входного сигнала

Чувствительность характеризует способность радиоприемника принимать слабый радиосигнал. Это минимальный входной сигнал, при котором обеспечивается выходной сигнал требуемого уровня при оговоренных условиях, обычно это отношение сигнал/шум. При взгляде на таблицу параметров в инструкции бросается в глаза то, что наиболее подробно изготовители приводят данные о чувствительности: может приводиться до пяти ее значений с комментариями, определяющими условия измерения. Тут и максимальная чувствительность, и чувствительность в режиме прима "стерео" и "моно". Какая из них самая главная? На что обращать внимание в первую очередь? Достижение какого ее значения может служить залогом высокого качества приема? А может, это все от лукавого?
Обычно обязательно присутствует значение чувствительности, которую по аналогии с ГОСТом можно назвать максимальной, обозначаемую как usable sensitivity (некоторые фирмы в русскоязычных вариантах инструкций называют ее реальной чувствительностью) и с указанием, что значение получено при измерении в соответствии со стандартом IHF. Этот американский стандарт оговаривает параметры и условия измерения приемников FM-сигнала и именно в соответствии с его требованиями приводятся значения чувствительности, выраженные в dBf. Мы уже писали, что dBf, или в русском написании дБф, относительная величина, определяющая чувствительноть в децибелах относительно напряжения, соответствующего фемтоватту на нагрузке 75 Ом. Собственно сам фемтоватт - мощность ничтожная, в 10 -15 меньше ватта, т.е. 1, деленная на 1000000000000000 (миллион миллиардов). Для наглядности пояснений мы приводим номограмму, которая позволяет легко сравнить значения чувствительности в мкВ и дБф.
Чтобы понять, почему отличаются значения чувствительности, обратимся ко второму рисунку, где показаны зависимость выходного сигнала, шумов и сререоразделения от уровня входного сигнала. Конечно, это графики реального приемника и аналогичные графики для других моделей могут отличаться числовыми значениями, но характер зависимостей сохраняется всегда.
Некоторые изготовители просто точно указывают условия измерений (например, при уровне искажений 3% и отношении сигнал/шум 26 дБ), что чаще всего соответствует требованиям этого американского стандарта. Эта чувствительность характеризует способность приемника принять слабый сигнал, который ни в коей мере нельзя рассматривать как музыкальный источник, а только для приема речевых сообщений. Тем более, и это практически никогда не уточняется в технических характеристиках, что это чувствительность при приеме моносигнала. На нашем графике этой чувствительности соответствует значение А. Реально послушать музыку можно только при значительно большем отношении сигнал/шум, и такую чувствительность также приводят (хотя и не все производители, предлагаем вдумчивому читателю решить почему), указывая отдельно ее значения для приема моно- и стереосигнала. Называют ее в англоязычных инструкциях quieting sensitivity или просто sensitivity. Иногда измерения производят при отношении сигнал/шум 46 дБ, иногда - 50 дБ. На графике ее значения для отношения сигнал/шум 50 дБ отмечены для моно- (В) и стереосигнала (С). Обратите внимание на то, что при достижении требуемого отношения сигнал/шум (50 дБ) в случае С еще практически отсутствует стереоразделение. Реально приемное устройство с подобными характеристиками начнет хорошо принимать стереосигнал при уровне на входе более 45 дБф. Качественный прием стереосигнала и представляет всегда наибольший интерес. В лучших моделях тюнеров чувствительность (стерео, отношение сигнал/шум 50 дБ) не бывает больше чем 17 мкВ (36,1 дБф), а в массовых моделях для высококачественного приемника такая чувствительность не должна превышать 28–30 мкВ. Некоторые изготовители, ориентированные на рынок немецкоязычных стран Европы, приводят чувствительность, измеренную по германскому стандарту (DIN), и в силу некоторых отличий условий измерений ее значения в этом случае получаются на 10–15 мкВ больше.

Отношение сигнал/шум

Как уже стало понятно из обсуждения чувствительности, отношение сигнал/шум на выходе радиоприемного устройства зависит от уровня принимаемого сигнала. При малых уровнях шум вообще может подавить сигнал, т.е. стать больше его. Это одна из особенностей приема сигнала с частотной модуляцией. Поэтому в описаниях приводится отношение сигнал/шум (signal to noise ratio) для достаточно сильного сигнала (обычно порядка 65 дБф), когда оно уже достигает своего максимального значения. Для моносигнала оно составляет порядка 70 дБ, для стерео - обычно на 5 дБ меньше. В лучших моделях может достигаться значение этого отношения на 3–5 дБ выше.

Избирательность

При радиоприеме необходимо выделить только требуемый сигнал, а все мешающие подавить. Такими вредными могут быть сигналы соседних радиостанций. Ответственным за прием требуемого сигнала и подавление посторонних в приемнике является усилитель промежуточной частоты (ПЧ), и в современных моделях конкретно за подобную селекцию отвечает керамический фильтр ПЧ. Ни один такой фильтр не является идеальным, то есть таким, который абсолютно без искажения передает все сигналы в полосе пропускания и полностью подавляет помеху за ее пределами. Всегда существует некая область частот на границе (когда больше, когда меньше), в которой уже ослабляются составляющие спектра принимаемого сигнала, но еще недостаточно подавляется помеха. Теоретически спектр ЧМ-сигнала очень широк и общепринятое значение полосы пропускания фильтр ПЧ около 400 кГц является компромиссом между качеством принимаемого сигнала (см. ниже о нелинейных искажениях) и количеством радиостанций, которые могут уместиться в отведенном для радиовещания участке диапазона, не мешая друг другу. Избирательность, значение которой приводится в описании, показывает, насколько ослабляется нежелательный сигнал по отношению к принимаемому. Хорошим считается значение более 50 дБ при частоте мешающего сигнала на 300 кГц меньше и больше частоты полезного сигнала. Иногда, для пущего эффекта, изготовители приводят значение избирательности при расстройке на 400 кГц, и тогда значение получается децибелов на 10 больше.

Нелинейные искажения

Уровень нелинейных искажений в приемнике сигналов с частотной модуляцией зависит не только от схемы выходных низкочастотных каскадов, но и в немалой степени от ширины полосы пропускания по промежуточной частоте. В серьезных приемниках она может быть переменной (чаще всего переключаться) для обеспечения компромисса в случае приема слабого сигнала, между искажениями и приемлемым уровнем шумов. Считается, что для достижения низкого уровня искажений линейный участок характеристики частотного детектора, который осуществляет преобразование ЧМ-сигнала в звуковой, должен быть не менее 1 МГц. Если теперь сравнить это с полосой по ПЧ, то станет понятно, почему уровень КНИ для вполне пристойных по остальным параметрам устройств может достигать 0,8% (в режиме приема стерео). В лучших приемниках значение КНИ не превышает 0,1% для моносигнала и 0,15 для стерео.

Разделение каналов

На страницах журнала мы уже рассказывали о некоторых параметрах, определяющих качество приема стереопередач, но наиболее существенным для правильного воспроизведения стереопанорамы является достижение необходимого разделения каналов. На нашем графике видно, что разделение, как и другие параметры зависит от уровня принимаемого сигнала. Кроме того, оно зависит также и от симметрии частотного тракта ПЧ. Значение в 40 дБ является практически предельным и по представлениям 50-х годов, когда и разрабатывались системы стереовещания, вполне достаточным. Заметим, что даже измерительные стереомодуляторы не обеспечивают большего разделения. Иногда для обеспечения работы стереодекодера при низком отношении сигнал/шум используются специальные схемы как автоматические, так и включаемые вручную, искусственного уменьшения разделения на высоких частотах. Обозначаются такие устройства HIGH BLEND. Это позволяет снизит шумы до приемлемого уровня и относительно немного потерять в стереопанораме.

Другие параметры

Часто в техническом описании приводят значение неравномерности частотной характеристики выходного сигнала в полосе 30 Гц – 15 кГц и подавление по ПЧ. Для современных приемников хорошей можно считать неравномерность ±1 дБ, хотя встречаются модели и с завалом до 3 дБ на краях диапазона. Подавление по промежуточной частоте интересно тем, что возможная помеха на такой частоте наиболее сильно влияет на качество приема. Один пример. Лет двадцать тому назад, еще в Советском Союзе появился в продаже приемник одной известной японской фирмы, выполненный по схеме с двумя промежуточными частотами. Такая схема обеспечивает лучшую избирательность по альтернативным каналам приема. Однако в связи с тем, что первая (высокая) промежуточная частота точно соответствовала частоте, на которой вещала в диапазоне УКВ в Москве радиостанция "Маяк", то он только ее здесь и принимал…


Радиоприемная часть в современной аппаратуре с виду проста до предела: высокочастотный блок да пара микросхем

Все сказанное относится к приему в диапазоне FM (или УКВ). Для диапазонов АМ (средних и длинных волн), вещание в которых можно рассматривать только как информационное, обычно приводятся не больше двух-трех параметров: чувствительность, избирательность и отношение сигнал/шум. Если чувствительность измеряется на зажимах антенного входа, то приводится ее значение в мкВ. Однако чаще, поскольку практически все современные стационарные приемники и тюнеры комплектуются рамочной антенной, указываются значения в мкВ/м (микровольт на метр) именно для нее. Типичным значением является 300 – 400 мкВ/м, а для электрического входа антенны 30–40 мкВ. Избирательность по соседнему каналу (при АМ-вещании это расстройка всего на 9 кГц) редко превышает 30 дБ, а массовые приемники имеют значения на 3-5 дБ меньше. В то же время отношение сигнал/шум достигает вполне приемлемого значения в 50 дБ при уровне сигнала всего 100 мкВ/м.
К сожалению, приходится констатировать, что аналоговые приемники все больше отходят на второй план, а потому и существенно упрощаются. Обычно это отдельная плата в составе ресивера (см. фото), которая содержит радиочастотный входной блок и пару-тройку универсальных микросхем (см. фото). Конечно, и такой набор обеспечивает всю обработку (усиление, детектирование и декодирование) аналогового сигнала, но качество, как мы видим страдает. Наши наблюдения показывают, что с каждым новым поколением AV-ресиверов, производители все меньше и меньше выделяют средств на их приемную часть. Часто новые ресиверы имеют и параметры чуть-чуть похуже и поменьше функций. С другой стороны устройства для приема цифрового радио пока выпускаются в виде отдельных блоков, а для их цифровых выходов в последних моделях многих AV-ресиверов уже предусмотрен дополнительный вход (оптический или коаксиальный) обозначенный как DAB.

Под чувствительностью понимается способность радиоприемного устройства принимать слабые сигналы. Она определяется минимальной величиной входного сигнала, которая обеспечивает нормальное функционирование исполнительного устройства при заданном превышении сигнала над помехой. Если чувствительность приемника ограничивается собственными шумами, ее можно оценить реальной или предельной чувствительностью, коэффициентом шума и шумовой температурой. Реальная чувствительность равна величине э.д.с. (номинальной мощности) сигнала в антенне, при которой напряжение (мощность) сигнала на выходе приемника превышает напряжение (мощность) помех в заданное число раз. Если мощность сигнала равна мощности помех на выходе линейной части приемника – предельная чувствительность .

Чувствительность радиоприемного устройства определяется уровнем внутренних и внешних шумов и помех э.д.с., приведенных к его входу, величина которых составляет

где – э.д.с. шумов и помех, обусловленных их влиянием извне на характеристики радиоприемного устройства;

– э.д.с. собственных шумов и помех, приведенных к входу радиоприемного устройства.

Влияние внешних шумов на чувствительность радиоприемного устройства в диапазоне частот различное и зависит от причин их возникновения. В диапазоне рабочих частот до 100 МГц наибольшее влияние оказывает средний уровень промышленных помех в городе (рис. 1.7). В данном диапазоне также большое влияние оказывают помехи, обусловленные атмосферными, грозовыми и космическими явлениями. Суммарное значение э.д.с. помех, наводимых в антенне, определяется выражением

где – отдельные источники э.д.с. помех.

Суммарное значение э.д.с. помех может быть определено по данным (рис. 1.7), где представлены их частотные зависимости в эффективной шумовой полосе частот, равной 1 кГц.

Уровень внешних помех, наводимых в согласованной антенне, определяется выражением

где – суммарное значение помех, наводимых в антенне в мкВ/м;

– действующая высота антенны в метрах;

– шумовая полоса радиоприемного устройства в кГц.

В диапазоне частот свыше 100 МГц основным видом помех являются внутренние шумы радиоприемного устройства и шумы антенны. Шумы антенны обусловлены приемом шумовых излучений космического пространства, атмосферы земли и ее поверхности, а также тепловым шумом сопротивления потерь r п антенны. В инженерной практике за шум антенны принимают э.д.с., наводимую в полном сопротивлении антенны R А нагретого до величины, называемой эффективной шумовой температурой антенны T А. Эквивалентная схема настроенной антенны с учетом наводимых шумов и помех представлена на рисунке (рис. 1.8).


Рис. 1.8 - Эквивалентная схема настроенной антенны

Величина уровня шума в антенне определяется формулой Найквиста

где k – постоянная Больцмана равная 1.38×10 - 23 Дж/град;

П Ш – шумовая полоса радиоприемного устройства;

T А – абсолютная температура антенны в К 0 .

Величина температуры T А зависит от формы диаграммы направленности антенны, от характера шумовых источников, действующих в зоне радиоприема, от диапазона рабочих частот (рис. 1.9) и т.д.

Рис. 1.9 - Зависимость шумовой температуры приемной антенны от частоты (1 – максимальная; 2 – минимальная)

Мощность шума антенны, поступающего на согласованный вход радиоприемного устройства, определяется величиной (1.14) и равна

Для оценки предельной чувствительности и шумовых свойств радиоприемного устройства используется понятие коэффициента шума N , определяемого как степень уменьшения отношения сигнал/шум на выходе линейного тракта по сравнению с этим соотношением на его входе при стандартных условиях измерения.

где – мощность сигнала на входе;

– рассеиваемая мощность, обусловленная тепловым шумом сопротивления эквивалентного генератора при T 0 = 290 K 0 ;

– мощность шума на выходе линейного тракта при определении коэффициента шума;

– мощность сигнала на выходе линейного тракта радиоприемного тракта.

Под линейным трактом понимаются все каскады приемного радиочастотного тракта до детектора.

Чувствительность приемного устройства в диапазоне метровых и менее длин волн в режиме согласования при заданном отношении сигнал/шум на выходе линейного тракта определяется выражением:

где – относительная шумовая температура антенны;

Т 0 стандартная температура(290 К);

– коэффициент шума приемника (1.16);

– коэффициент различимости на выходе линейного тракта приемника.

В единицах напряжения:

где r А – сопротивление антенны (эквивалента антенны).

При определении требований к приемному устройству по шумовым свойствам на практике определяют допустимым коэффициентом шума .

В диапазоне ДВ, СВ и КВ, если задана э.д.с., наведенная в антенне:

Если чувствительность определяется напряженностью поля сигнала

Для диапазонов метрового и менее длин волн:

где K рф коэффициент передачи мощности фидерной линии (волновода).

Исходя из анализа предыдущих выражений, можно сделать следующие выводы:

1. Если уровень помех в антенне больше уровня шумов приемника, то требования к шумовым параметрам приемника не предъявляются.

2. В диапазоне частот более 100 МГц необходимо принять меры к уменьшению коэффициенту шума приемника, полосе пропускания и т.д.

3. На частотах более 1 ГГц уровнем внешних шумов можно пренебречь.

Министерство высшего и среднего специального образования РФ.

Балтийский государственный технический университет

«ВОЕНМЕХ» имени Д.Ф. Устинова

Исследование супергетеродинного приёмника

Методические указания к лабораторной работе по курсу

"Радиоприемные устройства"

Санкт-Петербург

Цель работы - ознакомление с основными качественными показателями и методикой измерения основных электрических параметров радиоприемников.

1. Основные качественные показатели радиоприемников

Основными качественными показателями приемников является : чувствительность, помехоустойчивость, коэффициент передачи (усиления), амллитудно-частотная и фазочастотная характеристики, избирательность, перекрытие диапазона частот, нелинейные искажения, вносимые приемникомв принимаемые сигналы, амплитудная характеристика, динамический диапазон, переходная характеристика, выходные данные приемника, устойчивость работы приемника и др.

Чувствительностью приемника называется его способность обеспечивать нормальный прием малых э.д.с. (или мощности сигнала в антенне). Различают пороговую и реальную чувствительность приемника.

Пороговая чувствительность характеризуется величиной э.д.с. или мощности сигнала в антенне, при которой на выходе линейного тракта приемника (т.е. на входе детектора) обеспечивается отношением мощности сигнала к мощности собственных шумов (выходное превышение), равное единице.

Реальная чувствительность определяется величиной э.д.с, или мощности сигнала в антенне, при которое на выходе линейного тракта приемника достигается выходное превышение, требуемое длянормальной работы оконечного устройства. Реальная чувствительность связана с пороговой Р n простым соотношением Р р =D Р n где D - коэффициент различимости. Изменяющийся в широких пределах (от 0.01 до 10) и зависящий как от информативности принимаемых сигналов, так и от структуры оконечных устройств др. Помехоустойчивостью приемника называется его способность противостоять вредному действие помех, обеспечивая при наличии последних прием переданных сообщений с заданной достоверностью при заданном, способе передачи. Поскольку достоверность принятых сообщений обычно возрастает по мере роста превышения на выходе приемника, помехоустойчивость последнего как отдельного звена соответствующей радиотехнической системы удобно выражать относительным увеличением его выходного превышения hвых по сравнению с входным hвых

Оно объективно и достаточно просто характеризует как, эффективность всех селектирующих средств приемника, так и его способность противостоять вредному воздействию помех.

Коэффициентом передачи (усиления) приемника К называется отношение амплитуды выходного напряжения U m вых к амплитуде гармонически изменяемого во времени информативного параметравходного сигнала приемника М (Ω):

К=U m вых /М(Ω).

Частопользуются понятием комплексного коэффициента передачи приемника, равного отношению комплексных амплитуд напряжения на выходе приемника и информативного параметра входною сигнала

К(Ω)= U m вых /M(Ω)-K(Ω)e jφ (Ω)

где К(ω) - модуль комплексного коэффициента передачи приемника; φ(Ω)- фазовый сдвиг на частоте модуляции Ω= 2π F , вносимый приемным трактом в соответствующую компоненту сигнальной модулирющей функции.

Амплитудно-частотной характеристикой приемника называетсязависимость модуля коэффициента передачи K (F ) от частотымодуляции F=Ω/(2π) при принятом коэффициенте модуляции входного сигнала и точной настройке линейного тракта приемника в резонанс с центральной частотой спектра входного сигнала.

По амплитудно-частотной характеристике приемника можно судить о степени частотных искажений, вносимых приемником в спектральные составляющие модуляционных частот принимаемого сигнала, а также определить рабочий диапазон модуляционных частотприемника, ограничиваемый соответственнонижней F н и верхней F в, модуляционными частотами (рис.1,а). Выбор последних определяется спектральным составом принимаемых сигналов.

Фазочастотная характеристика приемника - это зависимостьугла сдвига фаз φ выходного напряжения приемника и модулирующей функции входного сигналаот частоты модуляции F сигнала (рис. 1,6). Длятого чтобы, приемник вносил как можно меньшефазовых искажений в принимаемый сигнал, его фазочастотная характеристика в пределах рабочего диапазона модуляционных частот должна в возможно меньшей мере отклоняться от прямой линии.

Избирательностью приемника называется егоспособность выделять п ринимаемый

сигнал из смеси его с помехами на выходе приемной антенны.

Для количественной характеристики частотной избирательности чаще всего о используют нормированную амплитудно-частотную характеристику (рис.2), линейного трактаприемника, представляющую зависимость y (f ) отношения модуля коэффициента передачи линейного трактана любой частоте К(f ) кего резонансному коэффициенту передачи К о от частотыf немодулированного входного сигнала приемника.

При этомв качествемеры частотнойизбирательности можно принять коэффициент прямоугольности амплитудно-частотной характеристики линейного тракта приемника:

к П =П 0,1 /П 0,7

где П 0,1 и П 0,7 - полосы пропускания линейного тракта приемника, измеренные по уровням 0.707 и 0,1 соответственно.

Перекрытие диапазона частот - способность приемника производить прием радиосигналов,несущие частоты которых лежат в пределах заданного интервала частот, ограниченного граничными частотами f min и f max . Перекрытие диапазона

частот можно характеризовать коэффициентом диапазона K 1 = f max / f min

Амплитудная характеристика приемника амплитудно-модулированных

сигналов - это зависимость амплитуды первой гармоники выходного напряжения U m вых от амплитуды огибающей входного сигнала U m вх при его гармонической модуляции.

По амплитудной характеристике приемника АМ- сигналов (рис.3) удобно определять динамический диапазон амплитуд входного сигнала

D A = U вх max / U вх min

при которых сохраняется линейный режим работы приемника, а также максимальный уровень входного сигнала U вх max превышение которого вызывает появление нелинейных искажений в выходном сигнале приемника. Нелинейные искажения принимаемого сигнала возникают из-за нелинейности проходных характеристик усилительных элементов и других приборов, используемых в приемнике. При гармоническом модулирующем входном сигнале эти искажения вызывают обогащение спектра выходного напряжения приемника высшими гармониками основной частоты модуляции F.

Для количественной оценки нелинейных искажений используют коэффициент" нелинейных искажений

К Н =

где U 1 ,U 2 ,…,U n - эффективные значения первой и высших гармоник основной частоты

модуляции F в спектре выходного напряжения приемника.

Переходной характеристикой приемника называется график реакции его на

входной сигнал, представляющий собой высокочастотное колебание, модулированное единичной функцией (функцией включения). Большое значение переходная характеристика имеет для приемников импульсных радиотехнических систем. По ней могут быть определены (рис.4) время установления τ y - время изменения выходного напряжения от 10 до 90% установившейся величины; время запаздывания τ о - временной интервал от момента, включения модулирующего напряжения

до момента, когда выходное напряжение достигает половины установившейся величины; величина выбросов - отношение максимального отклонения выходного напряжения от установившейся величины.

Определение параметров переходной характеристики приемника поясняется рис.4.

Следует отметить, что время установления, характеризующее инерционность приемника, связано с его верхней граничной частотой F в определяемой по амплитудно-частотной характеристике приемника приближенным соотношением

τ у = (0,45 - 0,5)/F в

которое часто используется при расчете импульсных радиоприемников.

Выходные данные приемника регламентируют величину выходной мощности или выходного напряжения приемника.

Выходной мощностью приемника называется мощность, подводимая к оконечному устройству с токовым управлением (громкоговоритель, рулевая машинка, автопилот и т.п.). Ее величина определяется целевым, назначением приемника и конкретным типом оконечного устройства. При использовании оконечных устройств с бестоковым управлением, (электронно-лучевые трубки, электронные устройства на полевых транзисторах и электронных лампах и т.п.) вместо выходной мощности задают выходное напряжение (в телевизионных приемниках - 20 - 30 В. в радиолокационных приемниках с яркостной индикацией - 20 - 30 В. с индикацией отклонением - 40-80 В).

а принимать слабые по интенсивности радиосигналы и количественный критерий этой способности. Последний во многих случаях определяется как минимальный уровень радиосигнала в приёмной антенне (эдс, наводимая сигналом в антенне и выражаемая обычно в мв или мкв , либо напряжённость поля вблизи антенны, выражаемая в мв/м ), при котором содержащаяся в радиосигнале полезная информация ещё может быть воспроизведена с требуемым качеством (с достаточными громкостью звучания, контрастностью изображения и т.п.). В простейших радиоприёмниках чувствительность зависит главным образом от степени усиления сигналов в них: с увеличением коэффициента усиления нормальное воспроизведение информации достигается при более слабом радиосигнале (Ч. р. считается при этом более высокой). Однако в сложных радиоприёмных устройствах (например, связных) такой путь повышения Ч. р. теряет смысл, поскольку в них интенсивность полезных радиосигналов может оказаться сравнимой с интенсивностью действующих на антенну одновременно с этими сигналами внешних помех радиоприёму (См. Помехи радиоприёму), искажающих принимаемую информацию. Предельная Ч. р. в этом случае называется чувствительностью, ограниченной помехами; она является параметром не только приёмника, но зависит и от внешних факторов. При наиболее благоприятных условиях (главным образом при приёме в диапазоне метровых и более коротких волн и особенно при космической радиосвязи) внешние помехи слабы и основным фактором, ограничивающим Ч. р., становятся внутренние флуктуационные шумы радиоприёмника (см. Флуктуации электрические). Последние в нормальных условиях работы радиоприёмника имеют постоянный уровень, поэтому Ч. р., ограниченная внутренними шумами, - вполне определённый параметр; за меру Ч. р. в этом случае часто принимают непосредственно уровень внутренних шумов, характеризуемый коэффициентом шума или шумовой температурой (См. Шумовая температура) (см. также Пороговый сигнал).

Лит.: Чистяков Н. И., Сидоров В. М., Радиоприёмные устройства, М., 1974.

Н. И. Чистяков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Чувствительность радиоприёмника" в других словарях:

    Способность радиоприёмника принимать слабые сигналы, а также количеств. мера этой способности, определяемая как миним. уровень входного сигнала, при к ром на выходе приёмника обеспечивается желаемый эффект: определ. качество и громкость звука,… … Большой энциклопедический политехнический словарь

    средняя используемая чувствительность радиоприёмника - 3.84 средняя используемая чувствительность радиоприёмника (напряженность поля, для данных): Средняя напряженность поля, созданная несущей на номинальной частоте радиоприемника, промодулированной нормальным тестовым сигналом, которая обеспечивает… … Словарь-справочник терминов нормативно-технической документации

    Чувствительность, сенситивность (от лат. sensus чувство, ощущение) количественная характеристика способности устройства реагировать определенным образом на внешнее воздействие, один из главных технических параметров для некоторых… … Википедия

    У этого термина существуют и другие значения, см. Чувствительность. Чувствительность способность объекта реагировать определённым образом на определённое малое воздействие, а также количественная характеристика этой способности.… … Википедия

    РАДИОПРИЁМНИК - РАДИОПРИЁМНИК. Радиовещательные приёмники служат для индивидуального или коллективного слушания передач радиовещательных станций. Большая часть радиоприёмников даёт возможность воспроизводить граммофонную запись с помощью проигрывателей. При… … Краткая энциклопедия домашнего хозяйства

    Устройство для преобразования электрических сигналов с выхода антенны в электрические сигналы, соответствующие подаваемым, на вход радиоканала. Радиоприёмник усиливает принимаемые сигналы до необходимых значений (независимо от величины входных… … Энциклопедия техники - Детекторный приёмник, 1914 г … Википедия

    Устройство, предназначенное (в сочетании с антенной (См. Антенна)) для приёма радиосигналов или естественных радиоизлучений и преобразования их к виду, позволяющему использовать содержащуюся в них информацию. В зависимости от назначения Р … Большая советская энциклопедия

В.Ефремов

В журнале "Ремонт & Сервис" ранее рассматривались общие вопросы построения специальных шкал децибел и проблемы, возникающие при переходе от абсолютных значений к децибельной шкале и наоборот . В качестве практического примера была приведена специальная шкала, часто используемая при проведении измерений сигналов низких частот на нагрузке сопротивлением 600 Ом.

В современной высокочастотной технике большинство генераторов сигналов, предназначенных для проверки чувствительности радиоприемных устройств (РПУ), рассчитаны на работу с 50-омной согласованной нагрузкой и на подключение 75-омной нагрузки через специальные переходные устройства. Уровень ВЧ-напряжения на выходе генератора устанавливается либо ступенями, либо плавно, а шкалы выходного напряжения при этом могут иметь различную градуировку в зависимости от типа генератора. Чувствительность приемников ранее выражали в микровольтах, а в последнее время стали использовать для этого специальные шкалы децибел. В связи с этим на практике иногда возникают трудности, связанные с быстрым переводом и определением конкретных численных значений в различных шкалах.

В литературе рассмотрены высококлассные универсальные приборы, предназначенные для проверки чувствительности РПУ. Они позволяют устанавливать уровни ВЧ-напряжения на выходе и производить перевод их численных значений в различные шкалы автоматически. К сожалению, большинству мелких предприятий, занятых ремонтом электронной аппаратуры, они пока недоступны. Более того, им часто приходится пользоваться приборами, произведенными достаточно давно, но до сих пор отвечающими необходимым техническим требованиям при проведении периодических проверок. К таким приборам можно отнести, например, широко распространенный высокочастотный генератор сигналов Г4-107. Выходное напряжение этого генератора на согласованной нагрузке 50 Ом в режимах НГ и ЧМ можно регулировать от 1 В до 1 мкВ и в режимах АМ и ИМ от 0,5 В до 0,5 мкВ. Регулировка производится дискретно и плавно в пределах каждой ступени. Шаг ступенчатой регулировки равен 1 дБ. При этом шкала ступенчатого аттенюатора проградуирована в децибел-вольтах (дБВ). Он (аттенюатор) позволяет устанавливать уровень выходного ВЧ-напряжения от 0 до -119 дБ. Кроме этого, с помощью внешнего аттенюатора можно дополнительно уменьшить уровень напряжения на 20 дБ, т.е. минимальный уровень довести до -139 дБ.

При практической работе с генератором и определении чувствительности РПУ, для перевода уровня выходного сигнала дБВ в мкВ необходимо использовать две специальные таблицы, которые даются в технической документации . При пользовании ими возникают неудобства, связанные с переводом численных значений дБВ в мкВ и наоборот, что особенно заметно в верхней части таблиц, где значения напряжений в мкВ представлены в виде чисел со степенями. Кроме этого, на практике почти всегда приходится использовать внешний аттенюатор, так как чувствительность современных РПУ может быть выше 1 мкВ. Уровень выходного сигнала генератора при этом будет ниже -119 дБ. Прямой перевод уровней ниже этого значения в прилагаемых таблицах вообще не предусмотрен.

Уровни выходного сигнала в дБВ расположены в центральной части таблиц. Им соответствуют значения в единицах, указанных стрелками, т.е. в мВ вверху и в мкВ внизу таблицы. При этом для наглядности соответствующие ряды имеют одинаковое цветовое оформление. Такие же таблицы можно изготовить для других приборов, имеющих ступенчатые аттенюаторы с подобными шкалами. Уровни менее 0,1 мкВ округлены до более реальных с практической точки зрения величин.

Как уже было отмечено выше, в последнее время в технической документации и в литературе уровень ВЧ-сигнала часто указывают в децибельных шкалах. Так, чувствительность РПУ указывают в дБмкВ. Нулевой уровень в этом случае соответствует напряжению ВЧ-сигнала 1 мкВ при сопротивлении нагрузки 50 Ом. Переход к значениям уровня сигнала в мкВ или мВ для этой шкалы можно производить по табл. 1б.



Широкое распространение в радиотехнических измерениях получила специальная шкала дБм. Нулевой уровень этой специальной шкалы соответствует мощности ВЧ-сигнала 1 мВт, рассеянной на 50-омной резистивной нагрузке. При этом, как и в предыдущих случаях, уровни сигнала ниже этого значения будут иметь отрицательный знак. Выразить уровень ВЧ-сигнала в дБм можно, используя одно из математических выражений:

При проведении радиотехнических измерений на практике перевод уровня ВЧ-сигнала из мкВ и мВ в дБм удобно осуществлять также с помощью специальных диаграмм или таблиц. Диаграммы, приводимые в литературе , дают наглядное представление о соотношениях между различными шкалами, но, к сожалению, не позволяют определить точное числовое значение уровня сигнала. Табл. 3 предназначена для перевода уровней ВЧ-сигналов, выраженных в мВ и мкВ, в дБм или наоборот.


Дискретность и числовые значения уровней, представленных в мВ и мкВ, соответствуют табл. 1, т.е. подходят для работы с генератором Г4-107 и другими приборами, имеющими подобную шкалу уровней. В центральной части табл. 3 приведены значения уровней сигналов в дБм, перевод которых осуществляется так же, как и в предыдущих таблицах. Практическое использование приводимых таблиц, в особенности табл. 1 и 3, не ограничивается только приведенными выше примерами.

Литература
1. В. Ефремов. Практическое использование специальных шкал децибел. Ремонт & Сервис, 2000, № 1. с. 55-56.

2. А. Дубинин. Сервис-мониторы IFP-7550. Ремонт&Сервис, 1999, № 11, с. 55-56.

3. Генератор сигналов высокочастотный Г4-107. Техническое описание и инструкция по эксплуатации.

4. Э. Ред. Справочное пособие по высокочастотной схемотехнике, М.: Мир, 1990, с. 171.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: